This consultancy project is framed by the AQUIFER project, “Innovative instruments for the integrated management of groundwater in a context of increasing scarcity of water resources” (Interreg-SUDOE V programme) which aims to capitalize, test, disseminate and transfer innovative practices for the preservation, monitoring and integrated management of aquifers.

FutureWater expertise was required for providing a novel and open-source hydrological modelling framework able to quantify spatial patterns of daily root percolation as a direct surrogate of groundwater recharge in the Campo de Cartagena Quaternary Aquifer (CC-QA). This aquifer is located at SE Spain and is one of the most important vectors of water drainage to the Mar Menor lagoon.

This task is addressed through the improvement and local calibration of the SPHY code for the Campo de Cartagena and the simulation of the water balance in the soil root zone from the 1950s until the end 2020. The SPHY-Campo de Cartagena includes a new routine able to compute irrigation inputs at the pixel level based on satellite data. Timeseries of monthly root percolation are taken as good surrogates of potential groundwater recharge and used as the main forcing input to an hydrogeological model of the Quaternary aquifer. The calibration process is performed through a sensititivity-intercomparison analysis in which model-derived outputs (irrigation and streamflow) during the calibration period are cross-checked against actual observations.

Spatial patterns of root percolation and the relative contribution of irrigation return flows to the total groundwater recharge were quantified (e.g. Figure 1) under historical and current conditions. Simulation results would show the lack of a significant temporal trend in the long-term recharge rates in the aquifer, most likely due to the the strong interannual variability observed in rainfall patterns, but also by the trade-offs resulting from the combination of climate, land use and irrigation-crop management drivers.

Figure 1. Mean Annual values of the main water balance components in Campo de Cartagena (2000-2020). RPer_ratio refers to the fraction between Root Percolation (MA.RPer) and Precipitation (MA.Pre)

FutureWater supports Fiera Comox in its due diligence process for the acquisition of a vertically integrated tree-fruit operation in North Spain. Particularly, FutureWater addresses an overall assessment of the most important water-related factors of risk that may control the current and medium-term feasibility of the fruit orchard farming system of interest. The application of FutureWater’s approach applies a multicriteria analysis and allows to qualify the levels of risk for each key factor analyzed.

FutureWater’s approach rests on: 1) the collection and analysis of data retrieved from documents, large datasets, and in-situ field inspections and stakeholder interviews, and 2) the scoring of the risks previously identified based on a final expert judgment.

Key sources of information for this risk screening included:

  • Existing documentation, reports, plans, and local legislation that may affect the access to water for irrigation
  • Existing and publicly accessible spatial and GIS data, including satellite imagery and thematic datasets available through national and regional agencies and platforms (Ebro River Basin Authority, National Infrastructure of Geospatial Data, Spanish Information System of Water)
  • Meteorological data (rainfall and temperature) from nearby weather stations
  • Groundwater level from the Spanish National Ministry of Environment.
  • Private data and documents generated by clients and stakeholders through personal and follow-up communications with farmer

Key variables analyzed and evaluated at the district and regional scales, to the extent relevant to the farm, included:

  • Water availability of surface and groundwater resources. For groundwater, a trend analysis of water levels, and first-order assessment of quality constraints and risks is included.
  • Impacts of climate change on water resources availability based on rainfall and temperature trends and projections for the region.
  • Water quality for irrigation purposes.
  • Potential conflicts due to competition for water in agriculture and other sectors of activity.

Legislative and policy-related factors that may affect the overall performance were also analyzed risk-by-risk.

Four factors of risk were analyzed: water availability, climate change, water quality, and water conflict. Each factor of risk was scored according to a risk matrix in which levels of probability of occurrence and impact severity were qualified based on data and expert judgement. For each factor, a risk matrix with three levels of overall risk were adopted: Low Risk (L), Moderate Risk (M), and High Risk (H)

Figure 1. Overall risk levels when probability of occurrence and impact severity are qualified.
Figure 2. Overview of risk assessment by factor.

In this particular project, the approach was implemented in four different settings located in the area.

Groundwater availability is critical to the Umbeluzi Catchment. Currently, there is a need for a simple tool that can asses the availability of resources in the ground.

This especially to asses the permits for groundwater extractions. It is expected that a simplified modelling approach can provide a trend analysis sufficient for the water authorities in Mozambique to perform assessments of the sub-surface water availability. Furthermore, the water availability will be assessed for current and future conditions, under different scenarios of climate change and demand increase.

Within the project, FutureWater will develop a groundwater model in WEAP, using the Strategic Model previously build for the Umbeluzi catchment. To this end a detailed data gathering activity will take place proceed by developing the model. We aim to validate and improve the model with measurements available of groundwater levels in the catchment. The model will be validated with the technical team of ARA-Sul. Ultimately, a dedicated training session for ARA-SUl will ensure that model operation is performed by local experts.

Eswatini’s development is at risk by natural drought hazards. Persistent drought is exacerbating the country’s existing challenges of food security and the ability to attain sustainable development. Therefore, FutureWater, Hydrologic, and Emanti Management joined forces to bring together technologies and complementary expertise to implement the GLOW service which includes: short-term and seasonal forecasts of water availability and demand, an alerting service when forecasted water demand is higher than water availability, and water distribution advisories to reduce impact and maximise water security for all water users.

The GLOW service will be piloted in the Maputo River and Mbuluzi River Basins where three-quarters of the population of Eswatini lives, which includes the Hawane dam that supplies water to Mbabane (Capital City of Eswatini) and which is the major water supply source for Maputo, a Delta city (1 million inhabitants) which suffers from water shortages. The main beneficiaries of this project are the Joint River Basin Authority (JBRAS-PB) and the 5 River Basin authorities, AraSul (Mozambique) and the Department of Water and Sanitation (South Africa).

The innovation of GLOW is bringing together proven and award-winning technologies of advanced earth observation, open data, high-performance computing, data-driven modelling, data science, machine learning, operations research, and stakeholder interaction. These technologies require minimum ground truth information, which makes them very scalable and applicable in poorly monitored environments throughout the world. The coherent combination of the technologies into one decision support service ensures the optimum division of water, basically distributing every drop of water to meet the demands of all interests present in large river catchments.

InfoSequia, the Drought and Early Warning System (DEWS) developed by FutureWater, was granted for being part of the Cajamar-INNOVA Incubation Programme powered by Cajamar Fundation. 

InfoSequia has been granted by Cajamar-INNOVA, a High-Tech Incubator/Accelerator focused on the Water and Agro sector. During the 6-month granted period, FutureWater’s staff is being mentored and supported by experts on topics that cover technological and business aspects. Two main objectives have been planned: 1) to increase the technical readiness level of the service by testing its reliability and suitability for the private agrobusiness and agroinsurance sectors, and 2) to improve the business strategy by identifying market opportunities and reinforcing the communication with potential stakeholders and early adopters.

Since the beginning of the Programme, several campus have been organized to deal with specialized training workshops and promote synergies among the start-ups granted. Recently, in November 2020, a campus session was also organized in parallel with the DATAGRI 2022 Forum held in El Ejido (Almería, Spain). During one-day field visit at Experimental Research & Innovation Center of Las Palmerillas-Cajamar, our colleagues Amelia Fernández and Sergio Contreras introduced InfoSequia to the participants of the event.

InfoSequia is currently part of the HERMANA system of the Cauca Valley Basin (CVC) in Colombia. Nowdays, the impact-based forecasting capabilities of the service are being tested in two pilot regions in Mozambique and Spain. These activities are also being supported by the Incubed Programme funded by the European Space Agency.

More information about the project can be found here.

Cajamar-INNOVA incubation programme participants

 

Early September at the Global Gravity-based Groundwater Product (G3P) General Assembly in Zurich, FutureWater, along with 11 other consortium partners, gathered to present scientific results, project milestones, and discuss the way forward. For context, the G3P product monitors groundwater storage changes with global coverage at a monthly resolution (2002 – present) through a cross-cutting combination of GRACE and GRACE-FO satellite data. The product is being developed for operational implementation of the Essential Climate Variable (ECV) Groundwater into the Copernicus Climate Change Service.

As part of the project, FutureWater is responsible for validating the G3P product against in-situ groundwater observations in continental Spain (at pixel level) as well as use it to calibrate a Groundwater Drought Index and integrate it into InfoSequia which is FutureWater’s in-house Drought Early Warning System.

From FutureWater, Tania Imran presented the research findings from the validation case study in Spain while Sergio Contreras shared the technical workflow for the ingestion of the G3P product in InfoSequia. Different statistical metrics were adopted to assess the correlation between the GRACE-groundwater storage anomalies and in-situ groundwater index. Cross-correlations, obtained at 0.5-degree resolution, were presented followed by a discussion on the spatial patterns observed and the potential influence of local hydro(geo)logical conditions on the results.

As the groundwater storage anomaly is derived by accounting for changes in glaciers, snow, soil moisture and surface water, other consortium partners responsible for developing these accounts also shared insights on the most optimal approach to compute water storage variations in such compartments.

Since the project is now in its concluding phase, FutureWater is condensing the research findings in a report that will highlight the performance of G3P in continental Spain and show how the product can refine drought early warning systems.

Water resources around the globe are under increasing stress. Among other factors, climate change, rising food and energy demand, and improving living standards have led to a six-fold increase in global water withdrawals over the last century, with significant consequences for water quality and availability, ecosystem health, biodiversity, as well as social stability.

By advancing and linking water system models with models from sectors such as agriculture and energy, biodiversity, or sediment transport, the SOS-Water Project aims to lay the foundations for a holistic assessment framework of water resources across spatial scales. Based on five case studies of river basins in Europe and Vietnam – the Jucar River Basin in Spain, the Upper Danube region, the Danube and Rhine River deltas, and the Mekong River Basin – an interdisciplinary team of researchers from ten institutions across eight countries will develop a multidimensional SOS for water. The framework will enable the assessment of feedback loops and trade-offs between different dimensions of the water system and help address pressing global, regional, and local challenges.

In addition to going beyond state-of-the-art water systems modeling, the project will develop a comprehensive set of indicators to assess and monitor the environmental, social, and economic performance of water systems. The participating researchers will collaborate with regional and local authorities, water user representatives, non-governmental organizations, and citizens to co-create future scenarios and water management pathways. By streamlining water planning at different levels, it can be ensured that water allocation among societies, economies, and ecosystems will be economically efficient, socially fair, and resilient to shocks.

In partnership with project lead IIASA and partners such as Utrecht University and EAWAG, FutureWater is responsible for several tasks under the work package that looks to improve upon existing Earth Observation technologies for monitoring the performance of water systems. New applications will be developed and tested in the context of the SOS-Water case study basins of the Mekong and Jucar rivers.

For more information about the project visit the official website.

The TWIGA Final Conference was held on 11 and 12 July as a hybrid event in De Oude Bibliotheek in Delft, the Netherlands, and online. The event gathered on both days 27 participants present in person and 15 online, including consortium partners, representatives of two sister projects AfriCultuReS and e-Shape, Advisory Board members, and the EC Project Officer.

Over the past 4 years, the TWIGA project provided actionable geo-information on weather, water, and climate in Africa through innovative combinations of new in situ sensors and satellite-based geo-data. The TWIGA consortium comprised seven research organisations, nine SMEs and two government organisations. In addition it used a network of 500 ground weather stations in Africa, providing ready-to-use technical infrastructure.

The program was structured to present the results of the project per Work Package during the first day, which was an internal consortium meeting, and the demonstration of the TWIGA Services, the legacy of TWIGA, and the future opportunities during the second day, which was a public event.

FutureWater team members Sergio Contreras, Corjan Nolet and Martijn de Klerk presented the successful development of the MapYourCrop drone service and InfoSequia drought early warning service. More information on the project can be found here.

TWIGA Aftermovie: 

TWIGA partners
Sergio Contreras presenting InfoSequia.
Corjan Nolet presenting MapYourCrop

We are proud to be part of the winning consortium for a PRIMA-EU Innovation Action project. With 16 partners (academia and SME’s) under the lead of Bioazul we gathered in Málaga on 18 and 19 May for a successful, in-person Kickoff meeting of  BONEX (Boosting Nexus Framework Implementation in the Mediterranean).

It was an energetic and dynamic two-days of lively discussion, sharing of experience, and identifying the upcoming project activities. FutureWater colleagues (Sergio, Johannes, and Jonna) participated in this workshop and provided a presentation on the REWAS (Real Water Savings) tool that will be upgraded and piloted in the BONEX project as an effective diagnostic tool for the WEFE (water, energy, food, ecosystem) framework. We are excited to be working on this project the upcoming three years with this strong consortium.

More information on the project can be found on the project page.

FutureWater colleagues during the kickoff event
Presentation on REWAS tool provided by FutureWater colleague Jonna van Opstal

This project is part of the PRIMA programme supported by the European Union.

The Mediterranean Region is facing growing challenges to ensure food and water supply as countries experience increasing demand and decreasing availability of natural resources. The nexus approach aims at managing and leveraging synergies across sectors with an efficient and integrated management of the Water, Energy, Food, and Ecosystems Nexus (WEFE).

BONEX objectives are to provide practical and adapted tools, examine concrete and context-adapted technological innovations, enhance policies and governance and facilitate WEFE Nexus practical implementation that balances the social, economic, and ecological trade-offs.

The project aims at producing a novel, transdisciplinary, diagnostic WEFE Bridging Framework, which combines methods in a context-specific manner and going beyond disciplinary silos. The diagnostic tools supporting the framework will be developed and tested in seven selected demonstration projects in the region which pilot innovative technologies (agrivoltaics, wastewater reuse systems, etc.).

As a result, BONEX will provide policymakers and practitioners with an interactive decision-making tool to evaluate trade-offs, synergies, and nexus solutions approaches in a transdisciplinary manner. Further, it will produce valuable experiences with tailoring innovative WEFE Nexus technologies that provides new business opportunities. The WEFE nexus approach is required to implement sustainable agri-food systems and preserve ecosystems.

Within BONEX FutureWater will actively contribute to the package of diagnostic tools. A simple water accounting tool (REWAS) will be used to evaluate if ‘Real Water Savings’ are achieved with innovative technologies. The water accounting tool evaluates water flows at field level and irrigation district scale and determines if any ‘real savings’ are achieved. The tool also incorporates the aspects of food production (crop yield) and will introduce components for evaluating energy and water quality aspects to complement the WEFE Nexus aspects. The seven demonstration projects will be used to demonstrate and iteratively develop this water accounting tool. A hydrological analysis is performed in selected locations to also evaluate the impact at basin (watershed) scale. Eventually the results from these analyses will be translated into policy implications and achievements of SDG’s (sustainable development goals).

This project is part of the PRIMA programme supported by the European Union.