Nature-based Solutions (NbS) can help ensure the long-term reliability of water resources. Research has shown they can – depending on circumstance – be more cost-effective and longer-lasting than grey infrastructure, while generating multiple co-benefits for carbon, biodiversity and human health. Despite the promise of NbS, however, water sector actors and their financiers usually prioritize investments in traditional grey infrastructure because they are more familiar with its costs, benefits and returns. Most of them are unfamiliar with how to develop and assess the value of NbS projects, though research shows they’re interested in tapping into their multi-faceted benefits.

The Financing Nature for Water Security project of The Nature Conservancy (TNC) aims to produce and disseminate guidance that enables water sector actors (government agencies, water utilities, grass-root NGOs) and their funders (donors, development banks and private investors) to invest in NbS-WS, at scale, by mobilizing sustainable funding and repayable financing. The project comprises of technical modules, guidance documents, supporting databases and training materials.

FutureWater has been contracted by TNC to support the development of one of the content modules assembled under the project. The module “Technical Options” will help the reader understand the water security challenge(s) they are confronted with and identify the types of NbS that could help address those challenges. In particular, Futurewater works on the creation of 12 technical factsheets to be included in an annex to the main documentation, with each factsheet highlighting the key technical aspects, benefits and risks, and economic dimensions of an NbS. In addition, an inventory of relevant NbS databases, platforms, and references is delivered.

Water and food security are at risk in many places in the world: now and most likely even more in the future, having large economic and humanitarian consequences. Risk managers and decision-makers, such as water management authorities and humanitarian-aid agencies/NGOs, can prevent harmful consequences more efficiently if information is available on-time on (1) the impact on the system, economy or society, and also (2) the probabilities for a failure in the system. EO information has proven to be extremely useful for (1). For looking into the future, considering the uncertainties, novel machine learning techniques are becoming available.

The proposed development is incorporated into an existing solution for providing Drought and Early Warning Systems (DEWS), called InfoSequia. InfoSequia is a modular and flexible toolbox for the operational assessment of drought patterns and drought severity. Currently, the InfoSequia toolbox provides a comprehensive picture of current drought status, based mainly on EO data, through its InfoSequia-MONITOR module. The proposed additional module, called InfoSequia-4CAST, is a major extension of current InfoSequia capabilities, responding to needs that have been assessed in several previous experiences.

InfoSequia-4CAST provides the user with timely, future outlooks of drought impacts on crop yield and water supply. These forecasts are provided on the seasonal scale, i.e. 3-6 months ahead. Seasonal outlooks are computed by a novel state-of-the-art Machine Learning technique. This technique has already been tested for applications related to crop production forecasting and agricultural drought risk financing. The FFTrees algorithm uses predictor datasets (in this case, a range of climate variability indices alongside other climatic and vegetative indices) to generate FFTs predicting a binary outcome – crop yields or water supply-demand balance above or below a given threshold (failure: yes/no).

The activity includes intensive collaboration with stakeholders in Spain, Colombia and Mozambique, in order to establish user requirements, inform system design, and achieve pilot implementation of the system in the second project year. Generic machine learning procedures for training the required FFTs will be developed, and configured for these pilot areas. An intuitive user interface is developed for disseminating the output information to the end users. In addition to development of the forecasting functionality, InfoSequia-MONITOR will be upgraded by integrating state-of-the art ESA satellite data and creating multi-sensor blended drought indices.

The Asian Development Bank is supporting the Government of Indonesia in developing its water infrastructure. Impact of climate change and potential adaptation to those changes are evaluated. One component of the project is to assess water availability for all Indonesian catchments currently and under changing climate. FutureWater has supported the program by developing a climate risk screening approach to rapidly assess current water resource availability and the impact of climate change on this.

Various rapid assessment assessments have been tested and the Turc implementation of the Budyko framework has been proven to be effective for basins in Indonesia. ERA5 past climate and NASA-NEX GDDP climate projections have been applied for all basins in Indonesia. Results show that all Indonesian basins are likely to see an increase in runoff over the coming century. However, variability in runoff will increase, with more extreme dry and wet periods. This will have implications for water management planning and climate related hazards such as more prolonged droughts and higher risks of flooding.

Morocco is a country with extremely arid areas and a complex topography. The majority of climate change related studies predict increases in temperature and generalised decreases in precipitation, however the outputs of these studies are limited in that the resolution of the climate models used is relatively low and therefore often does not pick up variation over areas of complex topography (in which much of the population live). This study therefore helps generate a higher resolution, bias corrected climate dataset. It is also important that trends in precipitation, and more importantly drought, are better understood as Morocco is highly vulnerable to water scarcity. This study therefore focuses on the impacts of climate change on extreme low precipitation, which is directly linked to water shortages and drought events. The study adds valuable new insights to climate change impact analysis in Morocco and is the first to use downscaled climate data to focus on sector wise impact. The data outputs will be located at a number of universities and government ministries in Morocco.

The Sous-Massa basin is located in central Morocco. It represents an arid area that will likely face water resources challenges into the coming decades due to the influence of climate change and socioeconomic development. Indeed, increases in temperatures and decreases in precipitation are anticipated in the Sous-Massa region, alongside more extreme intense precipitation and drought events. It is therefore important the the impacts of climate change on water availability are better constrained to target resilience measures and better prepare for potential future water scarcity.

With the results of this project, IMWI will be able to apply the Water Accounting Plus framework to the Sous-Massa basin, helping to better constrain the likely impacts of climate change on future water availability. This project therefore helps support the targeting and prioritisation of climate resilient interventions which can be taken by the government and other members of the water sector in this area of Morocco.

In 2016, FutureWater released a new dataset: HiHydroSoil v1.2, containing global maps with a spatial resolution of 1 km of soil hydraulic properties to support hydrological modeling. Since then, the maps of the HiHydroSoil v1.2 database have been used a lot in hydrological modeling throughout the world in numerous (scientific) projects. A few examples of the use of HiHydoSoil v1.2 are shown in the report.

Important input of the HiHydroSoil database is ISRICS’ SoilGrids database: a high resolution dataset with soil properties and classes on a global scale. In May 2020, ISRIC has released the latest version (v2.0) of its Soilgrids250m product. This release has made it possible for FutureWater to update its HiHydroSoil v1.2 database with newer, more precise and with a higher resolution soil data, which resulted in the development and release of HiHydroSoil v2.0.

Soil information is the basis for all environmental studies. Since local soil maps of good quality are often not available, global soil maps with a low resolution are used. Furthermore, soil maps do not include information about soil hydraulic properties, which are of importance in, for example, hydrological modeling, erosion assessment and crop yield modelling. HiHydroSoil v2.0 can fill this data gap. HiHydroSoil v2.0 includes the following data:

  • Organic Matter Content
  • Soil Texture Class
  • Saturated Hydraulic Conductivity
  • Mualem van Genuchten parameters Alfa and N
  • Saturated Water Content
  • Residual Water Content
  • Water content at pF2, pF3 and pF4.2
  • Hydrologic Soil Group (USDA)

Download HiHydroSoil v2.0

The HiHydroSoil v2.0 database can be accessed after filling the brief request form below. A download link to the full dataset will then be provided. The HiHydroSoil v2.0 dataset is organized in two folders, one containing the original data for each of the six depths, and one with the aggregated subsoil and topsoil data. All data layers are delivered in geotiff raster format.

Important! To avoid lengthy download times, the data layers originally consisting of float data type were multiplied by a factor of 10,000, and subsequently converted to integer type. It is therefore required to translate the data to the proper units by multiplying with 0.0001. These steps are also described in the readme file delivered with the data.

Decisions makers responsible for climate change adaptation investments are confronted with a huge knowledge gap. On the other hand, scientists have gained much fundamental knowledge about climate impacts, but practical use of this knowledge is very limited as applied tools as well as knowledge transition is sparse. We aim to build a web-based service from which it is possible to select a country or region on a global map, calculate the current water availability from surface water and groundwater as well as current water demands from the three sectors (agriculture, industry, domestic) and to assess from this the current water shortage as well as the looming water shortage under scenarios of climate change and socio-economic development. Based on these assessments, various technological and infrastructural adaptation measures can be evaluated to assess the investments needed to bridge the water gap.

Apart from financial consequences of choices, we also aim to add, for each strategy or sets of strategies chosen: 1) indicators for the effects on the environment and downstream water availability (including downstream regions/countries); 2) indicators of the sensitivity to upstream development of water resources. For instance, building a reservoir is useless if most of the runoff is generated in a country upstream that is planning to build a reservoir for irrigation itself; 3) indicators of the socio-economic costs/benefits of different infrastructure investment options for the region or country, which will enable decision makers to choose the most efficient (mix of) infrastructure measures; 4) provide guidance by identifying financing scheme options, giving recommendations for funding, such as possibilities of PPP (public-private partnerships) 5) possibility for automatic generation of an assessment and investment report containing the analyses performed.

The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement of water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. The overall aim is therefore to develop and bring to market a combination of products/services that on the one hand influences existing decision making and on the other hand creates a new value chain from science to consultant to end-users.

The Sierra Nevada de Santa Marta, a UNESCO-declared Biosphere Reserve, is an isolated mountain complex encompassing approximately 17,000 km², set apart from the Andes chain that runs through Colombia. The Sierra Nevada has the world’s highest coastal peak (5,775 m above sea level) just 42 kilometres from the Caribbean coast. The Sierra Nevada is the source of 36 basins, making it the major regional ‘water factory’ supplying 1.5 million inhabitants as well as vast farming areas in the surrounding plains used mainly for the cultivation of banana and oil palm. The main problems to be solved in these basins are: i) Declining availability of water for irrigation, ii) Declining availability and quality of water for human consumption, iii) Increasing salinization of ground water and soils, iv) Increasing incidence of floods.

This is a feasibility study on the adoption of more efficient irrigation techniques by oil palm farmers in the Sevilla basin (713 km²), one of the key basins in the Sierra Nevada. The general objective is to identify the local environment at basin scale, the limiting factors and suitable field interventions in oil palm areas to improve the water use. A preparation and implementation phase was developed including an initial baseline assessment of the basin on climate, water availability, drought hazard, soil characteristics, land use, and topography. The agronomy (e.g. cultivars) and current field practices (e.g. nutrient management and irrigation practices) of the oil palm areas were characterized, and the crop water requirements determined. In addition, costs and benefits associated to the implementation of efficient irrigation technologies such as fertigation and water harvesting were assessed. Potential locations, risks and opportunities for water harvesting were evaluated with the idea to store water in the wet season to be able to use the resource in an efficient way in the dry season. A range of GIS and satellite-based datasets (e.g. CHIRPS, MODIS-ET, MODIS-NDVI, HiHydroSoil) were used to evaluate the environmental conditions, and local data and information was provided by local partners Cenipalma and Solidaridad to generate a comprehensive assessment at basin and field scale. The expectation is that fertigation and water harvesting techniques can be adopted in the Sevilla basin, but also in other basins in the Sierra Nevada de Santa Marta to reduce the environmental impact of oil palm production.

The Ministry of Water and Environment in Bolivia has asked the Dutch Government for support in relation to the drought issues they face. Last week, a team consisting of team leader Otto de Keizer (Deltares) and Johannes Hunink (FutureWater) left for Bolivia. As a result of El Niño, the country is struggling with a long and extreme drought period, which in November 2016 led to an acute water shortage in the capital La Paz and other areas of the country.

The Dutch government together with the Dutch water sector founded the Dutch Risk Reduction Team (DRR-Team). With the DRR instrument the Netherlands is able to cover the entire disaster management cycle from mitigation, preparedness and response to recovery.

To address the drought problem in Bolivia, the DRR-Team has been asked to provide recommendations on drought early warning and drought information systems, both on technical aspects as well as on institutional issues. The team has held talks with the Ministry of Environment and Water, the La Paz and Potosí drinking water companies, and the municipality of La Paz. In addition, they also consulted with SENAMHI: the National Hydrometeorological Institute. The DRR-Team drew up with a team of experts of the World Bank that supports Bolivia with several necessary investments to reduce vulnerability to drought.

Cambodia is currently improving in economic standing, however the benefits of this are largely contained to urban areas. As a major contributor to GDP, ensuring the sustainability of Cambodia’s agricultural sector is highly important, especially when coupled with the increasing awareness of the dangers of climate change. Access to water for agriculture, fisheries and domestic supply is an issue, with many rural communities competing for resources. Coupled with the effects of flood and drought activity in recent years, the need for adequate and reliable water resource management in rural, agricultural areas is prominent. This project focuses on the North- Western Cambodian provinces of Oddar Meanchey (OMC) and Banteay Meanchey (BMC) and the neighbouring North-Eastern Thai provinces of Surin and Sisaket.

In order to protect rural livelihoods and maintain agricultural production, communities must be supplied with permanent and regulated water year-round. Analysis of recent flood and drought histories and their effects in the provinces are first necessary to determine the most vulnerable areas both in terms of agriculture and households. In addition, water resource assessments of supplies and demand will identify the most crucial areas to ensure supplies are increased and sustained both for crops and domestic use. Socio-economic studies will also ensure ‘cross- cutting’ issues are considered in WR planning, such as: gender, economic vulnerability and cultural factors related to WRM. Furthermore, meetings with stakeholders at multiple levels can address issues in water infrastructure, alongside assessment of the capacities of those managing monitoring systems for example. From this, future recommendations for improvements in infrastructure can be made with an awareness of the necessary knowledge capacities to ensure proper maintenance and sustainability.

Initially, an analysis of the current water resource situation in the study area will be conducted through collection of available data on water resources, flood and drought histories and socioeconomic issues in the area. Following this, areas for more detailed analysis will be established and strategies to improve WRM supporting agricultural livelihoods can be developed. FutureWater is involved in the implementation of the WEAP model, for evaluation of various water resources management strategies in the catchments under baseline and projected future conditions.