In 2017, AFD approved to finance the Water Resources Management and Agro-ecological Transition for Cambodia “WAT4CAM” Program Phase 1. This program will contribute to reduce poverty, develop the economy and reduce the vulnerability of rural populations to climate change by implementing a hydro-agricultural infrastructures rehabilitation program through an integrated approach, targeting the whole chain of water resources management, water services and agricultural production.

The strategy is to achieve intensification of cropping, modernization and climate smart practices to provide farmers with secure access to water. This is a challenging objective and a good understanding of the hydraulics of water flows in dry and wet season is needed. A consortium led by FutureWater was hired to perform WAT4CAM subcomponent 3.1, which concentrates on providing this understanding of both flood and dry season flows, demands and balance in the Preks intended for rehabilitation.

The initial stages of the project include the identification of current data, models and previous work, as well as a field survey with stakeholders. This information will be used to create an accurate and reliable modelling ensemble that makes maximum use of existing capacity in Cambodia. In addition, the consortium will use satellite-derived data products to (i) provide input to the simulation models, and (ii) calibrate and validate model results. Various sources of satellite imagery will be explored to map floods and irrigation practices, to implement an integrated “space hydrology” approach.

The modelling and knowledge generation from this study must support the other WAT4CAM components for the successful implementation of the Prek irrigation system improvements. The modelling itself is thus not the ultimate purpose, but rather the understanding and knowledge imparted to MoWRAM and the other components of the WAT4CAM program.

FutureWater’s role in the project is the overall project coordination and administration, as well as the implementation of satellite remote sensing and climate change analyses in support of the modelling components.

Decisions makers responsible for climate change adaptation investments are confronted with a huge knowledge gap. On the other hand, scientists have gained much fundamental knowledge about climate impacts, but practical use of this knowledge is very limited as applied tools as well as knowledge transition is sparse. We aim to build a web-based service from which it is possible to select a country or region on a global map, calculate the current water availability from surface water and groundwater as well as current water demands from the three sectors (agriculture, industry, domestic) and to assess from this the current water shortage as well as the looming water shortage under scenarios of climate change and socio-economic development. Based on these assessments, various technological and infrastructural adaptation measures can be evaluated to assess the investments needed to bridge the water gap.

Apart from financial consequences of choices, we also aim to add, for each strategy or sets of strategies chosen: 1) indicators for the effects on the environment and downstream water availability (including downstream regions/countries); 2) indicators of the sensitivity to upstream development of water resources. For instance, building a reservoir is useless if most of the runoff is generated in a country upstream that is planning to build a reservoir for irrigation itself; 3) indicators of the socio-economic costs/benefits of different infrastructure investment options for the region or country, which will enable decision makers to choose the most efficient (mix of) infrastructure measures; 4) provide guidance by identifying financing scheme options, giving recommendations for funding, such as possibilities of PPP (public-private partnerships) 5) possibility for automatic generation of an assessment and investment report containing the analyses performed.

The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement of water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. The overall aim is therefore to develop and bring to market a combination of products/services that on the one hand influences existing decision making and on the other hand creates a new value chain from science to consultant to end-users.

To meet the challenges of regional development and climate change that the Panama Canal river basin faces, the Panama Canal Authority (ACP) has launched the preparation of a land use plan. For this plan, a roadmap will be established (Green Pathway 2050) that should secure water for the population, sustains socio-economic development, enables reliable operations of the Panama Canal, and preserves the ecosystem services of the basin.

The technical cooperation offered through this project will allow the ACP and the IADB to design an intervention implementation program at the strategic and project level to promote the sustainable development of the river basin.

The project is executed in 4 phases (see Figure 1):

  1. Diagnosis: sectoral and comprehensive characterization of the current river basin and regional planning
  2. Prospects: a robust decision making methodology will be applied to quantify the vulnerability of the current and possible future states of the system, considering climate change, socio-economic development scenarios and climate adaptation.
  3. Strategy development: the so-called “Green Pathway 2050” will be developed together with stakeholders, including priority actions, mitigation and adaptation strategies.
  4. Land Use Plan: the plan will address the implementation aspects related to regional zoning, pre-feasibility studies, and a monitoring and evaluation program
Figure 1. Phases of the Project “Formulation of the Land Use Plan for the Panama Canal river basin”.

FutureWater is responsible for assessing, in collaboration with stakeholders, realistic land use scenarios considering the uncertainties imposed by climate change and non-climate factors. A Robust Decision Making (RDM) approach will be applied for this purpose. The work will include the development of a supply-demand model using the WEAP tool and a technical training of ACP staff. Climate change vulnerabilities will be assessed through a bottom-up approach, including stakeholders´inputs from the start of the analysis. The climate change-uncertainties of the land use scenarios will be visualized to stakeholders and a realistic sub-set of scenarios, including adaptation options, will be produced.

Please visit this website for more information about the project:

The Paris Agreement requests each country to outline and communicate their post-2020 climate actions, known as their NDCs. These embody efforts by each country to reduce national emissions and adapt to the impacts of climate change. As ratifying parties, Armenia, Georgia and Uzbekistan must therefore outline how they intend to implement their NDCs and provide information on what the focus of this spending will be. To support this effort, the Asian Development Bank (ADB) is implementing a knowledge and support technical assistance cluster which will help enhance capacities of developing member countries (DMCs) in meeting their climate objectives by assisting in refining and translating nationally determined contributions (NDCs) into climate investment plans.

In this work package, ADB aims to support Georgia, Armenia, and Uzbekistan with the implementation of their NDCs through developing urban climate assessments (UCAs) and mainstreaming low carbon and climate resilience measures into urban planning processes. FutureWater contributed to this effort by supporting knowledge creation in relation to climate change and adaptation which will help each country to make more informed climate investment decisions.This was accomplished by conducting analysis of downscaled climate model ensembles for different climate change scenarios and synthesising data related to urban climate risk.

Climate change trend assessments were conducted using the NASA-NEX downscaled climate model ensemble combined with ERA-5 climate reanalysis products. To determine climate risk at the urban level, a number of openly available datasets were analysed and compiled using a spatial aggregation approach for 16 cities in the area. Results were presented as user-friendly climate risk profiles at the national and urban scales, allowing for insights into climate trends and risks over the coming century. These will be presented to non-expert decision makers to help support Armenia, Georgia and Uzbekistan develop targeted and informed NDCs.

The overall aim of the Guidance is to supporting adaptation decision making for climate-resilient investments with the main objective to scale-up ADB’s investments in climate change adaptation in Asia and the Pacific. The Good Practice Guidance on climate-resilient infrastructure design and associated training modules will help project teams to incorporate climate projections information into project design. The guideline is based both on insights gained by experts in supporting climate-resilient project development, and on state-of-the-art reviews of emerging engineering design and decision-making protocols that reflect the impacts of climate change. Sector guidance will be provided for agriculture and food security, energy, transport, urban development, and water. FutureWater takes the lead in the water sector guidance.

Training modules targeting member countries officials and ADB operational staff involved in the design of resilient infrastructure projects will be developed to facilitate the wider dissemination of, and capacity building around, the good practice guidance and enhanced availability of climate projections data. Training modules will be developed for both in person delivery at training sessions and distance learning to enable on-demand technical capacity building. The format of the in-person training sessions will be determined in consultation with the operational teams and could take a “training of trainers” approach.

The Asian Development Bank supports Tajikistan in achieving increased climate resilience and food security through investments in modernization of Irrigation and Drainage (I&D) projects. A Technical Assistance is preparing modernization projects for two I&D systems in the Lower Vaksh river basin in Tajikistan. In line with this, the TA will prepare a holistic feasibility study and project design for the system (38,000 ha), as well as advanced designs and bidding documents for selected works.

FutureWater is part of the team of international experts, working together with the local consultant on the climate risk and adaptation assessment that accompanies the feasibility projects. For this purpose, past climate trends will be analyzed, climate model projections processed, and a climate impact model will be used to assess how the project performs under a wide range of future conditions, to assess the robustness of the proposed I&D investments, and identify possible climate adaptation measures.

The project should increase agricultural water use productivity in the selected agricultural districts in Uzbekistan through a threefold approach: (i) climate resilient and modernized I&D infrastructure to improve measurement, control and conveyance within existing systems; (ii) enhanced and reliable onfarm water management including capacity building of water consumers’ associations (WCAs), physical improvements for land and water management at the farm level and application of high level technologies for increased water productivity; and (iii) policy and institutional strengthening for sustainable water resources management. This will include strategic support to the Ministry of Water Resources (MWR) and its provincial, basin and district agencies.

The project supports the Strategy of Actions on Further Development of Uzbekistan (2017), which includes: (i) introduction of water saving technologies and measures to mitigate the negative impact of climate change and drying of the Aral Sea; (ii) further improvement of irrigated lands and reclamation and irrigation facilities; and (iii) modernization of agriculture by educating areas of cotton and cereal crops to expand horticulture production.

FutureWater focuses on the climate risk and adaptation assessment that accompanies the feasibility projects, and will analyze climate trends, climate model projections, climate impacts on the projects and assess adaptation options.

Watch the video below to learn more about the management of Climate Adaptive Water Resources in the Aral Sea Basin in Uzbekistan (source: ADB)

Meteorologische en klimatologische informatie is van groot belang voor regionale waterbeheerders om hun kerntaken goed te kunnen uitvoeren. Zowel het KNMI als de private sector zijn actief in de ontwikkeling en levering van weers- en klimaatproducten, waarbij het KNMI typisch een onderzoeks- en ontwikkelings rol vervult en de bedrijven zich richten op praktische markttoepassingen. Momenteel verlopen de activiteiten vaak projectmatig in plaats van in een programmatische context. Om een kennisagenda voor de lange termijn op te stellen en concrete onderzoeksvragen te formuleren, is het noodzakelijk om de behoefte in de watersector (waterschappen, Rioned, RWS) helder te definiëren. Daarnaast is het nodig om betere afstemming tussen de verschillende betrokken organisaties te realiseren, wat vraagt om inkadering van de rollen en verantwoordelijkheden van o.a. STOWA, Het Waterschapshuis, en de Unie van Waterschappen.

In deze inventarisatie van de kennisbehoefte in de watersector is onderscheid gemaakt tussen zowel actuele weersdata en -informatie als klimaatdata en -informatie. Typische voorbeelden van variabelen welke in dit project zijn meegenomen zijn neerslag, temperatuur, wind, en verdamping. Aangezien de waterschappen zelf de nodige technische en inhoudelijke capaciteit in huis hebben, kan de behoefte betrekking hebben op zowel (ruwe en gecalibreerde) data, als op daarvan afgeleide informatieproducten.

De informatie over de behoefte in de watersector is op twee manieren verkregen:

  1. Vijf diepte interviews met kernpersonen die een belangrijke organisatie / doelgroep vertegenwoordigen:
  2. Een online enquête onder een grotere doelgroep van waterbeheerders. Deze enquête bestaat uit een mix van verschillende typen vragen (multiple-choice, open, rankings, etc.) en de resultaten worden gepresenteerd in enkele eenvoudig te begrijpen figuren en grafieken.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

Groundwater is one of the most important freshwater resources for mankind and for ecosystems. Assessing groundwater resources and developing sustainable water management plans based on this resource is a major field of activity for science, water authorities and consultancies worldwide. Due to its fundamental role in the Earth’s water and energy cycles, groundwater has been declared as an Essential Climate Variable (ECV) by GCOS, the Global Climate Observing System. The Copernicus Services, however, do not yet deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. This gap will be closed by G3P, the Global Gravity-based Groundwater Product.

The G3P consortium combines key expertise from science and industry across Europe that optimally allows to (1) capitalize from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations and thus groundwater storage change for large areas, (2) incorporate and advance a wealth of products on storage compartments of the water cycle that are part of the Copernicus portfolio, and (3) disseminate unprecedented information on changing groundwater storage to the global and European user community, including European-scale use cases of political relevance as a demonstrator for industry potential in the water sector. In combination, the G3P development is a novel and cross-cutting extension of the Copernicus portfolio towards essential information on the changing state of water resources at the European and global scale. G3P is timely given the recent launch of GRACE-FO that opens up the chance for gravity-based time series with sufficient length to monitor climate-induced and human-induced processes over more than 20 years, and to boost European space technology on board these satellites.

In this project, FutureWater is in charge of a case which aims to prototype and calibrate a Groundwater Drought Index based on the G3P product, and to integrate it into InfoSequia, the FutureWater’s in-house Drought Early Warning System. The new InfoSequia component will be tested for inherent reliability and flexibility at the basin level in a total area of about 145 000 km2 in Southern Spain which largely relies on groundwater resources. This pilot region comprises three large basins (Segura, Guadalquivir and Guadiana) with many aquifers and groundwater bodies where very severe dynamics of overexploitation and mining have been identified and declared. Unsustainable groundwater development threats the water security in the region, but also the ecological status and preservation of unique and highly protected ecosystems in Europe (e.g., Doñana National Park, Daimiel National Park, Mar Menor coastal lagoon).

To visit the official G3P website, please click on this link: