Several catchment plans have been already developed through the Dutch-funded Water for Growth programme. FutureWater played a paramount role in this programme by developing the water allocation models (WEAP) at national level and for several priority catchments. Moreover, FutureWater provided capacity building to local experts and staff on using and further developing and fine-tuning those WEAP models.

The current project aims at developing two catchment plans, for:

  1. Mukungwa catchment
  2. Akagera Lower catchment

These catchments were included in a previous national-level water resources allocation study performed by FutureWater. Four catchments were selected from this national level assessment to make catchment-level WEAP models to inform the catchment plans. A next step for the Rwanda Water Resources Board (RWB), is to prepare catchment plans for the above two catchments, for which this project will be instrumental.

For the two catchments, this study aims at (1) providing detailed information on available and renewable water resources, both surface and groundwater, and their spatial and temporal variations; and (2) to map and quantify water uses and water demands, to develop water allocation models that can be used as tools to manage operationally and plan the catchments in a sustainable way. The scenarios (options) assessed can also be essential input into the catchment management plan. This study will produce water allocation models based on current and potential uses in a time-horizon of 30 years.

The project is carried out in collaboration with a team of local experts and one of our partners Dr. Kaan Tuncok as a team leader.

Mukungwa and Akagera Lower catchments

The Sous-Massa basin is located in central Morocco. It represents an arid area that will likely face water resources challenges into the coming decades due to the influence of climate change and socioeconomic development. Indeed, increases in temperatures and decreases in precipitation are anticipated in the Sous-Massa region, alongside more extreme intense precipitation and drought events. It is therefore important the the impacts of climate change on water availability are better constrained to target resilience measures and better prepare for potential future water scarcity.

With the results of this project, IMWI will be able to apply the Water Accounting Plus framework to the Sous-Massa basin, helping to better constrain the likely impacts of climate change on future water availability. This project therefore helps support the targeting and prioritisation of climate resilient interventions which can be taken by the government and other members of the water sector in this area of Morocco.

The training aimed at building and enhancing capabilities of the participants in environmental and hydrological monitoring and modeling and was funded by the Orange Knowledge Program of Nuffic. It gave the participants valuable and necessary knowledge on IWRM and it provided the participants with relevant hands-on experience and cutting-edge knowledge on innovative solutions in water allocation modeling and earth observation technologies.

Due to the ongoing COVID-19 situation, the training was held online using our eLearning platform FutureWater Moodle School. The beauty of this platform is that all online sessions can be recorded and they are still available for the participants to have another look at it. All material (exercises, manuals etc.) developed during the course is also still available on our FutureWater Moodle School. The Rwanda Water Resources Board is recruiting new staff in the future and this new staff will also have access to all material.

Topics covered in the training are:

WEAP:

  • Build a WEAP model from scratch
  • Work with WEAP’ Basic Tools
  • Create and run Scenarios in WEAP
  • Extract water balances from WEAP
  • Generate a hydrological model using WEAP’ Automatic Catchment Delineation Tool

Google Earth Engine:

  • First glance at JavaScript Syntax
  • Explore and visualize Landsat 8 Imagery
  • Create charts with Monthly NDVI Values
  • Use WaPOR for Water Productivity calculations
  • Work with CHIRPS Rainfall data
  • Evaluate the water balance of a catchment

 

This course on hydrology and water allocation modelling is organized for the Kenya Water Resources Authority (WRA) and funded by the Blue Deal program of the Netherlands. The first four-week course block introduces the participants to the main concepts in hydrology, hydrological modelling and data collection, including remote sensing. Exercises are provided on water balances, land use datasets, extraction of rainfall data from remote sensing datasets, among others.

The 5-week second block of the training is on the use of a water resources system model (WEAP) for water allocation. Participants will learn how to develop, run and evaluate a model, including scenario analysis, water balances, assess impact of changing priorities among users, and impacts on water shortage. The learned skills will be used afterwards for establishing a Water Allocation Plan for an important sub-basin of the Upper Tana river, providing water to many livelihoods in the catchment itself, but also to Nairobi city.

To meet the challenges of regional development and climate change that the Panama Canal river basin faces, the Panama Canal Authority (ACP) has launched the preparation of a land use plan. For this plan, a roadmap will be established (Green Pathway 2050) that should secure water for the population, sustains socio-economic development, enables reliable operations of the Panama Canal, and preserves the ecosystem services of the basin.

The technical cooperation offered through this project will allow the ACP and the IADB to design an intervention implementation program at the strategic and project level to promote the sustainable development of the river basin.

The project is executed in 4 phases (see Figure 1):

  1. Diagnosis: sectoral and comprehensive characterization of the current river basin and regional planning
  2. Prospects: a robust decision making methodology will be applied to quantify the vulnerability of the current and possible future states of the system, considering climate change, socio-economic development scenarios and climate adaptation.
  3. Strategy development: the so-called “Green Pathway 2050” will be developed together with stakeholders, including priority actions, mitigation and adaptation strategies.
  4. Land Use Plan: the plan will address the implementation aspects related to regional zoning, pre-feasibility studies, and a monitoring and evaluation program
Figure 1. Phases of the Project “Formulation of the Land Use Plan for the Panama Canal river basin”.

FutureWater is responsible for assessing, in collaboration with stakeholders, realistic land use scenarios considering the uncertainties imposed by climate change and non-climate factors. A Robust Decision Making (RDM) approach will be applied for this purpose. The work will include the development of a supply-demand model using the WEAP tool and a technical training of ACP staff. Climate change vulnerabilities will be assessed through a bottom-up approach, including stakeholders´inputs from the start of the analysis. The climate change-uncertainties of the land use scenarios will be visualized to stakeholders and a realistic sub-set of scenarios, including adaptation options, will be produced.

Please visit this website for more information about the project: https://piota-panama-cyt.hub.arcgis.com/

The Sierra Nevada de Santa Marta, a UNESCO-declared Biosphere Reserve, is an isolated mountain complex encompassing approximately 17,000 km², set apart from the Andes chain that runs through Colombia. The Sierra Nevada has the world’s highest coastal peak (5,775 m above sea level) just 42 kilometres from the Caribbean coast. The Sierra Nevada is the source of 36 basins, making it the major regional ‘water factory’ supplying 1.5 million inhabitants as well as vast farming areas in the surrounding plains used mainly for the cultivation of banana and oil palm. The main problems to be solved in these basins are: i) Declining availability of water for irrigation, ii) Declining availability and quality of water for human consumption, iii) Increasing salinization of ground water and soils, iv) Increasing incidence of floods.

This is a feasibility study on the adoption of more efficient irrigation techniques by oil palm farmers in the Sevilla basin (713 km²), one of the key basins in the Sierra Nevada. The general objective is to identify the local environment at basin scale, the limiting factors and suitable field interventions in oil palm areas to improve the water use. A preparation and implementation phase was developed including an initial baseline assessment of the basin on climate, water availability, drought hazard, soil characteristics, land use, and topography. The agronomy (e.g. cultivars) and current field practices (e.g. nutrient management and irrigation practices) of the oil palm areas were characterized, and the crop water requirements determined. In addition, costs and benefits associated to the implementation of efficient irrigation technologies such as fertigation and water harvesting were assessed. Potential locations, risks and opportunities for water harvesting were evaluated with the idea to store water in the wet season to be able to use the resource in an efficient way in the dry season. A range of GIS and satellite-based datasets (e.g. CHIRPS, MODIS-ET, MODIS-NDVI, HiHydroSoil) were used to evaluate the environmental conditions, and local data and information was provided by local partners Cenipalma and Solidaridad to generate a comprehensive assessment at basin and field scale. The expectation is that fertigation and water harvesting techniques can be adopted in the Sevilla basin, but also in other basins in the Sierra Nevada de Santa Marta to reduce the environmental impact of oil palm production.

The Asian Development Bank supports Tajikistan in achieving increased climate resilience and food security through investments in modernization of Irrigation and Drainage (I&D) projects. A Technical Assistance is preparing modernization projects for two I&D systems in the Lower Vaksh river basin in Tajikistan. In line with this, the TA will prepare a holistic feasibility study and project design for the system (38,000 ha), as well as advanced designs and bidding documents for selected works.

FutureWater is part of the team of international experts, working together with the local consultant on the climate risk and adaptation assessment that accompanies the feasibility projects. For this purpose, past climate trends will be analyzed, climate model projections processed, and a climate impact model will be used to assess how the project performs under a wide range of future conditions, to assess the robustness of the proposed I&D investments, and identify possible climate adaptation measures.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.

Achieving water security and guaranteeing the sustainable use of water resources require series of investments at the catchment scale. Yet, competing water uses pose an initial layer of complexity about the type of intervention a catchment requires. Additionally, the nature of climatic and no-climatic uncertainties, threatening possible investments, leave decision makers with insufficient knowledge about the performance of chosen intervention options in a changing world. So, decision makers require novel tools which would facilitate the description and communication of key metrics in an uncertain future.

This project studies the sensitivity of the multipurpose Chancay-Lambayeque Basin water resources hydraulic system (Peru) to changes in climatic and no-climatic forces. A series of proposed interventions to enhance the current hydraulic system look to satisfy water supply to ~400,000 people, guarantee water for increasing irrigation activities, and maintain ecological flows, while providing protection for El Niño-driven floods.

The assessment was carried out using the DMDU deiven Decision Tree Framework (DTF, Ray and Brown,2015). This is a bottom-up and two-step approach which, in this project, examined the performance of economic, resilience, robustness, and reliability metrics of selected interventions such as the construction of new reservoirs, the expansion of groundwater development, and the conservation and generation of green-infrastructure, subjected to various climate realizations. Also, the effects of changes in urban water supply and irrigation demands, siltation in existing reservoirs, and other non-climatic parameters and trade-offs were analyzed. The results of this study highlight the potential (while acknowledging limitations) of DMDU tools to prioritize investments in river catchment planning while engaging local stakeholders in decision making.

In irrigated agriculture options to save water tend to focus on improved irrigation techniques such as drip and sprinkler irrigation. These irrigation techniques are promoted as legitimate means of increasing water efficiency and “saving water” for other uses (such as domestic use and the environment). However, a growing body of evidence, including a key report by FAO (Perry and Steduto, 2017) shows that in most cases, water “savings” at field scale translate into an increase in water consumption at system and basin scale. Yet despite the growing and irrefutable body of evidence, false “water savings” technologies continue to be promoted, subsidized and implemented as a solution to water scarcity in agriculture.

The goal is to stop false “water savings” technologies to be promoted, subsidized and implemented. To achieve this, it is important to quantify the hydrologic impacts of any new investment or policy in the water sector. Normally, irrigation engineers and planners are trained to look at field scale efficiencies or irrigation system efficiencies at the most. Also, many of the tools used by irrigation engineers are field scale oriented (e.g. FAO AquaCrop model). The serious consequences of these actions are to worsen water scarcity, increase vulnerability to drought, and threaten food security.

There is an urgent need to develop simple and pragmatic tools that can evaluate the impact of field scale crop-water interventions at larger scales (e.g. irrigation systems and basins). Although basin scale hydrological models exist, many of these are either overly complex and unable to be used by practitioners, or not specifically designed for the upscaling from field interventions to basin scale impacts. Moreover, achieving results from the widely-used FAO models such as AquaCrop into a basin-wide impact model is time-consuming, complex and expensive. Therefore, FutureWater is developing a simple but robust tool to enhance usability and reach, transparency, transferability in data input and output. The tool is based on proven concepts of water productivity, water accounting and the appropriate water terminology, as promoted by FAO globally (FAO, 2013). Hence, the water use is separated in consumptive use, non-consumptive use, and change in storage (see Figure).

Separation of water use according to the FAO terminology.

A complete training package is developed which includes a training manual and an inventory of possible field level interventions. The training manual includes the following aspects: 1) introduce and present the real water savings tool, 2) Describe the theory underlying the tool and demonstrating some typical applications, 3) Learn how-to prepare the data required for the tool for your own area of interest, 4) Learn when real water savings occur at system and basin scale with field interventions.