Graphical User Interfaces are available for QGIS but only for SPHY v2.0 at the moment. This project will upgrade these plugins in order to make them compatible with the latest versions of SPHY (v3.0 and v3.1), QGIS and Python available. The updated plugins will also incorporate the additional functionalities to process state of the art new data sources as inputs.

As SPHY is used by FutureWater in several capacity building programs, our aim is to make the access to the data and the model as easy and intuitive as possible. With updated QGIS Plugins, no programming skills will be required to run the model, so a broader audience can use SPHY for their own purposes.

More information can be found at the SPHY website.

Most recent research has focused on identifying historical megadroughts based on paleo-records and understanding their climatic causes, or on the study of “modern” events and their impacts, generally in lowland and plain regions. However, high-mountain regions and snow-dependent catchments have been little studied, and little is known about the impact of megadroughts on the state and dynamics of the cryosphere in mountain water towers.  

In general, catchments dependent on high mountain systems have an intrinsic capacity to buffer the lack of precipitation and excess evapotranspiration that depends on the water reserves stored in the cryosphere (snow, glaciers and permafrost). It is presumed that the this buffer capacity is limited until a tipping point is reached from which the impacts of water shortages and temperature extremes may be amplified and jeopardize the functioning of ecosystems and water resource systems. 

MegaWat has a two-fold objective: 1) to address the knowledge gaps around the hydro-climatic causes of extreme droughts and their impact on the water balance of Europe’s mountain water towers, with special emphasis on the concurrence of compound events and cascading and multi-scale effects, and 2) to develop and propose new adaptation strategies to cope with the duration, extent and severity of future megadroughts and their potential impacts on environmental and socio-economic assets.  

For its implementation, MegaWat focuses on Europe’s high mountain regions and their dependent-catchments. MegaWat aims to develop three products:  

  • Product 1. A methodological framework for the identification and characterization of historical megadroughts during the instrumental period, and the assessment of the role of the cryosphere in supporting the landscape development of downstream areas, or in buffering climate change impacts. Product 1 relies on a combination of climate regionalization, surface energy balance modelling, hydrological simulation, and water evaluation and allocation analysis at the catchment level (Figure 1).  
  • Product 2. A high-resolution, open-access regionalized climate database.  
  • Product 3. A list of potential adaptation strategies useful for the prevention and mitigation of drought impacts, and the enhancement of the water security and resilience of high mountain regions and dependent catchments. These scenarios will be agreed with regional and local actors and stakeholders, and their effectiveness will be evaluated under extreme drought scenarios in three pilot regions in Europe. These pilot regions will be previously selected following criteria of representativeness, strategic importance and vulnerability to droughts.  

FutureWater plays an important role in MegaWat by coordinating the Work Package which aims to develop and test simulation tools that help to adapt to megadroughts and support the decision making process. Two specific objectives are pursued in this Work Package: a) the development of a methodological prototype for quantifying impacts and identifying tipping points for water security in snow-dependent downstream catchments, and b) the generation and the integration of snow drought indicators in the FW’s Drought Early Warning System called InfoSequia (Figure 2). 

Schematic representation of a high mountain basin, including the main components, processes and impacts related to droughts. 
Workflow of the InfoSequia Early Warning System developed by FutureWater and adapted for the detection of tipping-points of water scarcity in snow-dependent catchments. More information about InfoSequia.

One-pager can be downloaded here.

Aknowledgements  

This project has received funding from the Water4All programme with co-funding from CDTI (Spanish Office for Science and Technology) and the EU’s Horizon Europe Framework Programme for Research and Innovation”. 

This week marked a significant milestone for the MAGDA Project as the Mid-term Review Meeting was held in the city of Beaune, France. Over the course of two days, the consortium gathered to conduct a comprehensive assessment of the progress achieved during the first half of the project. Reflecting on past achievements, the gathering also served as an opportunity to outline the roadmap for the project’s successful completion.

A highlight of the event was a field visit to one of the project’s pilot areas, offering firsthand insights into the practical implementation of MAGDA equipment. The field visit provided a unique opportunity to witness the innovative solutions in action, including the cutting-edge metodrone developed by MeteoMatics and state-of-the-art meteorological stations provided by CAP2020.

As the MAGDA Project enters its second phase, the momentum generated in Beaune sets a promising roadmap for continued success.

The MAGDA project aims at providing an integrated – but modular – system to provide severe weather forecasts and irrigation advisories enhanced by means of various satellite-borne, drone-borne and ground-based weather-observing technologies. The main applications will be in providing both warnings about severe weather that could affect crops and irrigation advisories based on enhanced rain forecasts. These warnings and advisories will be channelled through a Farm Management System to ensure the capability to effectively reach farmers and agricultural operators.

Consortium at the meteodrone location
Meteorological station at the demo site
Meteodrone before performing demo flight

 

 

This week, the second part of the Water Accounting Training for the Agriculture, Climate and Water Sector Organizations in Pakistan has been successfully completed at the Food and Agriculture Organization of the United Nations (FAO) office in Islamabad, Pakistan.

As an agrarian economy that heavily depends on water, it is crucial for Pakistan to adopt a more integrated water management approach and formulate data-driven strategies to avert from the deepening water crisis.

This training has been designed by FutureWater and FAO as part of the Green Climate Fund funded project titled: ‘Transforming the Indus Basin with Climate Resilient Agriculture and Water Management’. Component 1 of this project focuses on enhancing information services for climate change adaptation in the water and agriculture sectors.

This second part of the training is comprised in seven modules and the aim is to enable stakeholders to develop water accounts at different scales. Given the growing issues of water scarcity, climate change impacts and unmet irrigation demands, this water accounting system can aid decision-makers to design evidence-based policies and achieve sustainable water resources management.

In this in-person training of one week, participants further extended their knowledge on how to compute inflows and outflows of a system at using remote sensing and assessing global datasets.

More information about the project can be found here.

Group presentation
Group picture
Theoretic lesson

The alarming decline of springs has been attributed to the rapid expansion of road networks, alongside changes in land cover and climate. Road development in these areas exposes springs to disturbances or alters their natural outflow, while rock cutting disrupts the location of spring orifices. This problem has largely gone unnoticed, posing a significant threat to the local communities and their water resources.

The overarching goal of the project is to reimagine roads as instruments for landscape improvement rather than adversaries, harnessing road development to contribute positively to local water resources. By integrating techniques and tools (Digital twins and DSS toolkit), the project aims to ensure safe and reliable water supplies for people in mountain areas while safeguarding the quality of road infrastructure and maintaining connectivity. The Dhankuta municipality and the Department of Local Infrastructure (DoLI), which regulates infrastructure development activities in Nepal, will be the primary beneficiaries of this project.

The expected results of the RoSPro project include:

  1. Successful implementation of roadside spring protection through pilot interventions in Dhankuta municipality and promote “Nature-based solutions” and “Green Roads for Water (GR4W)” approaches.
  2. Evidence generation on the impact of the pilot intervention through cost-benefit analysis.
  3. Assessment of the potential impact of upscaling roadside spring protection through the development of a digital twin and decision support toolkit.
  4. Capacity building for Dhankuta municipality and DoLI regarding roadside spring protection approaches, technologies, impact, and upscaling.

RoSPro will lead to improved water security for consumptive and productive uses, directly benefiting up to 500 households in the region. Following the pilot phase, the project aims to expand its services to established clients and partner networks in Asia and Africa. The demand for similar services is high in many high mountain countries, and RoSPro aims to generate a framework to upscale this at national and regional scales.

Thus, the RoSPro is a vital initiative that seeks to address the critical issue of dwindling springs in the Himalayas. By transforming road development into a contributor to local water resources, RoSPro will improve water safety and security, benefiting both the communities and the environment in these challenging mountainous regions.

On May 22-23, FutureWater attended the Preliminary Design Review Meeting (PDR) for the MAGDA project in Bucharest, Romania.

The meeting was hosted by the National Meteorological Administration, and it was a great opportunity for project partners to meet in person and present the latest achievements. The major outputs from the first six project months were the following:

  • Selection of the three major MAGDA demo sites in France, Italy and Romania.
  • Analysis of MAGDA user requirements (surveys for the agricultural and water sectors are still open for participation!)
  • Detailed MAGDA system design: Summary of the technical data requirements of GNSS stations, IoT sensors, Meteodrones, remote sensing, weather forecast and hydrology modelling with SPHY.

The next months will now be used to install the equipment at the demo sites and start with the first modelling and site measurements, as well as the evaluation of historical data for calibration.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

More information about the project can be found here and visiting the MAGDA Project website.

FutureWater presentation on MAGDA System Architecture
Preliminary Design Review Meeting
MAGDA Partners at MeteoRomania

 

Last week, the first part of the Water Accounting Training for the Agriculture, Climate and Water Sector Organizations in Pakistan was successfully completed at the Food and Agriculture Organization of the United Nations (FAO) office in Islamabad, Pakistan.

This training has been designed by FutureWater and FAO as part of the Green Climate Fund funded project titled: ‘Transforming the Indus Basin with Climate Resilient Agriculture and Water Management’. Component 1 of this project focuses on enhancing information services for climate change adaptation in the water and agriculture sectors.

FutureWater conducted a capacity needs assesment in order to design a tailor made training that facilitates the development of water accounts at different scales (from basin to water course level) for key stakeholders in Pakistan. In total, approximately 30 participants from federal and provincial government departments (Punjab and Sindh) as well as academia actively participated in the training program.

The training consisted of the following three modules:

  1. Introduction to the components of Water Accounting
  2. Understanding and quantifying water pathways within a domain (using FutureWater’s in-house tools: REWAS and Follow the Water)
  3. Understanding and quantifying water inflows and outflows (using Google Earth Engine for accessing and processing remotely sensed datasets).
In person sessions at FAO office in Islamabad
Theory presentation
Group work discussion

Solidaridad and FutureWater partnered to conduct a tailor-made training on ‘Geo-spatial data skills development for improved soil water management and enhanced crop productivity at the national level in Zambia’.

The training project for the Zambia Agricultural Research Institute (ZARI) was a Tailor-Made Training (TMT), as part of the Orange Knowledge Programme, funded by Nuffic, and enhanced capacity in accessing and using innovative data and tools in the public domain, to analyse crop performance and improve soil water management.

Staff of ZARI and the Ministry of Agriculture were trained on a range of geospatial data skills, including survey design using Kobo Collect, and remote sensing environmental analysis using GIS, Google Earth Engine, Earth Map and InVEST. The feedback received from participants was very positive:

“The TMT is a well-developed program that provides important tools for brushing up one’s skills in data compilation and analysis. The program materials are easy to go through and the instructors were friendly and easygoing. The training package included a good set of free and open-source tools for a wide variety of purposes, including; Land Use, Land Use Change and Forestry (LULUCF) assessments, monitoring agricultural land and urban areas and exploring how changes in ecosystems can lead to changes in the flows of many different benefits to people. The knowledge and insights provided in the TMT program are well delivered”

Chrispin Moyo Principal Agricultural Specialist Ministry of Agriculture Zambia

“This course gave me a good understanding of the applications of GIS and remote sensing in soil and water management. I’m particularly excited about the opportunity to quantify the benefits which regenerative agricultural practices would have on degraded environments using the InVEST tool. This was one of my best learning experiences and I can’t thank the organisers and trainers enough. Thank you to FutureWater, Solidaridad and Nuffic for a well-tailored and excellently delivered training.”

Belinda Kaninga (Ph.D) Senior Research Officer/Soil Scientist Zambia Agriculture Research Institute (ZARI)

More information about the project can be found here.

Trainers and participants during the closing event
Participants during training sessions
Participant during the training sessions  

InfoSequia, the Drought and Early Warning System (DEWS) developed by FutureWater, was granted for being part of the Cajamar-INNOVA Incubation Programme powered by Cajamar Fundation. 

InfoSequia has been granted by Cajamar-INNOVA, a High-Tech Incubator/Accelerator focused on the Water and Agro sector. During the 6-month granted period, FutureWater’s staff is being mentored and supported by experts on topics that cover technological and business aspects. Two main objectives have been planned: 1) to increase the technical readiness level of the service by testing its reliability and suitability for the private agrobusiness and agroinsurance sectors, and 2) to improve the business strategy by identifying market opportunities and reinforcing the communication with potential stakeholders and early adopters.

Since the beginning of the Programme, several campus have been organized to deal with specialized training workshops and promote synergies among the start-ups granted. Recently, in November 2020, a campus session was also organized in parallel with the DATAGRI 2022 Forum held in El Ejido (Almería, Spain). During one-day field visit at Experimental Research & Innovation Center of Las Palmerillas-Cajamar, our colleagues Amelia Fernández and Sergio Contreras introduced InfoSequia to the participants of the event.

InfoSequia is currently part of the HERMANA system of the Cauca Valley Basin (CVC) in Colombia. Nowdays, the impact-based forecasting capabilities of the service are being tested in two pilot regions in Mozambique and Spain. These activities are also being supported by the Incubed Programme funded by the European Space Agency.

More information about the project can be found here.

Cajamar-INNOVA incubation programme participants

 

Currently, farmers rely on weather forecasts and advisories that are either general for a given, often wide, region of interest, or highly customized to the farmers’ needs (e.g. by combining large scale atmospheric variables into synthetic parameters of interest). In both cases, such forecasts and advisories often don’t rely at all on observations collected at or around the target cultivated areas, or they are limited to traditional observations provided only by weather stations, without exploiting the full extent of measurements and observations available through European space-based assets (e.g. Galileo GNSS, Copernicus Sentinels) and ground-based radar data.

MAGDA objectives go beyond the state-of-the-art by aiming at developing a modular system that can be deployed by owners of large farms directly at their premises, continuously feeding observations to dedicated and tailored weather forecast and hydrological models, with results displayed by a dashboard and/or within a Farm Management System.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

During this task, the SPHY water balance model will be setup for three selected demonstrator farms in Romania, France and Italy. Finally, the irrigation advisory will be validated using performance indicators (e.g., water productivity, crop yield analysis, water use efficiency) using ground truth data (e.g., weather stations, moisture probes, crop biomass measurements)