Eswatini’s development is at risk by natural drought hazards. Persistent drought is exacerbating the country’s existing challenges of food security and the ability to attain sustainable development. Therefore, FutureWater, Hydrologic, and Emanti Management joined forces to bring together technologies and complementary expertise to implement the GLOW service which includes: short-term and seasonal forecasts of water availability and demand, an alerting service when forecasted water demand is higher than water availability, and water distribution advisories to reduce impact and maximise water security for all water users.

The GLOW service will be piloted in the Maputo River and Mbuluzi River Basins where three-quarters of the population of Eswatini lives, which includes the Hawane dam that supplies water to Mbabane (Capital City of Eswatini) and which is the major water supply source for Maputo, a Delta city (1 million inhabitants) which suffers from water shortages. The main beneficiaries of this project are the Joint River Basin Authority (JBRAS-PB) and the 5 River Basin authorities, AraSul (Mozambique) and the Department of Water and Sanitation (South Africa).

The innovation of GLOW is bringing together proven and award-winning technologies of advanced earth observation, open data, high-performance computing, data-driven modelling, data science, machine learning, operations research, and stakeholder interaction. These technologies require minimum ground truth information, which makes them very scalable and applicable in poorly monitored environments throughout the world. The coherent combination of the technologies into one decision support service ensures the optimum division of water, basically distributing every drop of water to meet the demands of all interests present in large river catchments.

Early November Agência de Desenvolvimento do Vale do Zambeze (ADVZ) from Mozambique visited the FutureWater office in Wageningen, the Netherlands where a full day was planned with APSAN-Vale project partners Resilience, FutureWater and HiView. From FutureWater side Tijmen Schults and Lisa Verschuren provided an interesting presentation on the water productivity results of the passed season. Furthermore, a demonstration of the new Rapid Eye XS drone was provided in the floodplains of Wageningen. The day was concluded with a fruitful discussion on strengthening the future cooperation.

Agência de Desenvolvimento do Vale do Zambeze beneficiary of the APSAN-Vale project in central Mozambique. The project has as its overall aim to increase climate resilient agricultural productivity and food security, with a specific objective to increase the water productivity and profitability of smallholder farmers in Mozambique, prioritizing small (family sector) farmers to increase food and nutritional security.

This project will demonstrate what the best combinations are of adoption strategies and technological packages, with the largest overall impact in terms of water productivity, both at the plot, sub-basin as well as basin-level. The main role of FutureWater is monitoring water productivity in target areas (both spatial and seasonal/annual variation) using flying sensors (drones) in combination with a water productivity simulation model and field observations.

Visit of the Agência members to the Wageningen office

Field demonstation of the Rapid Drone XS in Wageningen

Last week, Martijn de Klerk, Corjan Nolet, and Tijmen Schults provided an in-person training on Climate Smart Agriculture and geodata and modeling tools for participants representing SMEs from the Egyptian agricultural sector. The training was part of the SASPEN (Sustainable Agriculture Service provision Enterprise Network in Egypt) project, implemented by Care Egypt

The training took place at Care Netherlands in The Hague and was initiated by Care Egypt Foundation (CEF) and funded by the Dutch Embassy in Egypt. The aim of the SAPSEN project is to connect Egyptian agribusiness professionals from small and medium enterprises to Dutch projects, companies, and other partners in the agricultural sector to strengthen collaboration and stimulate the exchange of knowledge.

During the training FutureWater provided, 11 enthusiastic participants from various agricultural companies listened to a variety of topics surrounding Climate Smart Agriculture (CSA). The participants acquired hands-on experience in the use of online portals for the retrieval of geodata for agriculture and were handed several tools to perform data analysis. The agribusiness professionals indulged in discussions and participated in interactive quizzes related to CSA, geodata tools, drones, and crop modeling. The day was successful in bringing ideas and businesses together.

The in-person training will be followed up by two online training sessions covering advanced topics such as an introduction to ‘Real Water Savings’ (REWAS), water productivity interventions, open data portals for climate change information, and open access data solutions for the agricultural sector.

 

Presentation provided by FutureWater colleague Tijmen Schults
Presentation provided by FutureWater colleague Corjan Nolet

The study will focus on selection of key traded crops between the EU and Africa and their key producing regions. The tasks will include overall analysis of current practices and the background in the regions, determination of key sensitive parameters in order to select key crops and food products and map hotspot regions. In addition, project team will assess climate risks for these hotspots on key crops and food products and link these risks with the importing countries. Climate risks will be assessed by identifying the multiple climate sensitivities on the food systems in each region, assessing changes predicted by a CMIP6 (latest) climate model ensemble on key agriculture-related climate indices, and analysing impacts on production-related indices, distinguishing between rainfed and irrigated production systems. It will be focused on country specific case studies in each partner country. The impacts of climate change on trade patterns will be evaluated to assess the carbon- and water footprints and virtual water profiles of key traded commodities of these countries. At the end, the project team will focus on policy relevance and assessment of adaptation strategies and identify interventions that will be needed, at which point in the system, and from which sector (or actor) is of interest.

The outcomes of CREATE will be used to increase awareness of the risks that climate change poses to the agro-food trade and the broader economy at large. They can contribute to efforts by the governments (macro-scale), the communities (meso-scale), as well as relevant agricultural producers (micro scale) in the case study countries, by providing essential information for promoting actions towards mitigating the negative consequences of climate change on agro-food trade.

For smallholder farming systems, there is a huge potential to increase water productivity by improved (irrigated) water management, better access to inputs and agronomical knowledge and improved access to markets. An assessment of the opportunities to boost the water productivity of the various agricultural production systems in Mozambique is a fundamental precondition for informed planning and decision-making processes concerning these issues. Methodologies need to be employed that will result in an overall water productivity increase, by implementing tailored service delivery approaches, modulated into technological packages that can be easily adopted by Mozambican smallholder farmers. This will not only improve the agricultural (water) productivity and food security for the country on a macro level but will also empower and increase the livelihood of Mozambican smallholder farmers on a micro level through climate resilient production methods.

This pilot project aims at identifying, validating and implementing a full set of complementary Technological Packages (TP) in the Zambezi Valley, that can contribute to improve the overall performance of the smallholders’ farming business by increasing their productivity, that will be monitored at different scales (from field to basin). The TPs will cover a combination of improvement on water, irrigation, and agronomical management practices strengthened by improved input and market access. The goal is to design TPs that are tailored to the local context and bring the current family sector a step further in closing the currently existing yield gap. A road map will be developed to scale up the implementation of those TPs that are sustainable on the long run, and extract concrete guidance for monitoring effectiveness of interventions, supporting Dutch aid policy and national agricultural policy. The partnership consisting of Resilience BV, HUB, and FutureWater gives a broad spectrum of expertise and knowledge, giving the basis for an integrated approach in achieving improvements of water productivity.

The main role of FutureWater is monitoring water productivity in target areas using an innovative approach of Flying Sensors, a water productivity simulation model, and field observations. The flying sensors provide regular observations of the target areas, thereby giving insight in the crop conditions and stresses occurring. This information is used both for monitoring the water productivity of the selected fields and determining areas of high or low water productivity. Information on the spatial variation of water productivity can assist with the selection of technical packages to introduce and implement in the field. Flying sensors provide high resolution imagery, which is suitable for distinguishing the different fields and management practices existent in smallholder farming.

In May 2020, FutureWater launched an online portal where all flying sensor imagery from Mozambique, taken as part of the APSAN-Vale project, can be found: futurewater.eu/apsanvaleportal

Project video: Portrait of the activities on water productivity

In Sub-Saharan Africa, population growth, associated food demand and pressure on natural areas have all increased greatly. Agricultural intensification – more production from the same acreage – remains a key solution to these challenges. One of the cornerstones of intensification is that of a higher and more productive use of inputs, such as fertilizer and water. So far, the average production has remained low and a significant yield gap still exists, mainly among small scale producers (SSPs). The limiting factors are (partly) caused by weather and climatic changes but also by a lack of agronomical knowledge, proper inputs, fertilizers and (climate smart) irrigation techniques. Thanks to the digital revolution Africa is going through, many commercial farmers already have access to a wide range of agricultural services. However, such solutions are not yet accessible to SSPs due to their costs.

A consortium led by FutureWater will collaborate with ETG agronomists and the Empowering Farmers Foundation (EFF) to work together with 60 selected maize, coffee, and tea farmers from around the country to implement Climate Smart Agricultural practices, such as crop rotation to rejuvenate soil nutrients, or mulching to reduce weeds and water erosion. By using drones to monitor the application of these sustainable crop interventions from the selected farms, the project team will also be able to use the data to assess crop productivity improvements, create crop calendars to increase harvest yields, and understand land use changes to protect encroachment into biodiverse areas. Soil samples will also be collected and analyzed to identify soil nutrition deficiencies and design appropriate soil enhancement measures that will be implemented on demo farms. The success of this pilot project will provide learnings on how it can be scaled up to reach more farmers and assess its replicability across different geographic locations.

Over the past years FutureWater and HiView managed to develop a low-cost agricultural drone technology which revolutionized the applicability of geo-information services for African farmers: ThirdEye. With the flying sensor service successful local enterprises were established that provide a low-cost drone service to small- and largescale farmers, both in Mozambique and Kenya. ThirdEye’s young agronomist-drone operators support farm decisions based on the flying sensor crop mapping that is viewed on a tablet. Integrating crop nutrition advisory and other improved agronomic practices into the ThirdEye service will bring the (extension) service up to the next level. In this project, we complement the work of flying sensors by ThirdEye with the agronomic service model of Holland Greentech including input distribution, demonstrations and field days, farmer training and coaching and soil testing.

By merging agronomic advisory services making use of low-cost flying sensors, soil testing, climate smart inputs, farmer coaching and an interactive online planning & monitoring portal, the farmer is able to improve his/her:

  • Planning: What crop to grow in the season based on expected weather, crop prices and market demand;
  • Cropping: When to sow the seed based on the type of crop and predicted weather
  • Management: When and where to irrigate, fertilize and apply pesticide. This can help reduce the amount of inputs used in the farm and increase yields, thus helping with profitability.
  • Harvest: When to harvest the crop based on market prices and predicted weather.
  • Market linkage: The ability to make informed decisions on where to sell their produce, which may increase their income.
  • Climate resilience: Option to order climate smart inputs and technologies from different suppliers. These technologies include hybrid seeds, propagation units and greenhouses, (drip) irrigation equipment, soil analysis, biological soil enhancers and biological pest control products.

This project is a collaboration between ETG Kenya, Empowering Farmers Foundation, Eco-Business II Sub-Fund Development Facility, HiView, FutureWater, Holland Greentech and ThirdEye Kenya. For more information visit: https://www.ecobusiness.fund/