Groundwater availability is critical to the Umbeluzi Catchment. Currently, there is a need for a simple tool that can asses the availability of resources in the ground.

This especially to asses the permits for groundwater extractions. It is expected that a simplified modelling approach can provide a trend analysis sufficient for the water authorities in Mozambique to perform assessments of the sub-surface water availability. Furthermore, the water availability will be assessed for current and future conditions, under different scenarios of climate change and demand increase.

Within the project, FutureWater will develop a groundwater model in WEAP, using the Strategic Model previously build for the Umbeluzi catchment. To this end a detailed data gathering activity will take place proceed by developing the model. We aim to validate and improve the model with measurements available of groundwater levels in the catchment. The model will be validated with the technical team of ARA-Sul. Ultimately, a dedicated training session for ARA-SUl will ensure that model operation is performed by local experts.

In our ongoing commitment to bolster the efforts of ARA-Sul in Mozambique, FutureWater recently conducted an intensive training course focusing on the application of the Strategic Water Allocation Model within the Umbeluzi Catchment area. This significant initiative entailed the utilization of the renowned Water Evaluation and Planning System (WEAP) model, coupled with a comprehensive update of critical information and underlying assumptions.

The primary objective of this training was to empower the dedicated professionals at ARA-Sul with the knowledge and skills necessary to effectively manage and optimize water resources within the region. The strategic allocation of water resources is of paramount importance, especially in areas like the Umbeluzi Catchment, where water plays a pivotal role in sustaining livelihoods, ecosystems, and economic activities.

One key aspect of this training involved fine-tuning the analysis-scenarios to comprehensively assess potential bottlenecks and challenges within the water allocation system. Identifying these bottlenecks is essential for making informed decisions, developing mitigation strategies, and ensuring the sustainable utilization of water resources.

Our collaborative efforts with ARA-Sul extend beyond the training itself. We are committed to providing ongoing support and guidance to ensure the long-term success of this endeavor. Through regular follow-up activities and consultations, the technical professionals at ARA-Sul are now well-equipped to independently maintain their model and conduct the essential analyses required for informed decision-making.

More information on the training here

Training on WEAP. June 2023.

In June, FutureWater visited Mozambique for a training session on the Water Evaluation And Planning (WEAP) model. The training was held at the Mozambique Regional Administration of Waters in the South (ARA-Sul) based in Maputo and was funded by the Blue Deal programme of the Dutch Water Authorities.

The training on the WEAP model comprised of a general introduction, knowledge clips, practical hands-on exercises, and a refresher course on the existing Strategic Water Allocation Model (WAM-S) that FutureWater developed for ARA-Sul in 2014.

In the forthcoming months the WAM-S will be updated to align with the current socio-economic and climatic developments of the region. The updating of the model will be performed in close collaboration with ARA-Sul. The update of the WAM-S model includes the addition of a groundwater component to support decision-making regarding water extraction licensing. We would like to express our gratitude to the Blue Deal programme for enabling the training and model update.

Theoretical session on WEAP modelling
Participants of the training

On May 22-23, FutureWater attended the Preliminary Design Review Meeting (PDR) for the MAGDA project in Bucharest, Romania.

The meeting was hosted by the National Meteorological Administration, and it was a great opportunity for project partners to meet in person and present the latest achievements. The major outputs from the first six project months were the following:

  • Selection of the three major MAGDA demo sites in France, Italy and Romania.
  • Analysis of MAGDA user requirements (surveys for the agricultural and water sectors are still open for participation!)
  • Detailed MAGDA system design: Summary of the technical data requirements of GNSS stations, IoT sensors, Meteodrones, remote sensing, weather forecast and hydrology modelling with SPHY.

The next months will now be used to install the equipment at the demo sites and start with the first modelling and site measurements, as well as the evaluation of historical data for calibration.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

More information about the project can be found here and visiting the MAGDA Project website.

FutureWater presentation on MAGDA System Architecture
Preliminary Design Review Meeting
MAGDA Partners at MeteoRomania

 

Eswatini’s development is at risk by natural drought hazards. Persistent drought is exacerbating the country’s existing challenges of food security and the ability to attain sustainable development. Therefore, FutureWater, Hydrologic, and Emanti Management joined forces to bring together technologies and complementary expertise to implement the GLOW service which includes: short-term and seasonal forecasts of water availability and demand, an alerting service when forecasted water demand is higher than water availability, and water distribution advisories to reduce impact and maximise water security for all water users.

The GLOW service will be piloted in the Maputo River and Mbuluzi River Basins where three-quarters of the population of Eswatini lives, which includes the Hawane dam that supplies water to Mbabane (Capital City of Eswatini) and which is the major water supply source for Maputo, a Delta city (1 million inhabitants) which suffers from water shortages. The main beneficiaries of this project are the Joint River Basin Authority (JBRAS-PB) and the 5 River Basin authorities, AraSul (Mozambique) and the Department of Water and Sanitation (South Africa).

The innovation of GLOW is bringing together proven and award-winning technologies of advanced earth observation, open data, high-performance computing, data-driven modelling, data science, machine learning, operations research, and stakeholder interaction. These technologies require minimum ground truth information, which makes them very scalable and applicable in poorly monitored environments throughout the world. The coherent combination of the technologies into one decision support service ensures the optimum division of water, basically distributing every drop of water to meet the demands of all interests present in large river catchments.

Currently, farmers rely on weather forecasts and advisories that are either general for a given, often wide, region of interest, or highly customized to the farmers’ needs (e.g. by combining large scale atmospheric variables into synthetic parameters of interest). In both cases, such forecasts and advisories often don’t rely at all on observations collected at or around the target cultivated areas, or they are limited to traditional observations provided only by weather stations, without exploiting the full extent of measurements and observations available through European space-based assets (e.g. Galileo GNSS, Copernicus Sentinels) and ground-based radar data.

MAGDA objectives go beyond the state-of-the-art by aiming at developing a modular system that can be deployed by owners of large farms directly at their premises, continuously feeding observations to dedicated and tailored weather forecast and hydrological models, with results displayed by a dashboard and/or within a Farm Management System.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

During this task, the SPHY water balance model will be setup for three selected demonstrator farms in Romania, France and Italy. Finally, the irrigation advisory will be validated using performance indicators (e.g., water productivity, crop yield analysis, water use efficiency) using ground truth data (e.g., weather stations, moisture probes, crop biomass measurements)