The Paris Agreement requests each country to outline and communicate their post-2020 climate actions, known as their NDCs. These embody efforts by each country to reduce national emissions and adapt to the impacts of climate change. As ratifying parties, Armenia, Georgia and Uzbekistan must therefore outline how they intend to implement their NDCs and provide information on what the focus of this spending will be. To support this effort, the Asian Development Bank (ADB) is implementing a knowledge and support technical assistance cluster which will help enhance capacities of developing member countries (DMCs) in meeting their climate objectives by assisting in refining and translating nationally determined contributions (NDCs) into climate investment plans.

In this work package, ADB aims to support Georgia, Armenia, and Uzbekistan with the implementation of their NDCs through developing urban climate assessments (UCAs) and mainstreaming low carbon and climate resilience measures into urban planning processes. FutureWater contributed to this effort by supporting knowledge creation in relation to climate change and adaptation which will help each country to make more informed climate investment decisions.This was accomplished by conducting analysis of downscaled climate model ensembles for different climate change scenarios and synthesising data related to urban climate risk.

Climate change trend assessments were conducted using the NASA-NEX downscaled climate model ensemble combined with ERA-5 climate reanalysis products. To determine climate risk at the urban level, a number of openly available datasets were analysed and compiled using a spatial aggregation approach for 16 cities in the area. Results were presented as user-friendly climate risk profiles at the national and urban scales, allowing for insights into climate trends and risks over the coming century. These will be presented to non-expert decision makers to help support Armenia, Georgia and Uzbekistan develop targeted and informed NDCs.

The overall aim of the Guidance is to supporting adaptation decision making for climate-resilient investments with the main objective to scale-up ADB’s investments in climate change adaptation in Asia and the Pacific. The Good Practice Guidance on climate-resilient infrastructure design and associated training modules will help project teams to incorporate climate projections information into project design. The guideline is based both on insights gained by experts in supporting climate-resilient project development, and on state-of-the-art reviews of emerging engineering design and decision-making protocols that reflect the impacts of climate change. Sector guidance will be provided for agriculture and food security, energy, transport, urban development, and water. FutureWater takes the lead in the water sector guidance.

Training modules targeting member countries officials and ADB operational staff involved in the design of resilient infrastructure projects will be developed to facilitate the wider dissemination of, and capacity building around, the good practice guidance and enhanced availability of climate projections data. Training modules will be developed for both in person delivery at training sessions and distance learning to enable on-demand technical capacity building. The format of the in-person training sessions will be determined in consultation with the operational teams and could take a “training of trainers” approach.

The Asian Development Bank supports Tajikistan in achieving increased climate resilience and food security through investments in modernization of Irrigation and Drainage (I&D) projects. A Technical Assistance is preparing modernization projects for two I&D systems in the Lower Vaksh river basin in Tajikistan. In line with this, the TA will prepare a holistic feasibility study and project design for the system (38,000 ha), as well as advanced designs and bidding documents for selected works.

FutureWater is part of the team of international experts, working together with the local consultant on the climate risk and adaptation assessment that accompanies the feasibility projects. For this purpose, past climate trends will be analyzed, climate model projections processed, and a climate impact model will be used to assess how the project performs under a wide range of future conditions, to assess the robustness of the proposed I&D investments, and identify possible climate adaptation measures.

The project should increase agricultural water use productivity in the selected agricultural districts in Uzbekistan through a threefold approach: (i) climate resilient and modernized I&D infrastructure to improve measurement, control and conveyance within existing systems; (ii) enhanced and reliable onfarm water management including capacity building of water consumers’ associations (WCAs), physical improvements for land and water management at the farm level and application of high level technologies for increased water productivity; and (iii) policy and institutional strengthening for sustainable water resources management. This will include strategic support to the Ministry of Water Resources (MWR) and its provincial, basin and district agencies.

The project supports the Strategy of Actions on Further Development of Uzbekistan (2017), which includes: (i) introduction of water saving technologies and measures to mitigate the negative impact of climate change and drying of the Aral Sea; (ii) further improvement of irrigated lands and reclamation and irrigation facilities; and (iii) modernization of agriculture by educating areas of cotton and cereal crops to expand horticulture production.

FutureWater focuses on the climate risk and adaptation assessment that accompanies the feasibility projects, and will analyze climate trends, climate model projections, climate impacts on the projects and assess adaptation options.

Watch the video below to learn more about the management of Climate Adaptive Water Resources in the Aral Sea Basin in Uzbekistan (source: ADB)

Meteorologische en klimatologische informatie is van groot belang voor regionale waterbeheerders om hun kerntaken goed te kunnen uitvoeren. Zowel het KNMI als de private sector zijn actief in de ontwikkeling en levering van weers- en klimaatproducten, waarbij het KNMI typisch een onderzoeks- en ontwikkelings rol vervult en de bedrijven zich richten op praktische markttoepassingen. Momenteel verlopen de activiteiten vaak projectmatig in plaats van in een programmatische context. Om een kennisagenda voor de lange termijn op te stellen en concrete onderzoeksvragen te formuleren, is het noodzakelijk om de behoefte in de watersector (waterschappen, Rioned, RWS) helder te definiëren. Daarnaast is het nodig om betere afstemming tussen de verschillende betrokken organisaties te realiseren, wat vraagt om inkadering van de rollen en verantwoordelijkheden van o.a. STOWA, Het Waterschapshuis, en de Unie van Waterschappen.

In deze inventarisatie van de kennisbehoefte in de watersector is onderscheid gemaakt tussen zowel actuele weersdata en -informatie als klimaatdata en -informatie. Typische voorbeelden van variabelen welke in dit project zijn meegenomen zijn neerslag, temperatuur, wind, en verdamping. Aangezien de waterschappen zelf de nodige technische en inhoudelijke capaciteit in huis hebben, kan de behoefte betrekking hebben op zowel (ruwe en gecalibreerde) data, als op daarvan afgeleide informatieproducten.

De informatie over de behoefte in de watersector is op twee manieren verkregen:

  1. Vijf diepte interviews met kernpersonen die een belangrijke organisatie / doelgroep vertegenwoordigen:
  2. Een online enquête onder een grotere doelgroep van waterbeheerders. Deze enquête bestaat uit een mix van verschillende typen vragen (multiple-choice, open, rankings, etc.) en de resultaten worden gepresenteerd in enkele eenvoudig te begrijpen figuren en grafieken.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

Groundwater is one of the most important freshwater resources for mankind and for ecosystems. Assessing groundwater resources and developing sustainable water management plans based on this resource is a major field of activity for science, water authorities and consultancies worldwide. Due to its fundamental role in the Earth’s water and energy cycles, groundwater has been declared as an Essential Climate Variable (ECV) by GCOS, the Global Climate Observing System. The Copernicus Services, however, do not yet deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. This gap will be closed by G3P, the Global Gravity-based Groundwater Product.

The G3P consortium combines key expertise from science and industry across Europe that optimally allows to (1) capitalize from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations and thus groundwater storage change for large areas, (2) incorporate and advance a wealth of products on storage compartments of the water cycle that are part of the Copernicus portfolio, and (3) disseminate unprecedented information on changing groundwater storage to the global and European user community, including European-scale use cases of political relevance as a demonstrator for industry potential in the water sector. In combination, the G3P development is a novel and cross-cutting extension of the Copernicus portfolio towards essential information on the changing state of water resources at the European and global scale. G3P is timely given the recent launch of GRACE-FO that opens up the chance for gravity-based time series with sufficient length to monitor climate-induced and human-induced processes over more than 20 years, and to boost European space technology on board these satellites.

In this project, FutureWater is in charge of a case which aims to prototype and calibrate a Groundwater Drought Index based on the G3P product, and to integrate it into InfoSequia, the FutureWater’s in-house Drought Early Warning System. The new InfoSequia component will be tested for inherent reliability and flexibility at the basin level in a total area of about 145 000 km2 in Southern Spain which largely relies on groundwater resources. This pilot region comprises three large basins (Segura, Guadalquivir and Guadiana) with many aquifers and groundwater bodies where very severe dynamics of overexploitation and mining have been identified and declared. Unsustainable groundwater development threats the water security in the region, but also the ecological status and preservation of unique and highly protected ecosystems in Europe (e.g., Doñana National Park, Daimiel National Park, Mar Menor coastal lagoon).

To visit the official G3P website, please click on this link:

Achieving water security and guaranteeing the sustainable use of water resources require series of investments at the catchment scale. Yet, competing water uses pose an initial layer of complexity about the type of intervention a catchment requires. Additionally, the nature of climatic and no-climatic uncertainties, threatening possible investments, leave decision makers with insufficient knowledge about the performance of chosen intervention options in a changing world. So, decision makers require novel tools which would facilitate the description and communication of key metrics in an uncertain future.

This project studies the sensitivity of the multipurpose Chancay-Lambayeque Basin water resources hydraulic system (Peru) to changes in climatic and no-climatic forces. A series of proposed interventions to enhance the current hydraulic system look to satisfy water supply to ~400,000 people, guarantee water for increasing irrigation activities, and maintain ecological flows, while providing protection for El Niño-driven floods.

The assessment was carried out using the DMDU deiven Decision Tree Framework (DTF, Ray and Brown,2015). This is a bottom-up and two-step approach which, in this project, examined the performance of economic, resilience, robustness, and reliability metrics of selected interventions such as the construction of new reservoirs, the expansion of groundwater development, and the conservation and generation of green-infrastructure, subjected to various climate realizations. Also, the effects of changes in urban water supply and irrigation demands, siltation in existing reservoirs, and other non-climatic parameters and trade-offs were analyzed. The results of this study highlight the potential (while acknowledging limitations) of DMDU tools to prioritize investments in river catchment planning while engaging local stakeholders in decision making.

The North–South Corridor serves as the main transport artery for the region, which spans quite diverse and spectacular terrains from the historic capital of Georgia, Mtskheta, up north to Stepantsminda in the Great Caucasus mountain range. The road experiences heavy traffic and is unsafe due to a design that is inadequate for the challenging geographical and climatic conditions, particularly in winter. The area is prone to avalanche, landslide, and snow load risks, which cause frequent and extended closures of the road. The two-lane highway provides a low standard alignment and is characterized by substandard open tunnels and avalanche galleries, in which modern trucks cannot pass simultaneously. An upgrade of the existing road alignment with improved geometry and avalanche galleries was considered but deemed inappropriate as it would not address the core climate-related risks.

Recognizing these challenges, the government has therefore requested ADB’s and EBRD’s assistance to improve the North–South Corridor. The climate-resilient project road will allow more traffic to travel on it safely and will remain fully operational all year. A detailed Climate Risk and Vulnerability Assessment (CRVA) report has been developed for the project road. The projected increase in extreme precipitation events is considered as the most important climate risk for the project road. This not only leads to higher extreme discharges, but can also lead to more frequent landslides, mudflows, and avalanches. The climate model analysis yields following conclusions for the project area:

  • Temperature increases by about 2 °C (RCP4.5) to 2.7 °C (RCP8.5) are to be expected
  • Minimum and maximum temperature are likely to change inconsistently, with maximum air temperatures increasing more than minimum air temperatures. This implies a larger diurnal temperature range for the future
  • Extremes related to temperatures (e.g. warm spells, extremely warm days) are likely to increase in frequency and intensity
  • Precipitation totals are likely to stay reasonable constant
  • Precipitation extremes are likely to increase in frequency and intensity. Maximum 1-day precipitation volumes with return periods of 25, 50 and 100 years are expected to increase by about 10% to 20%.

Stress tests were carried out by the project road design consultant team using +10% and +20% increased precipitation input for return periods used in the engineering design. These tests revealed that bridges have sufficient capacity in the current design to cope with higher discharge levels in the future, although it would be prudent to check the bridge substructure designs for higher flow velocities and the possibility of increased debris content in the flow. The tests indicated that a small proportion of the transversal and longitudinal drainage systems might have insufficient capacity to cope with the increased precipitation extremes. These should be identified, and their dimensions increased appropriately.

Due to its geographic location, Georgia’s role as a major transit country is significant. Transport of goods into and through Georgia has increased over the past 10-15 years. Almost two-thirds of goods in Georgia are transported by road but the roads are poorly equipped to cope with the volume of traffic and the proportion of heavy vehicles, and factors such as insufficient dual carriageways, routing through inhabited areas and inadequate maintenance and repair, hinder throughputs and increase transit times. The government of Georgia has therefore launched a program to upgrade the major roads of the country, including part of the East-West (E60) Highway. This climate risk and vulnerability assessment (CRVA) has examined the proposed components for section Shorapani-Argveta (F4) of the East-West Highway Road Project. The climate model analysis yields following conclusions:

  • Temperature increases by about 2.1 °C (RCP4.5) to 2.9 °C (RCP8.5) are to be expected
  • Minimum and maximum temperature are likely to change inconsistently, with maximum air temperatures increasing more than minimum air temperatures. This implies a larger diurnal temperature range for the future
  • Extremes related to temperatures (e.g. warm spells, extremely warm days) are likely to increase in frequency and intensity
  • Precipitation totals are likely to stay reasonable constant
  • Precipitation extremes are likely to increase in frequency and intensity. Maximum 1-day precipitation volumes with return periods of 25, 50 and 100 years are expected to increase by about 10% to 20%.

The increase in extreme precipitation events is considered as the most important climate risk for the project road. This may lead to higher extreme discharges that exceed the systems’ design capacity and cause flooding or inundation of road infrastructure. More extreme precipitation events can also lead to increased slope instability alongside the project road, causing more frequent and more powerful landslides, rockfalls and/or avalanches. In addition, the projected increase in diurnal temperature variability may lead to an increase in freeze–thaw conditions. This may result in deterioration of road pavement integrity, resulting in more frequent maintenance requirements. It can also further increase the risk of slope instability, making any stretch of road close to steep terrain more vulnerable to such mass movement phenomena.

According to the design team, the structures at risk of flooding (e.g. bridges, road sections) are sufficiently dimensioned to cope with return levels 10-20% higher than used in the original design calculations, which can be reasonably assumed. Retaining walls and mass movement protection structures are in place. The performance and sustainability of the pavement structure and structural joints may be adversely affected by the increase in the diurnal temperature range. To mitigate this risk, it advised to use road pavement with highest capability.