The MRCS regularly undertakes periodic regional and basin-wide studies on behalf of Member Countries to assess potential effects of increasing development, growing population and uncertainty in climate variability in the Lower Mekong Basin (LMB). Recent basin-wide assessment and reporting were found to be hampered by data limitations across a range of areas. With the basin undergoing rapid and extensive change, tracking changes in conditions, analyzing the potential implications, and working cooperatively to leverage the benefits and avoid the problems are seen as critical to achieving the objectives of the 1995 Mekong Agreement.

To provide a greater strategic direction to the monitoring and assessment effort, the Mekong River Basin Indicator Framework (MRB-IF) was developed and approved aiming at providing a consistent and streamlined approach to data collection, analysis, and reporting. Through the MRB-IF, the MRC Member Countries and stakeholders can be alerted to the key issues and trends across five core dimensions (environment, social, economic, climate change and cooperation). Included in the MRB-IF are (i) the extent of salinity intrusion in the Mekong Delta (MD) – Assessment Indicator 14 and (ii) the condition of riverine, estuarine, and coastal habitats – Assessment Indicator 16. A systematic process of collection and analysis of the data for status and trends evaluation regarding these indicators is currently missing.

The aim of this project is therefore to develop a basin-specific systematic approach to periodically assess the extent of salinity intrusion in the Mekong Delta and the conditions of the riverine, estuarine, and coastal habitats across the LMB. Methodologies to evaluate both indicators are developed relying on integration of satellite remote sensing data, GIS databases, and station data. The project involves an elaborate review of existing methodologies tested in the LMB and other river basins, an assessment of these methods regarding technical, economic and institutional aspects, and the development of a recommended methodology for adoption by MRCS, including guidance documentation for its stepwise implementation.

Nature-based Solutions (NbS) can help ensure the long-term reliability of water resources. Research has shown they can – depending on circumstance – be more cost-effective and longer-lasting than grey infrastructure, while generating multiple co-benefits for carbon, biodiversity and human health. Despite the promise of NbS, however, water sector actors and their financiers usually prioritize investments in traditional grey infrastructure because they are more familiar with its costs, benefits and returns. Most of them are unfamiliar with how to develop and assess the value of NbS projects, though research shows they’re interested in tapping into their multi-faceted benefits.

The Financing Nature for Water Security project of The Nature Conservancy (TNC) aims to produce and disseminate guidance that enables water sector actors (government agencies, water utilities, grass-root NGOs) and their funders (donors, development banks and private investors) to invest in NbS-WS, at scale, by mobilizing sustainable funding and repayable financing. The project comprises of technical modules, guidance documents, supporting databases and training materials.

FutureWater has been contracted by TNC to support the development of one of the content modules assembled under the project. The module “Technical Options” will help the reader understand the water security challenge(s) they are confronted with and identify the types of NbS that could help address those challenges. In particular, Futurewater works on the creation of 12 technical factsheets to be included in an annex to the main documentation, with each factsheet highlighting the key technical aspects, benefits and risks, and economic dimensions of an NbS. In addition, an inventory of relevant NbS databases, platforms, and references is delivered.

“Gabon is a rapidly developing country that contains substantial amount of intact natural areas and biodiversity, and large untapped natural resource stocks, placing the country at the forefront of a green economic development opportunities. TNC supports the government in preserving Hydrologic Ecosystem Services which are essential to include into development projects as for example hydropower.

This study will assess these services for the Komo basin where certain pressure already exists due to forestry operations and planned hydropower. It will evaluate various management scenarios which may improve and sustain hydrological flow conditions and hydropower options. The analysis will help the government in implementing an integrated water resources management (IWRM) approach in this basin.

FutureWater will deliver this study through hydrological modeling and scenario analysis to assess how hydrological ecosystem services provision in the Komo basin can be improved by a series of potential alternative scenarios based.”

The proposed Mombasa Water Fund should secure and improve the quantity and quality of source waters for Mombasa City by channelling investments into source protection and catchment conservation measures of the watersheds. Current spring- and groundwater-based water supply infrastructure is insufficient to meet the city’s growing demands. Focus of the study is therefore on the watershed that serves a new water reservoir (Mwache Dam).

The design study will:

  • Assess the biophysical, financial, economic and socio-economic benefits of the MWF; and
  • Identify the potential governance and financing models to establish the MWF

FutureWater performs the biophysical analysis of this study. It aims to link activities in the watershed with positive outcomes for water security. Different combinations of solutions (nature-based primarily) are simulated through an hydrological modelling tool to assess impacts on water quantity and quality, including erosion and sediment yield. The model allows also to assess water demand versus supplies and resulting possible future shortages. Outputs are used in the economic analysis that will cost and valuate different alternative scenarios. The business case study should enable the creation of another successful Water Fund in sub-Saharan Africa promoted by The Nature Conservancy.

Kyrgyzstan is a highly mountainous country with relatively high precipitation in upslope areas. This, alongside the development and deforestation of basins to make way for industry and agriculture means that land has become increasingly degraded and vulnerable to erosion over recent decades. Reservoirs in the country provide access to water resources and energy in the form of hydropower, but are highly susceptible to sedimentation by eroded material. Sedimentation necessitates increased maintenance costs, reduces storage capacity and disrupts hydropower generation. It is therefore proposed that landscape scale restoration measures (e.g. tree planting) can provide key ecosystem services by reducing vulnerability to erosion and decreasing sediment delivery to reservoirs. This project therefore identifies highly degraded areas of land and determines in which of these interventions are possible. With the outcomes of this study, the World Bank – in partnership with the government of Kyrgyzstan – can prioritise investments in terms of landscape restoration efforts. The outcomes of this project will therefore reduce maintenance costs for reservoirs and contribute to the afforestation and restoration of multiple areas in Kyrgyzstan.

This project is part of the technical-innovation support provided by FutureWater to ECOPRADERAS, an EIP-AGRI Operational Group led by Ambienta Ing. and co-funded by the EU and the Spanish Ministry of Agriculture. As a general objective, ECOPRADERAS aims to improve the sustainable management of grasslands located at the Alagon Valley (Extremadura, Spain) through: (1) the transfer and implementation of innovative technologies, (2) the identification and strengthening of good cultural practices, and (3) the dissemination of the most relevant information and results among end users.

In the frame of ECOPRADERAS, FutureWater is tasked with the development of an operational monitoring tool able to inform, at the regional scale, on the health status of the grasslands by using satellite data of moderate spatial resolution. The ECOPRADERAS monitor includes the following innovative features:

  • Generation of a categorical index indicative of the health status of grasslands based on the combination of indices of spatial and temporal greenness anomalies.
  • Higher spatial details by using satellite images of moderate spatial resolution (collection of Landsat-8TM of 30 m resolution)
  • Large improvement for collecting and processing large satellite datasets by using the Google Earth Engine cloud-based geoprocessing platform (collection of Landsat-8TM from January 2014 onwards)
  • A user friendly web-mapping interface to visualize outputs

The methodology used by FutureWater uses massive data processing technologies in the cloud (Google Earth Engine) to compute a pixel-based categorical index that result of the combination of a spatial and a temporal anomaly of the greenness index (NDVI). After a local calibration that needs to be adopted, this qualitative index, called the Combined Index of Normalized Anomalies (ICAN) (figure), classifies the status of grasslands in the region of interest into different categories that informs on the health grasslands and how are they being managed. With the ICAN, land managers and local actors can early detect those portions in the landscape in which management practices may pose a risk for the sustainability of the agropastoral system and then would require special attention for improving them.

Logic diagram for computing the Combined Index of Normalized Anomalies (ICAN) in the ECOPRADERAS Monitor.The specific tasks developed by FutureWater included: the definition of a methodological framework for monitor the health of grasslands at the regional scale, the design of a processing and web-mapping platform and its practical implementation in the Alagon Valley (182 km2) from September 2019 to July 2020, and the calibration-validation of the results by comparing outputs with field observations collected in different pilot sites by other project partners.

An evaluation of the results points out to the strength of the methodology. The processing architecture is also easily scalable to other regions and rangeland landscapes. Further improvements have been also envisioned. The ECOPRADERAS Monitor stands as a very powerful tool to guide landscape managers local stakeholders on better decisions.

ECOPRADERAS Monitor at the Alagon Valley (Extremadura, Spain)

The Ridge to Coast, Rain to Tap: Sustainable Water Supply Project (R2CR2T) is an integrated approach to addressing flooding in the Cagayan River basin on Mindanao in the Philippines. R2CR2T is a Public Private Partnership led by VEI together with the partners COWD (Cagayan de Oro Water District), FITC, UTPI/Hineleban Foundation Inc. (HFI), Philippines- and Netherlands Red Cross, Cagayan de Oro River Basin Management Council (CDORBMC), and Wetlands International. R2CR2T is funded by RVO through the Sustainable Water Fund programme.

The Cagayan River Basin is characterized by an upstream mountainous area with steeply sloping terrain towards downstream Cagayan de Oro city. Upstream deforestation and land degradation are known to increase risk of flooding in the city, which is at present already at a high level. One expected outcome of R2CR2T is to have an enabling environment for stakeholders, both private and public sector, to undertake activities related to sustainable land management in the Cagayan River Basin. A Decision Support Tool (DST) for identifying critical areas and approaches for rehabilitation and its benefits regarding flood risk reduction, soil erosion reduction, and enhancing dry season flows, will be developed based on a scientifically-sound hydrological model for the watershed of the Cagayan River.

FutureWater was hired to advise on the development of the DST and hydrological model, critically review the quality and applicability of (intermediate) outputs by the local team and their service providers, and provide an external and international ‘helicopter view’ on the eco-hydrological aspects of the project. In a general sense, FutureWater supports the R2CR2T project team to maximize the impact of the DST will have for the CDORB region and stakeholders.

The Inle Lake in Myanmar is renowned for a number of traditional cultural and livelihood practices, which have made it one of the main attractions for Myanmar’s booming tourism industry. The lake is, however, suffering environmental degradation from the combined effects of unsustainable resource use, increasing population pressures, climate variability and rapid tourism development. UNDP is supporting the establishment of ILMA, which will have the mandate to manage conservation activities in the Inle Lake protected area.

Under this project, a set of maps will be developed and delivered to the ILMA geodatabase. Different methods, including satellite remote sensing and GIS, will be integrated to complete an updated boundary demarcation of the protected area, based on the Inle Lake watershed boundaries and recent developments in land use. Key ecosystem services of Inle Lake region will be mapped, which will inform an updated zoning (core zone, buffer zone, transition zone) of Inle Lake protected area. Workshops and bilateral meetings are organized to consult with the government stakeholders at several steps during the project, and a training workshop on ecosystem services mapping will be organized at the end of the project.

Asian Development Bank (ADB) Technical Assistance (TA) 7610-CAM supports the preparation of MOWRAM’s Roadmap and Investment Program for Irrigation and Water Resources Management, 2019-2033. This investment program provides a comprehensive and strategic framework for the country’s investment in the water resources and irrigation sector.

The current project under TA 7610-CAM concerns (i) rapid water resources assessment of the Tonle Sap and the Mekong Delta river basin groups (24 basins); (ii) ecological assessment of these two river basin groups to identify areas for development and conservation; (iii) detailed surface water resources assessment for five river basins within these groups.

The overall project objective is to support MOWRAM to make more informed, evidence-based water resources management and irrigation investment decisions through better understanding of water resources and ecosystems of two river basin groups: the Tonle Sap and the Mekong Delta and at least five selected river basins within these groups. These river basins are to be selected based on their current and projected level of water stress. The health of high-priority ecosystems and their water demands are assessed in relation to basin hydrological characteristics and foreseen development of water resources.

Outputs of the project are:

  • A comprehensive knowledge base on water resources and eco-hydrology in 24 river basins
  • Hydrological characterization of 24 river basins
  • Quantification of environmental flow requirements for 24 basins
  • Selection of the five most water-stressed basins
  • Recommended options for efficient and equitable water allocation
  • Targeted investment options in the irrigation sector
  • Coupled set of calibrated hydrological / water allocation models
  • Geospatial data on (eco-)hydrology compatible with the national Water Resources Information System (WRIS) currently under development

FutureWater is the lead firm in the assignment and executes the water resources modelling components of the project.

The framework used for this evaluation has been the IFC Performance Standards 3 (Resource Efficiency and Pollution Prevention) and 6 (Biodiversity Conservation and Sustainable Management of Living Natural Resources), complemented with what is considered good practice.