In early March 2025, the second phase of Water Accounting training under FAO’s Water Scarcity Program was held. The training focused on collecting and analyzing spatial data to build and simulate a water account. Participants from various governmental institutions worked with open-source datasets to compute seasonal water balances and assessed water availability and interventions in the Xe Champhone pilot basin.

A key component of the training was the use of Google Earth Engine (GEE), where participants learned how to extract and process remotely sensed precipitation, evapotranspiration, and land use data. These datasets were used to calculate the water accounting components, including inflows, outflows, demands, and unmet demands. In the program’s second half, participants were introduced to the Water Evaluation and Planning (WEAP) model, which simulates water balance and supply-demand dynamics in river basins and irrigation systems. Using a tutorial model for the Xe Champhone River Basin in Savannakhet Province, participants explored how to build and adjust scenarios to assess the potential impacts of future projections and policy or management interventions on water availability, demands, and supply. These exercises support participants in making informed, data-driven decisions.

Participants were strongly motivated to apply water accounting in their daily work, and many expressed interest in institutional follow-up. While the training exercises focused on the Xe Champhone basin, participants recognized the potential for applying water accounting approaches more broadly. This momentum can serve as a foundation for scaling up water efforts across the Lao PDR.

Remote sensing lecture
Group picture
Water Accounting lecture

A consortium of international development finance institutions led by World bank and including Asian Development Bank (ADB) have signaled their intention to support the financing of the project. The climate risk management approach of the ADB aims to reduce risks resulting from climate change to investment projects by identifying climate change risks to project performance in the early stages of project development and incorporating adaptation measures in the design.

For this project FutureWater undertakes work to analyze climate change risk faced by Rogun HPP and the interaction between climate change, climate-responsive HPP operation, and downstream water resource demand as a 2nd phase following initial due diligence of ADB on available project documentation. The detailed tasks entail:

  • Analyze downscaled CMIP6 General Circulation Model (GCM) to understand projected changes in precipitation and heat trends across climate change scenarios in the Rogun dam catchment area. This includes assessment of indicators for likelihood of heatwave and extreme precipitation events.
  • Undertake an estimate of the Probable Maximum Flood level in the Rogun dam catchment through event-based simulation modelling factoring in changes to projections for extreme precipitation events and changing hydrological processes due to climate change.
  • Estimate the likelihood of annual discharge change based on climate change projections to understand the likelihood of Rogun HPP project economics being negatively affected by declining capacity factor driven by climate change impacts on hydrology.
  • Conduct a first order analysis of present and future glacial lake outburst flood risk based on review of studies from reputable sources.

With the results of this analysis, ADB can update earlier climate risk studies and guide investment decisions.

 

With the highest rate of urbanization in South Asia and as one of the most vulnerable countries to climate change, Pakistan faces a range of complex challenges, including more frequent and intense flooding, declining economic productivity, and deteriorating public services. Growing dependence on groundwater, coupled with insufficient surface water recharge, is leading to severe localized groundwater depletion.

With support from the Asian Development Bank, the Government of Pakistan aims to upgrade and expand water and sanitation infrastructure in the cities of Sargodha and DG Khan, both of which face significant climate change-related challenges that impact combined drainage and sewer networks. The project has three major outputs:

  1. improving climate-resilient urban infrastructure and services,
  2. enhancing institutional capacity, operational efficiency, and gender inclusiveness of service providers, and
  3. creating greater economic empowerment opportunities for women in the WASH sector.

To assess the exposure and vulnerabilities of project components to potential climate risks, FutureWater will utilize advanced downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, along with relevant hazard data and local information, to conduct a detailed Climate Risk Assessment (CRA). The insights gained will enable the Asian Development Bank (ADB) to implement effective adaptation measures and ensure climate-resilient development.

To this end, FutureWater, in collaboration with unique land use GmbH and the Central Himalayan Rural Action Group, is conducting a training program on Springshed Management in four states, Uttarakhand, Himachal Pradesh, Madhya Pradesh, and Uttar Pradesh India. The program aims to equip the local stakeholders with practical tools and best practices for managing springshed and springs in the region. The key beneficiaries of these trainings are the forest departments of these four states under the Ministry of Environment, Forestry and Climate Change (MoEF&CC). Funded by GIZ India, these trainings will covers key topics, including:

  • Concepts of springs and springshed management protocols and best practices
  • Hydro-geological data collection during a field expedition
  • Springshed mapping
  • Connecting forest ecosystem services to water resources

For the first round of training the consortium will start training with the Uttarakhand Forest Department (UKFD) in Dehradun, India. This initiative aims to strengthen sustainable water management practices and safeguard these critical water sources for future generations.

Springs in the Hindu Kush Himalaya (HKH) region are essential for water security, agriculture, economic activities, ecosystem services, biodiversity, and cultural heritage. They sustain nearly 240 million people, including 50 million in India who depend directly on these springs for their water needs.

However, almost half of the perennial springs in the Indian Himalayan Region (IHR) have either dried up or become seasonal, causing severe water shortages in thousands of villages. If left unaddressed, the depletion of these springs will continue to have devastating impacts on local ecosystems, economies, and livelihoods. 

To this end, FutureWater, in collaboration with unique land use GmbH and the Central Himalayan Rural Action Group, is conducting a training program on Springshed Management in Dehradun, Uttarakhand. The program aims to equip the Forest Department, Govt. of Uttarakhand with practical tools and best practices for managing springs in the region. Funded by GIZ India, the training covers key topics, including: 

  • Concepts of springs and springshed management protocols and best practices 
  • Hydro-geological data collection during a field expedition  
  • Springshed mapping using Earth Map developed by FAO 
  • Connecting forest ecosystem services to water resources using the WaterWorld model developed by King’s College London and AmbioTEK 

With the first round of training successfully completed, this initiative aims to strengthen sustainable water management practices and safeguard these critical water sources for future generations. 

Training venue
Group discussion
Group picture
Field expedition

 

Currently, Pakistan’s energy mix consists of 58.8% thermal, 25.8% hydel, 8.6% nuclear, and 6.8% alternative sources, reflecting efforts to diversify from fossil fuels. Pakistan’s installed electricity generation capacity reached 41,557 MW by 2022, with significant growth in transmission line length over the past 5 years. However, the T&D system has not kept pace with the nearly 15,000 MW capacity added during 2017-2021 (ADB, 2024). Despite investments, transmission and distribution losses averaged about 18% over the last 5 years, exceeding the National Electric Power Regulatory Authority’s (NEPRA) 15.3% target. In 2020, 23.7% of generated energy was lost during transmission, distribution, and delivery (ADB, 2024). Notably, transmission and distribution losses exceed 25%, far higher than in comparable countries (GoP, 2017). Therefore, there is an urgent need to upgrade the existing distribution infrastructure to fulfill the energy demands and ensure steady socioeconomic development in the country. ADB will provide financing for four underperforming DISCOs, selected in consultation with the Ministry of Energy: Sukkur Electric Power Company (SEPCO), Hyderabad Electric Supply Company (HESCO), the Multan Electric Power Company (MEPCO), and the Lahore Electric Supply Company (LESCO) to:

  1. to upgrade the critical infrastructure of these DISCOs to reduce technical losses.
  2. to implement revenue protection measures to improve collections. Additionally, the project design includes embedded climate resilience and reform measures to enhance institutional capacity and financial sustainability.

These rehabilitation efforts will also take into account and address the growing impacts of climate change in four DISCOs. FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. Insights from the CRA will be used to devise adaptation strategies. Additionally, FutureWater will be reviewing the existing meteorological monitoring network and recommending additional potential monitoring sites for improved surveillance in the country. To further assist the Government of Pakistan, in actualizing its second Nationally Determined Contribution (NDC) agenda which seeks to reduce greenhouse gas (GHG) emissions per unit of GDP by 50% (compared to the level in 2016), by the year 2030, FutureWater will also develop a GHG account and prepare a Paris Agreement alignment assessment.

FutureWater will develop a high-level climate change and adaptation assessment for Turkmenistan to strengthen the water and agriculture sector’s resilience against climate change. The work involves a detailed hazard mapping exercise, employing observational and satellite-based information, to identify climate-related risks such as droughts, water scarcity, heat, salinity, erosion, and floods. These mapped hazards will be synthesized at the administrative level, presenting a comprehensive visual representation through figures and tables.

Key exposure and vulnerability datasets will be mapped, and pertinent sources for subsequent collection and analysis will be identified, setting the stage for a detailed risk assessment beyond the scope of work. The key output of this effort is the assembly of an inventory of climate adaptation measures gleaned from existing reports and official documents, contextualized to Turkmenistan’s unique circumstances, and an initial gap and opportunity assessment based on this inventory.

Based on the assessment, the adaptation options will be categorized and an initial prioritization will take place based on each option’s potential to mitigate risks across various hazards, its capacity for impactful outcomes beyond local scales, and a relative indication of expected cost-effectiveness. The outcome should provide a foundation for an integrated climate adaptation project. Concurrently, FutureWater will engage in country consultations, collaborating with stakeholders to confirm or refine identified adaptation options. These consultations will also explore potential synergies with ongoing and planned projects initiated by both the government and development partners.

The objective is to support the delineation and launching of a a Watershed Investment Program to improve multi-stakeholder collaboration and sustainable funding mechanisms to protect and restore riparian buffer zones and to implement runoff attenuation features to reduce eroded sediments entering the river.

To support the science streams, FutureWater is applying open source tools such as INVEST and RIOS Tool, together with Remote Sensing analysis to elaborate on a NbS opportunity mapping analysis. Besides, we aim to provide quantitative results on NbS benefits to reduce sediment loads entering the river system.

FutureWater proudly presents the culmination of an extensive study on climate risk assessment for key crop production in Turkey, Egypt, and Morocco. The report is a significant contribution to the CREATE project (Cross-Border Climate Vulnerabilities and Remote Impacts of Food Systems of the EU, Turkey, and Africa), funded by the European Research Area Network (ERA-Net) Cofund on Food Systems and Climate (FOSC).

The primary objective of the study was to map crop-specific climate risks under both the mild SSP2-4.5 and the severe SSP5-8.5 climate change scenarios, offering a comprehensive view of the challenges facing the agricultural sectors in these countries. The research has resulted in the integration of diverse datasets on climate change hazards, vulnerability, and exposure, creating district-level climate risk maps for Turkey, Egypt, and Morocco.

The study analyzed both annual crops (rice, potato) and perennial crops (apricot, fig, grape, hazelnut, orange, and tangerine), providing crucial insights into the climate risks associated with each crop type. The findings are crucial in understanding the cross-border climate risks on key crop production, particularly concerning the agri-food trade between the EU and Turkey, Egypt, and Morocco. They provide valuable decision support for governments, development agencies, and stakeholders, aiding in the formulation of informed actions to mitigate the adverse effects of climate change on agri-food trade.

Risk class distribution as a percentage of the national production of key crops for Turkey, Egypt,
and Morocco and presented for both the SSP2-4.5 and SSP5-8.5 climate scenarios.

The climate risk assessment of key crops for the Agri-Food trade between Europe, Africa, and Turkey is available for download on our website.

 

The development of the WEAP model for the Thika Chania catchment has come to a stage that it is sufficiently mature for being used over the next year to assess different management scenarios for the Water Allocation Plan. These management options can now be evaluated considering climate change impacts on water resources for different horizons, namely 2030 and 2050.

With this updated model, and the provided trainings, the Water Resources Authority of Kenya is now able to extract Climate Change data for different regions, set-up different WEAP models for different basins, and interpret the results for different time horizons.