The study will focus on selection of key traded crops between the EU and Africa and their key producing regions. The tasks will include overall analysis of current practices and the background in the regions, determination of key sensitive parameters in order to select key crops and food products and map hotspot regions. In addition, project team will assess climate risks for these hotspots on key crops and food products and link these risks with the importing countries. Climate risks will be assessed by identifying the multiple climate sensitivities on the food systems in each region, assessing changes predicted by a CMIP6 (latest) climate model ensemble on key agriculture-related climate indices, and analysing impacts on production-related indices, distinguishing between rainfed and irrigated production systems. It will be focused on country specific case studies in each partner country. The impacts of climate change on trade patterns will be evaluated to assess the carbon- and water footprints and virtual water profiles of key traded commodities of these countries. At the end, the project team will focus on policy relevance and assessment of adaptation strategies and identify interventions that will be needed, at which point in the system, and from which sector (or actor) is of interest.

The outcomes of CREATE will be used to increase awareness of the risks that climate change poses to the agro-food trade and the broader economy at large. They can contribute to efforts by the governments (macro-scale), the communities (meso-scale), as well as relevant agricultural producers (micro scale) in the case study countries, by providing essential information for promoting actions towards mitigating the negative consequences of climate change on agro-food trade.

De Gezondheidsdienst voor Dieren (GD) heeft in de afgelopen jaren een analyse van leverbotbesmettingen uitgevoerd. Dit onderzoek heeft laten zien dat verschillende omgevingsfactoren een rol spelen zoals grondwaterstand, neerslag, temperatuur en bodemtype. Daarnaast is op basis van landsdekkende bodemvochtschattingen door FutureWater vastgesteld dat ook bodemvocht en leverbotbesmettingen gecorreleerd zijn, wat verklaard wordt doordat de leverbotslak in vochtige omstandigheden het beste gedijt. De GD geeft jaarlijks een leverbotprognose uit op basis van modelresultaten. Op basis van de eerdere onderzoeksresultaten heeft de GD sinds enkele jaren ook voorspellingen van bodemvocht in haar model opgenomen, welke jaarlijks door FutureWater worden geleverd voor elk postcodegebied in Nederland.

In het huidige project wordt een ontwikkelingsslag toegepast door het gebruik van de meest recent beschikbare datasets in het hydrologische model SPHY, om zo historische bodemvochtdata te leveren met een 100 x 100 m (1 ha) resolutie voor de periode van 2012 t/m 2021. Deze gegevens worden door de Gezondheidsdienst voor Dieren gebruikt om meer inzicht te verkrijgen in het risico op diergezondheidsproblemen die door klimaat worden beïnvloed.

This MIT feasibility project investigates the opportunities of an innovation project for determining the biomass potential from local nature management and green maintenance using the publicly available Lidar point cloud of the Netherlands.

The results of this feasibility project may lead to an innovative logistics support service where producers and consumers who play a role in the local biomass chain (e.g. nature management organizations, regional governments, energy producers) are provided advice and insight in the stock and availability of local woody biomass suitable for district heating projects or other local energy projects and biobased applications.

In the planned development path, a prototype of this service will be developed, demonstrated, tested, and validated for a pilot area. Using segmentation and classification algorithms, individual trees will be identified and tree-specific parameters relevant to biomass determination will be extracted. The economic perspective and market potential will also be investigated and relevant literature will be reviewed.

With a total annual turnover of approximately 500 million euros, the Netherlands is a major player in the production, import and export of fruits. In spring, when the night temperature drops below freezing point and fruit trees are flowering, fruit growers must protect their crops. If the flower buds were to freeze then no fruit is formed, resulting in enormous economic losses. Protecting the buds is usually done with the help of water, which requires an average of 30 m3 of water per hectare per hour. If several nights of frost occur the limit on water availability can be reached quickly. Moreover, if the quality of the water is not sufficient (e.g. due to salinity), the water can also cause damage to the crops. As a result, about 30% of the fruit companies in the Netherlands cannot use water for frost protection.

As an alternative to using water, wind machines to protect fruit trees against frost is emerging as a promising new and innovative technique. The propeller of the wind machine mixes the cold air with the higher, warmer air and can thus raise the temperature on the ground by several degrees. This feasibility project explores the opportunities of an innovation project for monitoring the effectiveness of wind machines for frost protection in fruit cultivation using flying sensors (drones) equipped with a thermal thermal imager. The results of this feasibility project may lead to an innovative information service intended for fruit growers to:

  1. Provide insight into the effectiveness of wind machines for frost protection as a cost-effective and sustainable alternative to spraying water. This service can target growers who already use wind machines and want to know how effective wind machines provide protection against night frost, but also growers who are considering wind machines and want to know to what extent the application can be suitable for their field.
  2. Advise how the application of wind machines can be optimized in the business operations of fruit companies. This includes optimal placement of the wind machine in the orchard and whether the wind machine is properly adjusted for the type of fruit being grown. This relies on what rotational speeds are needed for a given temperature increase, at what angle the propeller should be aimed, etc.)

A prototype of this service will be developed and demonstrated for a pilot area through a development process. An important part of the development trajectory is research into and development of a:

  1. State-of-art interactive visualization tool to visualize spatial information within a
  2. (beta) web application such as a dashboard to offer the innovative information service to the end user (fruit grower).

The power of flying sensors with thermal imaging cameras is that the temperature-increasing effect of wind machines can be measured very precisely and can also be mapped spatially. This visual information can provide the fruit grower with insight and confidence that wind machines are effective for frost protection.

Het doel van deze berekeningen was om uitsluitsel te kunnen geven over de nut en noodzaak van de geplande bergingsgebieden ter invulling van de wateropgave uit 2009. Met behulp van een Sobek-model zijn verschillende scenarioberekeningen uitgevoerd waarbij waterstanden, afvoeren en NBW-knelpunten zijn vergeleken onder het huidige en toekomstig klimaat en met en zonder integratie van bergingsgebieden.

De werkzaamheden bestonden onder meer uit:

  1. Toetsing van afvoer en waterstanden op kritieke locaties voor het klimaatscenario bij verschillende herhalingstijden (NBW-toetsing voor toekomstig klimaat),
  2. Vergelijking van NBW-knelpunten onder het huidige en toekomstige klimaat,
  3. Integratie van bergingsgebieden in het Sobek model en analyse van de impact op waterstanden, afvoer en toekomstige NBW-knelpunten (resultaat nut en noodzaak bergingsgebieden: antwoord op het LBW-vraagstuk),
  4. Een eerste inschatting van kritieke locaties langs de overige keringen voor de verschillende scenarios (hoge resolutie vergelijking van waterstanden en keringenhoogtes) en
  5. Een vergelijking van de resultaten met een aantal eerder uitgevoerde studies.

Tijdens het project is de NBW-toetingsmethode, die in 2020 was ontwikkeld door Arcadis, (verder) geautomatiseerd, zodat de methode sneller en voor andere vergelijkbare projecten binnen Vechtstromen kan worden toegepast. Op basis van de uitkomsten uit de berekeningen kon een duidelijk advies worden gegeven over de nut en noodzaak van de voorgestelde bergingsgebieden uit 2009.

Meer informatie over de methode rondom de normering van regionale wateroverlast (NBW / LBW) die wordt gehanteerd door waterschap Vechtstromen is te vinden op de volgende website: https://www.vechtstromen.nl/over/klimaat/wateroverlast/normering/werkt-normering/

 

Hydropower is essential to fulfill future energy demands. Water scarcity is likely to increase due to climate change and aase in water demand. Therefore, Climate Risk Assessments are required before large investments in new and large hydropower stations (>100 MW) are made. Small hydropower (1 – 20 MW) does not require these Climate Risk Assessments yet, but this will eventually happen in the future. Investors are highly interested in the profitability of these small hydropower stations, especially because of the uncertainty caused by future climate change. Current methods for Climate Risk Assessments (CRA) are however still too costly for these small-hydro projects because they are very labor intensive and require specific knowledge.

FutureWater has carried out a feasibility study to assess the possibilities for the development of a “Small-Hydro Climate Risk Assessment tool” (SH-CRA) that can make CRA’s for small-hydro projects cost effective. The starting point of this project to develop the SH-CRA is the recent change in the approach to CRA’s: until a few years ago, these were based purely on climate models, also known as the “Top-down” approach. Nowadays however, investors require a more pragmatic approach in which climate risks are balanced against other risks and presented in a clear way. This new “Bottom-up” approach makes it possible for small-hydro projects to include climate risks in the investment decision.

This feasibility project has therefore investigated whether the “bottom-up” climate risk analysis approach can make it possible to develop such a SH-CRA solution, based on a combination of literature research, an inventory of available technology and potential partners, and competition analysis.

A large Dutch consortium has joined in the project “Dutch network on small spaceborne radar instruments and applications (NL-RIA)”, led by TU Delft. The objective is to bundle the radar-related knowhow available in The Netherlands, and fill the knowledge gaps, in order to boost SmallSat radar-based Earth Observation technology. The focus of the project is on microwave remote sensing.

A key advantage of microwave remote sensing compared to optimal imagery is the all-weather/day and night observation capability, which greatly enhances the observation opportunities. This includes the ability to observe through clouds. Microwave remote sensing system include passive (radiometers) and active ones (radar altimeters, Synthetic Aperture Radars, precipitation radars, scatterometers, etc). This study will focus on altimeters and thus on active radar.

Continuous monitoring of fresh water bodies like rivers, lakes and artificial reservoirs, is important for water resources management, and thus for the principal water users in river basins, such as domestic, industrial and irrigation demands. Also, potentially there can be applications of this information for flood early warning, renewable energy (hydropower) and for the transport sector (shipping).

For the management of fresh water resources at the basin level, information on the status of surface water bodies is critical. In many areas in the world however, this information is scarce. Especially in developing countries, water level measurements of lakes and reservoirs are hardly available. In Europe, ground-based measurements are more common but sometimes performed by the entity operating the reservoir or river abstraction, and thus not available to water resources managers for the purpose of water resources planning. Also in transboundary (international) river basins, ground-based information is often not shared, so satellite-based information can be of high value for certain end-users (Zhang et al., 2014).

Altimeter measurements of rivers, lakes and artificial reservoirs and be used for two purposes:

  • Strategic planning of water resources, which requires water resources assessments to support for example river basin management plans
  • Operational management of water resources, for example for the hour-by-hour operational management of water release from reservoirs for hydropower.

The study performed by FutureWater focused on the first type of applications: strategic planning and decision making on the long-term. Especially for this purpose, satellite-based altimeter data has the potential to fill an important information gap. For the second type of applications: operational water management and short-term decision making, typically ground-level water level sensors are more cost-effective than satellite-based solutions.

Key results

From the analysis performed by FutureWater and based on literature review, the following key considerations are proposed for shaping a low-cost altimetry mission useful for assessing inland water bodies and water resources planning:

  • Altimetry information can be extremely useful for complex systems as for example swamps, where data on surface water levels and flows are scarce, as often the case in developing countries. Altimetry data can support the management and conservation of these systems that provide key ecosystem services for people and the environment.
  • To build hydrological models for water resources assessments, historic data is required to calibrate and validate the tools. To capture the variability in water resources systems and thus perform a successful validation, a period of around 10 years of altimetry data is recommendable.
  • A revisit frequency of 1 month is typically sufficient for water resources assessments. Higher frequencies are normally not necessary as they may only lead to minor improvements in the performance of the modeling tools. Lower frequencies (e.g. two months) are not sufficient to capture the seasonal pattern adequately.
  • The required accuracy is highly dependent on the characteristics of the water body and is a function principally of the annual dynamics in storage, and the depth-storage relationship. In case study I, with a very large but shallow water body, an accuracy of approx. 10 cm was considered necessary. For case study II, with a smaller and deeper water body, it was found that up to an error of 180 cm the performance of the model was not significantly affected.
  • The accuracy requirement can possibly also be expressed as a percentage of the annual variability in water levels, of a particular water body of interest. For example:
    • In case study I, annual increases of approximately 1 m are common. The accuracy requirement is approximately 10% of this (10 cm)
    • In case study II, water level increases or decreases within a year of around 15 m are possible. Also here, the accuracy requirement is in the order of 10-15% of this annual variability.
  • Finally it has to be noted, that the usefulness of the altimetry data is also dependent on the availability and quality of other datasets necessary for the hydrological modeling. These datasets are primarily the depth-volume relationship, ideally from in-situ measurements but possibly extracted from satellite data (Duan and Bastiaanssen, 2013b); as well as discharge data upstream or downstream of the water body. Without these data sources it is not possible to establish a reliable water balance of the water body.

Meteorologische en klimatologische informatie is van groot belang voor regionale waterbeheerders om hun kerntaken goed te kunnen uitvoeren. Zowel het KNMI als de private sector zijn actief in de ontwikkeling en levering van weers- en klimaatproducten, waarbij het KNMI typisch een onderzoeks- en ontwikkelings rol vervult en de bedrijven zich richten op praktische markttoepassingen. Momenteel verlopen de activiteiten vaak projectmatig in plaats van in een programmatische context. Om een kennisagenda voor de lange termijn op te stellen en concrete onderzoeksvragen te formuleren, is het noodzakelijk om de behoefte in de watersector (waterschappen, Rioned, RWS) helder te definiëren. Daarnaast is het nodig om betere afstemming tussen de verschillende betrokken organisaties te realiseren, wat vraagt om inkadering van de rollen en verantwoordelijkheden van o.a. STOWA, Het Waterschapshuis, en de Unie van Waterschappen.

In deze inventarisatie van de kennisbehoefte in de watersector is onderscheid gemaakt tussen zowel actuele weersdata en -informatie als klimaatdata en -informatie. Typische voorbeelden van variabelen welke in dit project zijn meegenomen zijn neerslag, temperatuur, wind, en verdamping. Aangezien de waterschappen zelf de nodige technische en inhoudelijke capaciteit in huis hebben, kan de behoefte betrekking hebben op zowel (ruwe en gecalibreerde) data, als op daarvan afgeleide informatieproducten.

De informatie over de behoefte in de watersector is op twee manieren verkregen:

  1. Vijf diepte interviews met kernpersonen die een belangrijke organisatie / doelgroep vertegenwoordigen:
  2. Een online enquête onder een grotere doelgroep van waterbeheerders. Deze enquête bestaat uit een mix van verschillende typen vragen (multiple-choice, open, rankings, etc.) en de resultaten worden gepresenteerd in enkele eenvoudig te begrijpen figuren en grafieken.

Momenteel kopen de Nederlandse waterschappen via het SAT-WATER initiatief verdampingsdata aan die gebaseerd is op optische en thermische satellietbeelden. Echter, zulke beelden zijn op bewolkte dagen niet beschikbaar, waardoor de berekening van de actuele verdamping niet optimaal uitgevoerd kan worden. Op dit moment wordt door SAT-WATER de kwaliteit van de verdampingsdata op bewolkte dagen als onvoldoende beoordeeld. Gezien de hoge bewolkingsgraad van Nederland kunnen zo substantiële gaten ontstaan in de verdampingstijdreeksen voor de bewolkte perioden. Dit is een serieus obstakel voor het gebruik van satellietgebaseerde verdampingsdata voor het operationele, tactische en strategische waterbeheer.

Het in dit project ontwikkelde product heet CoMET (Coupled Models for EvapoTranspiration). CoMET is een koppeling tussen een satellietgebaseerd verdampingsmodel (ET-Look) en een ruimtelijk gedistribueerd hydrologisch model (Spatial Processes in HYdrology – SPHY) dat bodemvochtgegevens en verdamping berekent. Het energiebalansmodel ET-Look voedt het waterbalansmodel SPHY met dynamische en actuele vegetatie parameters waardoor SPHY het bodemvocht nauwkeuriger kan schatten, en op basis van een nauwkeuriger bodemvochtgehalte kan ET-Look vervolgens zijn verdampingsschatting verbeteren. Het resultaat is een verbeterde schatting van de actuele verdamping op zowel bewolkte als onbewolkte dagen.

Interessante meerwaarde ligt verder in het feit dat, naast de actuele verdamping en verdampingstekort, ook bodemvocht dagelijks geleverd wordt. Daarnaast biedt CoMET de mogelijkheid om een 7-daagse voorspelling te geven van zowel verdamping als bodemvocht op basis van weersvoorspellingen. Dit geeft waterschappen een sterk verbeterd inzicht in de bergingsmogelijkheden per beheersgebied, en biedt ze de mogelijkheid sneller en effectiever te anticiperen op veranderingen in de waterhuishouding en zo eventuele economische of maatschappelijke schade te minimaliseren. Alle kaarten worden geleverd op 250×250 meter resolutie en met een kwantitatieve nauwkeurigheidsinschatting per pixel.

De online viewer van CoMET is hier te bekijken.

Screenshot van de viewer waarin dagelijks nieuwe kaarten van actuele verdamping worden weergegeven. Te zien is de kaart van 19 november 2017, zoals die op 16 november werd voorspeld door de gekoppelde COMET modellen.

The development of high-end electrical sensors has taken a boost over the last few years, and staying up-to-date is therefore a must. Within the east of the Netherlands, several SMEs and knowledge institutes luckily have a strong position in the development, production, and commercializing of sensor systems, their components, and required technologies. The Management Authority OP Oost from the province of Gelderland provides financial support to bring the development and commercialization of innovative sensor systems from TRL4/5 to TRL6/7.

Difference between high-resolution AESA radar (left) and KNMI radar (right).

Within the first DAISY project the TRL4/5 of the DAISY concept was demonstrated. We demonstrated that this compact and mobile sensor system has the potential for several socio-economic applications, being security, transport and logistics, life-sciences, and agro-food. DAISY 2 builds on the success of the first DAISY project, and aims to further develop this sensor system and explore the viability of this sensor product for different markets.

The DAISY 2 consortium is led by Thales Nederland B.V., and consists of the following consortium members: NXP, TNO, Sencio, Salland Engineering, Sintecs, Noldus, VDM Kunststoftechniek, Etchform, FutureWater, and the Hydrology and Quantitative Water Management Group (HWM) of Wageningen University. During this 3-year project we aim to bring the development and commercialization of this sensor product to a Technology Readiness Level (TRL) 6/7. Within this project FutureWater will work closely together with the HWM group of Wageningen University to further develop and explore the viability of this AESA sensor for the meteo-hydrological forecasting and water-for-food market.

Presentation of the DAISY concept (left) to Mr. Kamp, Minister of Economic Affairs (right).