For the two study catchments, satellite imagery and field observations were combined to perform a land degradation assessment and to identify trends. Secondly, baseline hydrological conditions were assessed using a hydrological simulation model. Future changes in hydrology and hydropower generation were evaluated by running the biophysical model for a Business-as-Usual scenario, accounting for land degradation trends, changes in water use, and climate change.

Subsequently, the impacts of three catchment investment portfolios (low, medium, high) containing different catchment activities were quantified with respect to the BaU scenario. Benefits and costs were analysed for the hydropower developers to evaluate whether it makes sense for them to invest in improved catchment activities. For one of the catchments this is clearly the case (Kiwira, Tanzania).

The analysis shows that the impacts of climate change on revenue from hydropower are in the same order of magnitude as the other negative anthropogenic factors: increased domestic water use demand in the catchment and land degradation due to poor conservation of natural areas and poor agricultural practices.

The framework used for this evaluation has been the IFC Performance Standards 3 (Resource Efficiency and Pollution Prevention) and 6 (Biodiversity Conservation and Sustainable Management of Living Natural Resources), complemented with what is considered good practice.

There is so far no accepted general methodology for assessing the significance of climate risks relative to other risks to water resources projects that the World Bank Group supports and invests in. The Independent Evaluation Group (IEG) in its 2012 report entitled “”Adapting to Climate Change: Assessing the World Bank Group Experience””, found that “climate models have been more useful for setting context than for informing investment and policy choices” and “they often have relatively low value-added for many of the applications described” and that “although hydropower has a long tradition of dealing with climate variability, the Bank Group lacks guidance on appropriate methods for incorporating climate change considerations into project design and appraisal.”

The book “”Confronting Climate Uncertainty in Water Resources Planning and Project Design: The Decision Tree Framework”” by Casey Brown and Patrick Ray was published in 2015. Since then, the Decision Tree Framework (DTF) has been applied to Bank projects facing diverse situations in six pilots covering hydropower, water supply, and irrigation with funding from the Water Partnership Program (WPP). This effort is continuing in two additional pilots with financing from the Korea Green Growth Trust Fund (KGGTF) targeting the resilience component of water security of flood protection and irrigation in the Nzoia River basin in Kenya and the application of the Hydropower Sector Climate Resilience Guidelines (which in turn are based on the DTF) to the Kabeli-A hydroelectric project in Nepal.

Together with partners, FutureWater applies the following bottom-up methodology DTF to the Nzoia irrigation project in Kenya and the Nepal’s Kabeli-A run-of-river hydroelectric project study. FutureWater´s main tasks are assessing risks using crop modeling and water allocation modeling of the Nzoia case study, and hydrological modeling of the high-mountain region in Nepal.

Twiga’ is the Swahili word for ‘giraffe’, a keen observer of the African landscape. TWIGA aims to provide actionable geo-information on weather, water, and climate in Africa through innovative combinations of new in situ sensors and satellite-based geo-data. With the foreseen new services, TWIGA expects to reach twelve million people within the four years of the project, based on sustainable business models.

Africa needs reliable geo-information to develop its human and natural resources. Sixty percent of all uncultivated arable land lies in Africa. At the same time Africa is extremely vulnerable to climate change. Unfortunately, the in situ observation networks for weather, water, and climate have been declining since the 1970s. As a result, rainfall predictions in Africa for tomorrow have the same accuracy as predictions in Europe, ten days ahead. To realize the tremendous potential of Africa while safeguarding the population against impacts of climate change, Earth observation must be enhanced and actionable geoinformation services must be developed for policy makers, businesses, and citizens. New in situ observations need to be developed that leverage the satellite information provided through GEOSS and Copernicus (Open data/information systems).

TWIGA covers the complete value chain, from sensor observation, to GEOSS data and actionable geoinformation services for the African market. The logic followed throughout is that in situ observation, combined with satellite observations and mathematical models, will result in products consisting of maps and time series of basic variables, such as atmospheric water vapour, soil moisture, or crop stage. These products are either produced within TWIGA, or are already available with the GEOSS and Copernicus information systems. These products of basic variables are then combined and processed to derive actionable geo-information, such as flash flood warnings, sowing dates, or infra-structural maintenance scheduling.

The TWIGA consortium comprises seven research organisations, nine SMEs and two government organisations. In addition it uses a network of 500 ground weather stations in Africa, providing ready-to-use technical infrastructure.

FutureWater’s main role in TWIGA is centered around the use of flying sensors to map crop conditons, flood extent, and energy fluxes, complementing and improving data from in situ sensors and satellites. Furthermore, FutureWater is involved in innovative app development.


A key factor in enabling an increase and efficiency in food production is providing farmers with relevant information. Such information is needed as farmers have limited resources (seed, water, fertilizer, pesticides, human power) and are always in doubt in which location and when they should supply these resources. Interesting is that especially smallholders, with their limited resources, are in need of this kind of information. Spatial information from flying sensors (drones) can be used for this. Flying sensors offer also the opportunity to obtain information outside the visible range and can therefore detect information hidden for the human eye (Third Eye). Nowadays, low-cost sensors in the infra-red spectrum can detect crop stress about two weeks before the human eye can see this.

The ThirdEye project supports farmers in Mozambique and Kenya by setting up a network of flying sensors operators. These operators are equipped with flying sensors and tools to analyse the obtained imagery. Our innovation is a major transformation in farmers’ decision making regarding the application of limited resources such as water, seeds, fertilizer and labor. Instead of relying on common-sense management, farmers are now able to take decisions based on facts, resulting in an increase in water productivity. The flying sensor information helps farmers to see when and where they should apply their limited resources. We are convinced that this innovation is a real game-changing comparable with the introduction of mobile phones that empowered farmers with instantaneous information regarding markets and market prices. With information from flying sensors they can also manage their inputs to maximize yields, and simultaneously reduce unnecessary waste of resources. In summary, the missing information on markets has been solved by the mobile phone introduction, the flying sensors close the missing link to agronomic information on where to do what and when.

Flying sensors

Thanks to our innovation, farmers’ demand for key agricultural information will be satisfied by means of an extension service based on flying sensor (drone) information. The deployment of flying sensors is unique in its ability to provide farmers with real-time, high-resolution, and on-demand information. We provide essential agricultural information:

  • At an ultra-high spatial resolution (NDVI)
  • With unprecedented flexibility in location and timing
  • Based on wavelengths not observable by the human eye
  • With a country-specific business oriented approach.

To this end, we use low-cost high-resolution flying sensors (drones) in a development context to ensure that farmers will get information at their specific level of understanding, and simultaneously develop a network of service providers in Mozambique and Kenya.

A flying sensor is a combination of a flying platform and camera. Reliable flying sensors are on the market in a wide-range of categories each with its specific characteristics. Based on the consortium’s experiences over the last years low-cost flying sensors have been identified that are excellent equipped for our innovation. Typically, a flying sensor flies at a height of 100 meter and overlapping images are taken about every 5 seconds. This results in individual images covering about 50 x 50 meter and an overlap of 5 images for each point on earth. So, in order to cover 100 ha 500 images are taken during a flight.

The use of Flying Sensor is unique and no comparative techniques exist that provide farmers with real-time high-resolution information. The use of satellites to provide farmers with spatial information has been promoted but has three main limitations: they have fixed overpass times, the spatial resolution is low, and the presence of clouds halters the information. It is unlikely that, within the coming decades, progress in satellites will be real competitors of flying sensors. Another category of comparable techniques to provide farmers with information is the use of ground sensors. Typical examples of these sensors are soil moisture devices, soil sampling and laboratory analysis, crop sampling and laboratory analysis. However, all those sensor techniques have the common limitation that information is only local point representative, while the main question farmers have is regarding to spatial differences. Moreover, these ground sensors are in all cases too expensive to be used by small-scale farmers.

Our flying sensors have cameras which can measure the reflection of near-infrared light, as well as visible red light. These two parameters are combined with a formula, giving the Normalized Difference Vegetation Index (NDVI). This information is delivered at a resolution of 2×2 cm in the infra-red spectrum. Infra-red is not visible to the human eye, but provides information on the status of the crop about two weeks earlier than what can be seen by the red-green-blue spectrum that is visible to the human eye. NDVI is the most important ratio vegetation index and says something about the photosynthesis activity of the vegetation. Moreover, NDVI is an indicator for the amount of leaf mass, and therefore, ultimately biomass. In general, open fields have a NDVI value of around 0.2 and healthy vegetation of around 0.8. NDVI values give an indication of crop stress. This can be caused by a lack of water, lack of fertilizer, pests or abundancy of weeds.

This Flying Sensor is equipped with infrared sensors that detect crop stress about two weeks before the naked eye can observe this.
This Flying Sensor is equipped with infrared sensors that detect crop stress about two weeks before the naked eye can observe this.

NDVI technology

When light falls on a leaf, reflection occurs. The amount of reflection of green light (0.54 µm) is very high, making plants green to the human eye. Healthy vegetation does not reflect much red light (0.7 µm), since it is absorbed by chlorophyll abundant in leaves. In the near-infrared spectrum (0,8 µm) the amount of reflection increases rapidly to 80% of the incoming light. This increase is caused by the transition of air between cell kernels. This is characteristic for healthy vegetation.

Damaged plant material does not show this increase in reflected near-infrared light. Moreover, the reflection of red light is much higher than in healthy plant material. By measuring the reflection in these spectra, damaged plant material can be distinguished from healthy plant material (Schans et al., 2011).

With our NDVI technology damaged plant material can be distinguished from healthy plant material.


From 2014 to 2017, FutureWater has been granted support from the Securing Water for Food program, funded by USAID, Sida and the Dutch Government of Foreign Affairs, for piloting the use of flying sensors to support farmers in Mozambique with their decision making in farm and crop management. In Mozambique, we have transferred our technical skills to local ThirdEye operators over the past 3 years. We currently have 6 active local operators providing service to more than 3,500 farmers over more than 1,600 ha. These operators are able to support over 400 small-scale farmers, by collecting information and sharing it with farmers on weekly basis. Based on the information, farmers take decisions on where to do what in terms of irrigation, fertilizer application and pesticides, helping them improve their water productivity. Furthermore, they now have the capacity to deal with technical issues and are very skilled in providing advice to farmers. As a result, the farmer’s water productivity was increased by 55%, meaning less water is used to achieve the same crop yield as without ThirdEye services. ThirdEye has evolved since 2014 from a start-up to becoming the leading company in Mozambique in the field of mapping and monitoring services for farmers based on aerial images, which will continue to expand its activities over the coming years.

Since last year, the ThirdEye service is also implemented in Kenya as part of the Smart Water for Agriculture program implemented by SNV. Last month the first round of training was given to 5 operators, who will be serving at least 2,000 smallholder farmers the coming months. Training consists of flying sensor use, technical skills, safety and protocols, imagery processing and consultancy. After this, the operators will start working regularly in the regions of Meru and Nakuru. Here they will go the farmer’s fields, conduct flying sensors flights, process the images and give advice on improving their agricultural practices. Next to the service for smallholder farmers, ThirdEye delivers various services to medium and big sized farmers.

Training new operators in the field.
Training new operators in the field.


The Nature Conservancy (TNC) has established more than a dozen Water Funds in Latin America and the United States that are helping protect water sources for millions of people. These Water Funds function like endowments: they are capitalized to a sufficient level to generate substantial earnings annually, which are then disbursed for conservation, ensuring a sustainable revenue stream.

TNC has now started working with local partners to launch the first Water Fund in Africa to restore and protect the condition of the Tana River and improve Nairobi’s water security. In 2011, The Nature Conservancy began a formal scoping study to determine the potential for Water Fund support and development in the Tana River catchment, Kenya. Among the many aspects of the scoping study, was outreach to the Green Water Credits (GWC) program in which FutureWater has been involved actively over the last five years.

Since a healthy watershed minimizes water treatment costs, Water Funds typically attract voluntary contributions from large water users downstream, such as water utilities, hydroelectric companies, agriculture associations or industries. Water Funds make a variety of water protection activities possible, such as changing agricultural practices to reduce erosion and providing micro-finance for livelihoods that reduce deforestation pressure. For the Nairobi Water Fund, a partnership is established among others with the Nairobi City Water and Sewerage Company, KenGen, TARDA (Tana and Athi River Development Authority) and Water Resources Management Authority (WRMA).

Major goals of the water fund will be to address problems of erosion and high sediment loads in streams causing high water treatment costs and reservoir capacity loss, and to focus on sustainable land management practices that will help to augment base flows and ensure adequate water supply for downstream services as hydropower production. Key questions that need to be answered during this study are “Where and in what activities should the fund invest its money?” and “What will be returns on that investment, in terms of improved agricultural production, base flow, sediment, and the value accrued to major fund partners like KENGEN and Nairobi Water Supply?”

FutureWater will address these questions by providing quantitative information on the technical and economic feasibility of the establishment of a Water Fund in three selected priority watershed in the Upper Tana River basin. A close collaboration will be established with researchers of Stanford University of the Natural Capital Project that are also part of the Nairobi Water Fund technical team. FutureWater will carry out detailed hydrological modeling and analyze the impacts of investment options and interventions in the Upper Tana catchment, being prioritized by by NatCap using software that standardizes water fund investment design by identifying priority areas for watershed investments based on biophysical, economic, and logistical constraints and stakeholder preferences. This will define the endowment goal and the investments necessary to accomplish the Nairobi Water Fund.

“WISE-UP to Climate” is a project launched by the IUCN Global Water Programme that will demonstrate natural infrastructure as a ‘nature-based solution’ for climate change adaptation and sustainable development. The project’s name stands for ‘Water Infrastructure Solutions from Ecosystem Services Underpinning Climate Resilient Policies and Programmes’.

WISE-UP runs over a four -year period and link ecosystem services more directly into water infrastructure development, starting with work in the Tana (Kenya) and Volta (Ghana-Burkina Faso) river basins.

The project is coordinated by a global partnership that brings together the International Water Management Institute (IWMI), the Overseas Development Institute (ODI), the Council for Scientific and Industrial Research in Ghana (CSIR), the University of Nairobi, the University of Manchester, the Basque Centre for Climate Change (BC3), and the International Union for Conservation of Nature (IUCN).

IWMI is leading the work in the Tana basin, Kenya, and aims to build on the previous work done in this basin, mainly:

  • Green Water Credits project – Financial mechanism for connecting downstream water users with upstream land and water managers (farmers), impacts on flows and sediments of a set of sustainable land management options.
  • Physiographic Survey of the Upper Tana basin financed by the World Bank and coordinated by the Water Resources Management Authority.
  • Nairobi Water Fund – led by The Nature Conservancy. Focus on 3 priority watersheds upstream of Masinga and implementation of Water Fund focusing on hydropower and Nairobi Water Supply.


The objective is to evaluate the impacts of climate change on investments in sustainable water and land management in the Upper Tana. More specifically, the analysis should provide insight in how climate change can influence the biophysical effectiveness of different land management options in the Upper Tana, focusing on flows and sediments that influence downstream relying services, mainly hydropower.


For this study, FutureWater will focus on the Thika/Chania watershed, containing the important Mwagu intake for Nairobi Water Supply. The previously built SWAT model for this area will be used to assess the impact of land management interventions under six different climate scenarios. Streamflow dynamics, sediment concentration at specific points of interest and total sediment loads in the watershed will be assessed to evaluate the sustainability of land and water management, by taking business-as-usual practices as a reference. Next to baseline conditions, the study will focus on three future periods: foreseeable future: (2030s), long-term future: (2050s), and far horizon (2080s).

‘WISE-UP to climate’ is a project that demonstrates natural infrastructure as a ‘nature-based solution’ for climate change adaptation and sustainable development. The project will develop knowledge on how to use portfolios of built water infrastructure (eg. dams, levees, irrigation channels) and natural infrastructure (eg. wetlands, floodplains, watersheds) for poverty reduction, water-energy-food security, biodiversity conservation, and climate resilience.

The International Water Management Institute (IWMI) is carrying out hydrological modeling of the Tana Basin. It needs improved rainfall datasets for this modeling exercise. FutureWater supports IWMI in preparing improved rainfall forcing based on the CHIRPS dataset. This dataset has daily rainfall data starting in 1981 to near-present, based on high-resolution satellite imagery and in-situ station data, and consists of gridded rainfall time series for trend analysis and seasonal drought monitoring.

Green Water Credits can be seen as an investment mechanism for upstream farmers to practice soil and water management activities that generate benefits for downstream water users, which are currently unrecognized and unrewarded. This initiative is driven by economic, environmental and social benefits. The implementation of GWC has the potential of enhancing overall water management by reducing damaging runoff, increase groundwater recharge, simulate a more reliable flow regime, and reduce harmful sedimentation of reservoirs.

Green Water Credits: the concept.

FutureWater coordinated and carried out the biophysical assessment that quantifies the impact of Green Water Credits practices on the green and blue water and sediment fluxes in the Upper Tana basin. The analysis leads to identification of potential target areas for GWC pilot operation on biophysical grounds. This required a distributed modeling approach (SWAT) accounting for the heterogeneities in the basin in terms of precipitation regime, topography, soil characteristics and land use. The developed tool quantifies the benefits of the management practices on erosion reduction and green and blue water flows in the basin.


DFID and DANIDA initiated a project titled “Economic Impacts of Climate Change in Burundi, Kenya and Rwanda” which is executed by an international consortium. Focus of the project will be on the economics of adaptation strategies. FutureWater was asked by SEI-Oxford to perform a rapid assessment on the impact of climate change on hydropower generation in the Tana basin in Kenya using the WEAP (Water Evaluation And Planning tool) approach.

Given the limited time available to undertake the assessment only two climate change projections and four adaptation strategies were evaluated, leading to a total of 11 combinations to be evaluated and compared. The developed approach can be used subsequently in a RDM (robust decision making) process, or, given the strength of WEAP, in an interactive stakeholder setting.

The approach applied here to use a minimum and maximum climate change projection, provide decision makers with a range of options on which policies should be developed. The analysis showed that the impact of climate change without any adaptation strategies ranges from a positive US$ 2 million to a cost of US$ 66 million for the hydropower, irrigation and drinking water sector.

Taking into account the costs and benefits of adaptation strategies the so-called demand-side measures are always positive ranging from US$ 11 million to US$ 29 million for the low and high climate projection, respectively. The supply-side and ecosystem adaptations are only profitable if the climate will evolve in the direction of the high projection.