The Sierra Nevada de Santa Marta, a UNESCO-declared Biosphere Reserve, is an isolated mountain complex encompassing approximately 17,000 km², set apart from the Andes chain that runs through Colombia. The Sierra Nevada has the world’s highest coastal peak (5,775 m above sea level) just 42 kilometres from the Caribbean coast. The Sierra Nevada is the source of 36 basins, making it the major regional ‘water factory’ supplying 1.5 million inhabitants as well as vast farming areas in the surrounding plains used mainly for the cultivation of banana and oil palm. The main problems to be solved in these basins are: i) Declining availability of water for irrigation, ii) Declining availability and quality of water for human consumption, iii) Increasing salinization of ground water and soils, iv) Increasing incidence of floods.

This is a feasibility study on the adoption of more efficient irrigation techniques by oil palm farmers in the Sevilla basin (713 km²), one of the key basins in the Sierra Nevada. The general objective is to identify the local environment at basin scale, the limiting factors and suitable field interventions in oil palm areas to improve the water use. A preparation and implementation phase was developed including an initial baseline assessment of the basin on climate, water availability, drought hazard, soil characteristics, land use, and topography. The agronomy (e.g. cultivars) and current field practices (e.g. nutrient management and irrigation practices) of the oil palm areas were characterized, and the crop water requirements determined. In addition, costs and benefits associated to the implementation of efficient irrigation technologies such as fertigation and water harvesting were assessed. Potential locations, risks and opportunities for water harvesting were evaluated with the idea to store water in the wet season to be able to use the resource in an efficient way in the dry season. A range of GIS and satellite-based datasets (e.g. CHIRPS, MODIS-ET, MODIS-NDVI, HiHydroSoil) were used to evaluate the environmental conditions, and local data and information was provided by local partners Cenipalma and Solidaridad to generate a comprehensive assessment at basin and field scale. The expectation is that fertigation and water harvesting techniques can be adopted in the Sevilla basin, but also in other basins in the Sierra Nevada de Santa Marta to reduce the environmental impact of oil palm production.

The Asian Development Bank supports Tajikistan in achieving increased climate resilience and food security through investments in modernization of Irrigation and Drainage (I&D) projects. A Technical Assistance is preparing modernization projects for two I&D systems in the Lower Vaksh river basin in Tajikistan. In line with this, the TA will prepare a holistic feasibility study and project design for the system (38,000 ha), as well as advanced designs and bidding documents for selected works.

FutureWater is part of the team of international experts, working together with the local consultant on the climate risk and adaptation assessment that accompanies the feasibility projects. For this purpose, past climate trends will be analyzed, climate model projections processed, and a climate impact model will be used to assess how the project performs under a wide range of future conditions, to assess the robustness of the proposed I&D investments, and identify possible climate adaptation measures.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

Achieving water security and guaranteeing the sustainable use of water resources require series of investments at the catchment scale. Yet, competing water uses pose an initial layer of complexity about the type of intervention a catchment requires. Additionally, the nature of climatic and no-climatic uncertainties, threatening possible investments, leave decision makers with insufficient knowledge about the performance of chosen intervention options in a changing world. So, decision makers require novel tools which would facilitate the description and communication of key metrics in an uncertain future.

This project studies the sensitivity of the multipurpose Chancay-Lambayeque Basin water resources hydraulic system (Peru) to changes in climatic and no-climatic forces. A series of proposed interventions to enhance the current hydraulic system look to satisfy water supply to ~400,000 people, guarantee water for increasing irrigation activities, and maintain ecological flows, while providing protection for El Niño-driven floods.

The assessment was carried out using the DMDU deiven Decision Tree Framework (DTF, Ray and Brown,2015). This is a bottom-up and two-step approach which, in this project, examined the performance of economic, resilience, robustness, and reliability metrics of selected interventions such as the construction of new reservoirs, the expansion of groundwater development, and the conservation and generation of green-infrastructure, subjected to various climate realizations. Also, the effects of changes in urban water supply and irrigation demands, siltation in existing reservoirs, and other non-climatic parameters and trade-offs were analyzed. The results of this study highlight the potential (while acknowledging limitations) of DMDU tools to prioritize investments in river catchment planning while engaging local stakeholders in decision making.

In irrigated agriculture options to save water tend to focus on improved irrigation techniques such as drip and sprinkler irrigation. These irrigation techniques are promoted as legitimate means of increasing water efficiency and “saving water” for other uses (such as domestic use and the environment). However, a growing body of evidence, including a key report by FAO (Perry and Steduto, 2017) shows that in most cases, water “savings” at field scale translate into an increase in water consumption at system and basin scale. Yet despite the growing and irrefutable body of evidence, false “water savings” technologies continue to be promoted, subsidized and implemented as a solution to water scarcity in agriculture.

The goal is to stop false “water savings” technologies to be promoted, subsidized and implemented. To achieve this, it is important to quantify the hydrologic impacts of any new investment or policy in the water sector. Normally, irrigation engineers and planners are trained to look at field scale efficiencies or irrigation system efficiencies at the most. Also, many of the tools used by irrigation engineers are field scale oriented (e.g. FAO AquaCrop model). The serious consequences of these actions are to worsen water scarcity, increase vulnerability to drought, and threaten food security.

There is an urgent need to develop simple and pragmatic tools that can evaluate the impact of field scale crop-water interventions at larger scales (e.g. irrigation systems and basins). Although basin scale hydrological models exist, many of these are either overly complex and unable to be used by practitioners, or not specifically designed for the upscaling from field interventions to basin scale impacts. Moreover, achieving results from the widely-used FAO models such as AquaCrop into a basin-wide impact model is time-consuming, complex and expensive. Therefore, FutureWater is developing a simple but robust tool to enhance usability and reach, transparency, transferability in data input and output. The tool is based on proven concepts of water productivity, water accounting and the appropriate water terminology, as promoted by FAO globally (FAO, 2013). Hence, the water use is separated in consumptive use, non-consumptive use, and change in storage (see Figure).

Separation of water use according to the FAO terminology.

A complete training package is developed which includes a training manual and an inventory of possible field level interventions. The training manual includes the following aspects: 1) introduce and present the real water savings tool, 2) Describe the theory underlying the tool and demonstrating some typical applications, 3) Learn how-to prepare the data required for the tool for your own area of interest, 4) Learn when real water savings occur at system and basin scale with field interventions.

At the outlet of the 60 km-long Muhazi Lake there is currently an earth fill dyke which is prone to overtopping or even complete collapse during the wet season. The dyke’s instability causes a potential hazard to inhabitants of the downstream Nyabugogo area, a commercial hub in Kigali town, which threatens lives and properties.

The project consisted of a feasibility and a design phase. For the project, a large number of field- and desktop-tasks were performed. Field-activities included a topographical survey of the project immediate area for design purposes, a detailed mapping of areas around the lake shore sensitive to changes in water level, and a Geotechnical investigation programme due to the complexities related to the peat-soils.

FutureWater conducted a full hydrological assessment of the Lake Muhazi catchment, including the study of flood flows to provide design values, considering climate change, and routing of the lake. Besides, a detailed water resources assessment was performed using WEAP and a study on the operational rule curves, future demands, among others.

Muhazi Lake and dam.

The outputs of this analysis fed directly into the design of the Dyke (serving as a dam): the dimensions and outlet structures, performed by the lead partner (Z&A). Besides the project included a Environmental and Social Impact Assessment

Stakeholders were involved actively during all phases of work and several training and capacity building activities were organized.

Asian Development Bank (ADB) Technical Assistance (TA) 7610-CAM supports the preparation of MOWRAM’s Roadmap and Investment Program for Irrigation and Water Resources Management, 2019-2033. This investment program provides a comprehensive and strategic framework for the country’s investment in the water resources and irrigation sector.

The current project under TA 7610-CAM concerns (i) rapid water resources assessment of the Tonle Sap and the Mekong Delta river basin groups (24 basins); (ii) ecological assessment of these two river basin groups to identify areas for development and conservation; (iii) detailed surface water resources assessment for five river basins within these groups.

The overall project objective is to support MOWRAM to make more informed, evidence-based water resources management and irrigation investment decisions through better understanding of water resources and ecosystems of two river basin groups: the Tonle Sap and the Mekong Delta and at least five selected river basins within these groups. These river basins are to be selected based on their current and projected level of water stress. The health of high-priority ecosystems and their water demands are assessed in relation to basin hydrological characteristics and foreseen development of water resources.

Outputs of the project are:

  • A comprehensive knowledge base on water resources and eco-hydrology in 24 river basins
  • Hydrological characterization of 24 river basins
  • Quantification of environmental flow requirements for 24 basins
  • Selection of the five most water-stressed basins
  • Recommended options for efficient and equitable water allocation
  • Targeted investment options in the irrigation sector
  • Coupled set of calibrated hydrological / water allocation models
  • Geospatial data on (eco-)hydrology compatible with the national Water Resources Information System (WRIS) currently under development

FutureWater is the lead firm in the assignment and executes the water resources modelling components of the project.

There is so far no accepted general methodology for assessing the significance of climate risks relative to other risks to water resources projects that the World Bank Group supports and invests in. The Independent Evaluation Group (IEG) in its 2012 report entitled “”Adapting to Climate Change: Assessing the World Bank Group Experience””, found that “climate models have been more useful for setting context than for informing investment and policy choices” and “they often have relatively low value-added for many of the applications described” and that “although hydropower has a long tradition of dealing with climate variability, the Bank Group lacks guidance on appropriate methods for incorporating climate change considerations into project design and appraisal.”

The book “”Confronting Climate Uncertainty in Water Resources Planning and Project Design: The Decision Tree Framework”” by Casey Brown and Patrick Ray was published in 2015. Since then, the Decision Tree Framework (DTF) has been applied to Bank projects facing diverse situations in six pilots covering hydropower, water supply, and irrigation with funding from the Water Partnership Program (WPP). This effort is continuing in two additional pilots with financing from the Korea Green Growth Trust Fund (KGGTF) targeting the resilience component of water security of flood protection and irrigation in the Nzoia River basin in Kenya and the application of the Hydropower Sector Climate Resilience Guidelines (which in turn are based on the DTF) to the Kabeli-A hydroelectric project in Nepal.

Together with partners, FutureWater applies the following bottom-up methodology DTF to the Nzoia irrigation project in Kenya and the Nepal’s Kabeli-A run-of-river hydroelectric project study. FutureWater´s main tasks are assessing risks using crop modeling and water allocation modeling of the Nzoia case study, and hydrological modeling of the high-mountain region in Nepal.

The Mashhad city is the second largest city in Iran. The economic growth in the Mashhad city is strongly threatened by water shortages and unregulated groundwater extraction. The situation is critical, and the government is considering drastic infrastructural measures such as desalination and water supply from the Sea of Oman (Ministerie van Landbouw, 2018). Hence, finding cost-effective alternatives to reduce groundwater consumption in the Mashhad basin (Figure 1) is of regional interest.

The SMART-WADI project (SMART Water Decisions for Iran), carried out by a consortium of FutureWater, IHE-Delft, and local partner EWERI, focuses on farmers who irrigate their crops with groundwater. The aim is to provide up-to-date information and advice on water productivity, irrigation and farm management. The project combines the latest satellite technology for the quantification of water consumption and productivity, with high resolution flying sensor (drone) images to monitor the crop growth.

Figure 1. Mashhad basin in Iran.

Using this information in a crop model can determine the potential for improving agricultural practices and reduce groundwater consumption. This way, a higher crop yield (food production) and higher water productivity can be obtained (Figure 2). Eventually farmers receive this information in combination with recommendations regarding irrigation planning via an online portal or mobile app.

SMART-WADI is now in the phase of a feasibility project, in which the market context and technical aspects are tested. This is supported by the Partners for Water Program of, with co-funding from the executive project partners. Based on the first signals and the experiences of FutureWater and IHE-Delft in similar projects, it is estimated that this information service has great potential to be scaled up to other areas in Iran.

FutureWater is developing and testing a framework to predict crop yield and water productivity based on crop growth monitoring using flying sensors and remote sensing. Thanks to this innovation, farmers can timely plan field management practices (e.g. irrigation application) enhancing water productivity and reducing groundwater consumption.

Figure 2. Conceptual framework of SMART-WADI.

A detailed Climate Risk and Vulnerability Assessment (CRVA) report has been developed. The main findings of the CRVA are:

In terms of climate change observations over the last 60 years:

  • The average annual temperature in Kazakhstan has been rising by 0.3 ºC/decade. The rate of warming is more pronounced during spring / autumn
  • Increase in annual mean temperatures is most pronounced in Aktobe and Kyzlorda oblasts and least in East Kazakhstan.
  • The length of dry spells has increased over conterminous Kazakhstan concurrently with observed increasing trends in precipitation intensity.
  • In Kazakhstan precipitation tends to slightly decrease of 1 mm per decade in all seasons except winter when precipitation tends to increase by 2 mm per decade.

In terms of climate change projections for the coming decades:

  • Mean annual temperatures are projected to increase by 2.5°C by the 2020s, 4.5°C by the 2050s and 7.0°C by the 2080s under RCP 8.5 concentration pathway.
  • A significant increase in precipitation of about 24% during the winter by the end of this century. However, during the summer season, a decline of -13% in precipitation is projected.

In terms of impact of climate change:

  • Higher crop water requirements of about 8-10% by 2020 and 15% by 2050 compared to the reference (1990).
  • Seasonal shift with earlier planting opportunities and therefore irrigation demands earlier in the season.
  • Substantial reduction in runoff to streams and rivers as a result of higher evaporation rates and precipitation reductions.
  • Higher flooding risks due to projected extremes in daily rainfall, especially in the more mountainous regions.
  • Falling groundwater tables as a result of lower recharge.

In terms of adaptation of climate change:

  • Design crop water requirements at 10-15% higher compared to the 1990 climate data. Design criteria for canals should also be 10-15% higher.
  • Design of storage capacity should be substantially higher to compensate for the projected decrease in base flows and increase in demand. Exact numbers should be Sub-Project and Project level determined.
  • Awareness raising to farmers is needed to make them aware that changes in climate will influence water delivery and will gradually lead to a change in cropping patterns and farm water management.
Example of changes in irrigated areas based on Landsat satellite data using maximum NDVI values over 5 years. Location is just north-west of Aktobe town.