Currently, farmers rely on weather forecasts and advisories that are either general for a given, often wide, region of interest, or highly customized to the farmers’ needs (e.g. by combining large scale atmospheric variables into synthetic parameters of interest). In both cases, such forecasts and advisories often don’t rely at all on observations collected at or around the target cultivated areas, or they are limited to traditional observations provided only by weather stations, without exploiting the full extent of measurements and observations available through European space-based assets (e.g. Galileo GNSS, Copernicus Sentinels) and ground-based radar data.

MAGDA objectives go beyond the state-of-the-art by aiming at developing a modular system that can be deployed by owners of large farms directly at their premises, continuously feeding observations to dedicated and tailored weather forecast and hydrological models, with results displayed by a dashboard and/or within a Farm Management System.

FutureWater is leading the irrigation advisory service of MAGDA, making use of hydrological modelling using SPHY (Spatial Processes in Hydrology). The output expected consists of an operational irrigation service to provide advice on when and how much to irrigate at certain moments during the cropping season, using as input data improved weather forecasts.

During this task, the SPHY water balance model will be setup for three selected demonstrator farms in Romania, France and Italy. Finally, the irrigation advisory will be validated using performance indicators (e.g., water productivity, crop yield analysis, water use efficiency) using ground truth data (e.g., weather stations, moisture probes, crop biomass measurements)

Water resources around the globe are under increasing stress. Among other factors, climate change, rising food and energy demand, and improving living standards have led to a six-fold increase in global water withdrawals over the last century, with significant consequences for water quality and availability, ecosystem health, biodiversity, as well as social stability.

By advancing and linking water system models with models from sectors such as agriculture and energy, biodiversity, or sediment transport, the SOS-Water Project aims to lay the foundations for a holistic assessment framework of water resources across spatial scales. Based on five case studies of river basins in Europe and Vietnam – the Jucar River Basin in Spain, the Upper Danube region, the Danube and Rhine River deltas, and the Mekong River Basin – an interdisciplinary team of researchers from ten institutions across eight countries will develop a multidimensional SOS for water. The framework will enable the assessment of feedback loops and trade-offs between different dimensions of the water system and help address pressing global, regional, and local challenges.

In addition to going beyond state-of-the-art water systems modeling, the project will develop a comprehensive set of indicators to assess and monitor the environmental, social, and economic performance of water systems. The participating researchers will collaborate with regional and local authorities, water user representatives, non-governmental organizations, and citizens to co-create future scenarios and water management pathways. By streamlining water planning at different levels, it can be ensured that water allocation among societies, economies, and ecosystems will be economically efficient, socially fair, and resilient to shocks.

In partnership with project lead IIASA and partners such as Utrecht University and EAWAG, FutureWater is responsible for several tasks under the work package that looks to improve upon existing Earth Observation technologies for monitoring the performance of water systems. New applications will be developed and tested in the context of the SOS-Water case study basins of the Mekong and Jucar rivers.

Uzbekistan is highly sensitive to climate change which will cause changes in the water flows and distribution: water availability, use, reuse and return flows will be altered in many ways due to upstream changes in the high mountain regions, but also changes in water demand and use across the river basin. The resulting changes in intra-annual and seasonal variability will affect water security of Uzbekistan. Besides, climate change will increase extreme events which pose a risk to existing water resources infrastructure. An integrated climate adaptation approach is required to make the water resources system and the water users, including the environment, climate resilient.

This project will support the Ministry of Water Resources (MWR) of Uzbekistan in identifying key priorities for climate adaptation in the Amu Darya river basin and support the identification of investment areas within Amu Darya river basin. The work will be based on a basin-wide climate change risk assessment as well as on the government priorities with an explicit focus on reducing systemic vulnerability to climate change.

The project will undertake:

  • Climate change risk analysis and mapping on key water-related sectors, impacts on rural livelihoods, and critical water infrastructures.
  • Climate change adaptation strategic planning and identify barriers in scaling up adaptation measures at multiple scales with stakeholder consultation and capacity building approach.
  • Identification of priority measures and portfolios for integration into subproject development as well as for future adaptation investment in the Amu Darya river basin. The identification will cover shortlisting of potential investments, screening of economic feasibility, and potential funding opportunities.

FutureWater leads this assignment and develops the climate risk hotspot analysis, and coordinates the contribution of international and national experts, as well as the stakeholder consultation process.

Agriculture is the most water demanding and consuming sector, globally responsible for most of the human induced water withdrawals. This abstraction of water is a critical input for agricultural production and plays an important role in food security as irrigated agriculture represents about 20 percent of the total cultivated land while contributing by 40 percent of the total food produced worldwide.

The FAO Regional Office for Asia and the Pacific (FAO-RAP) is concerned about this increase in water use over the last decades that has led to water scarcity in many countries. This trend will continue as the gap between water demand and supply is projected to widen due to factors such as population growth and economic development, and environmental factors such as land degradation and climate change.

Unfortunately, solutions to overcome the current and future water crisis by looking at the agricultural sector are not simple and have often led to unrealistic expectations. Misconceptions and overly simplistic (and often erroneous) views have been flagged and described over the last recent decades. However, uptake of those new insights by decision makers and the irrigation sector itself has been limited.

The “Follow the Water” project will develop a Guidance Document that summarizes those aspects and, more importantly, quantifies the return flows that occurs in irrigated systems. Those return flows are collected from a wide range of experiments and are collected in a database to be used as reference for new and/or rehabilitation irrigation projects.

The FAO/FutureWater project will also develop a simple-to-use tool to track water in irrigated systems using so-called “virtual tracers”. The tool will respond to the demand for a better understanding the role of reuse of water in irrigated agriculture systems. An extensive training package, based on the Guidance and the Tool, is developed as well.

FAO plays an essential role in backstopping the development of the Guidance and the Tool and promoting. FutureWater takes the lead in development of the Guidance, the Tool and the training package. With this, FAO and FutureWater will contribute to a sustainable future of our water resources.

Pakistan is ranked as the 8th most climate vulnerable country in the world as per the Global Climate Risk Index (2019) and in recent years has been facing the worst brunt of climate change. Irregular and intense precipitation, heatwaves, droughts, and floods have severely impacted the agriculture and water sector. Approximately, 90% of the country’s freshwater resources are utilized by the agricultural sector. However, lack of information services makes it a challenge to implement a water accounting system for improved water resources management.

The GCF funded project titled “Transforming the Indus Basin with Climate Resilient Agriculture and Water Management” aims to shift agriculture and water management to a new paradigm in which processes are effectively adapting to climate change and are able to sustain livelihoods. FAO Pakistan, as per the request of the Ministry of Climate Change, has designed the project to develop the country’s capacity to enhance the resilience of the agricultural and water sector. There are three major components:

1. Enhancing information services for climate change adaptation in the water and agriculture sectors
2. Building on-farm resilience to climate change
3. Creating an enabling environment for continued transformation

FutureWater will be actively involved in Component 1 which focuses on facilitating the development of a water accounting system and improving the availability and use of information services. Given the limited data availability in the region, FutureWater will integrate the use of remote sensing technologies within the existing Water Accounting methodology to address this gap. A capacity and needs assessment will be conducted and a series of tailor-made trainings will be designed subsequently to enable key government stakeholders to use open-source geospatial analysis tools as well as models to estimate real water savings, particularly in the context of agriculture. The trainings will help build the country’s capacity to implement water accounting at different spatiotemporal scales and cope with the worsening impacts of climate change.

The Mediterranean Region is facing growing challenges to ensure food and water supply as countries experience increasing demand and decreasing availability of natural resources. The nexus approach aims at managing and leveraging synergies across sectors with an efficient and integrated management of the Water, Energy, Food, and Ecosystems Nexus (WEFE).

BONEX objectives are to provide practical and adapted tools, examine concrete and context-adapted technological innovations, enhance policies and governance and facilitate WEFE Nexus practical implementation that balances the social, economic, and ecological trade-offs.

The project aims at producing a novel, transdisciplinary, diagnostic WEFE Bridging Framework, which combines methods in a context-specific manner and going beyond disciplinary silos. The diagnostic tools supporting the framework will be developed and tested in seven selected demonstration projects in the region which pilot innovative technologies (agrivoltaics, wastewater reuse systems, etc.).

As a result, BONEX will provide policymakers and practitioners with an interactive decision-making tool to evaluate trade-offs, synergies, and nexus solutions approaches in a transdisciplinary manner. Further, it will produce valuable experiences with tailoring innovative WEFE Nexus technologies that provides new business opportunities. The WEFE nexus approach is required to implement sustainable agri-food systems and preserve ecosystems.

Within BONEX FutureWater will actively contribute to the package of diagnostic tools. A simple water accounting tool (REWAS) will be used to evaluate if ‘Real Water Savings’ are achieved with innovative technologies. The water accounting tool evaluates water flows at field level and irrigation district scale and determines if any ‘real savings’ are achieved. The tool also incorporates the aspects of food production (crop yield) and will introduce components for evaluating energy and water quality aspects to complement the WEFE Nexus aspects. The seven demonstration projects will be used to demonstrate and iteratively develop this water accounting tool. A hydrological analysis is performed in selected locations to also evaluate the impact at basin (watershed) scale. Eventually the results from these analyses will be translated into policy implications and achievements of SDG’s (sustainable development goals).

This project is part of the PRIMA programme supported by the European Union.

Agriculture is a key sector of the Rwandan economy; it contributes approximately 33% to the gross domestic product and employs more than 70% of the entire labour force. Although some farmers are already using water-efficient irrigation infrastructure, too much of the available water is still lost due to unsustainable use of existing irrigation systems, and/or maximum crop yields are not achieved due to under-irrigation.

Hence, small to medium-sized food producers in Rwanda do not have sufficient access to information regarding optimal irrigation practices. To close this information gap, FutureWater has devised an innovation that can calculate a location-specific irrigation advice based on Virtual Weather Stations, expressed in an irrigation duration (“SOSIA”). The use of the outdated CROPWAT 8.0 method, and the lack of good coverage of real-time weather stations in Rwanda, means that current advice falls short. In addition, existing advisory services are often too expensive for the scale on which small to medium-sized farmers produce. There is a potential to increase the productivity of the irrigation water by up to 25%. Initially, the innovation will be disseminated via the Holland Greentech network, with a pilot in Rwanda consisting of 40 customers. Aside from further refining the SOSIA tool, upscaling strategies will be explored in this second phase to identify other intermediaries that could benefit from the SOSIA service so to realize its optimal impact.

FutureWater has found with Holland Greentech an ideal partner to roll-out this innovation due to their presence in and outside of Rwanda, where they provide irrigation kits and advice. This offers the opportunity to quickly scale-up the proposed innovation. With their expertise in agro-hydrological modeling and the African agricultural sector, FutureWater and Holland Greentech respectively have acquired ample experience to make this innovation project and its knowledge development to a success.

The tools can be accessed through online URLs for the Virtual Weather Stations and for the Irrigation Advisory Tool.

UNCCD is the sole legally binding international agreement linking environment and development to sustainable land management. As some of the most vulnerable ecosystems and peoples can be found in arid, semi-arid and dry sub-humid areas, UNCCD especially addresses these drylands. Productive capacities in drylands are threatened by megatrends such as climate change and land degradation, where changing precipitation and temperature potentially exacerbate processes of degradation and where degraded lands make productive systems more vulnerable to impacts of climate change.

UNCCD therefore aims to support the reorientation of productive capacities towards sustainable and resilient patterns, in order to reverse the impact of land degradation and mitigate climate change impact. To this end, UNCCD is interested in the identification of regions and crops at a particularly high risk of land degradation and climate change impact. The outcomes of this activity should support informing of national governments of risk profiles of their main cash crops and, subsequently, support identification of alternatives for value chains that are projected to become insufficiently productive in the future.

Subsequent work will link towards opportunities around other megatrends such as population changes, consumption patterns, energy and shifting geopolitical patterns present in the identification of new value chains.

The NARC (National Agricultural Research Centre) is the governmental agricultural research institution at the national level in Jordan, and is the national umbrella for the applied scientific research and agricultural consultation.

Training courses, conferences, and specialized workshops are organized by NARC at their research centers throughout the country. This extension service can be improved with information on spatial data and near-real time observations, as can be generated through remote sensing technology. In particular, flying sensor (drone) technology provides added value to agricultural extension services. Flying sensor technology has observed a growing interest and demand in the agricultural sector of Jordan. To meet these training needs, IHE Delft is collaborating with FutureWater and HiView in providing this TMAT (tailor-made training).

The overarching objective of this TMAT program is to provide participants with practical knowledge on flying sensors and its relevance for the agricultural sector. The modules and topics are structured as follows:

  • Module 1: Basic Understanding of Flying Sensors (background, technology, and setting up drone units).
  • Module 2: Imagery Processing (with ICE, Metashape, and ODM software).
  • Module 3: Crop monitoring
  • Module 4: Advisory services and data dissemination.

The practice of using remote sensing imagery is becoming more widespread. However, the suitability of satellite or flying sensor imagery needs to be evaluated by location. Satellite imagery is available at different price ranges and is fixed in terms of spatial and temporal resolution.

TerraFirma, an organization in Mozambique with the task to map and document land rights, hired FutureWater, HiView and ThirdEye Limitada (Chimoio, Mozambique) to acquire flying sensor imagery over a pilot area near Quelimane, Mozambique. The objective of this pilot project is to determine the suitability of using flying sensor imagery for cadastre mapping in an area of small-scale agriculture in Mozambique.

Flying sensor imagery is adaptable and can be deployed at any requested time. The suitability of these remote sensing approaches is piloted in this study for a small-scale agricultural area in Mozambique. A pilot area is used as case study with flights made during a period of a few days in December 2020, by local flying sensor (drone) operators in Mozambique (ThirdEye Limitada).

The flying sensor imagery was acquired over the period of a few days in December 2020, for a total area of 1,120 hectares. This imagery was used as input for various algorithms that can be suitable for classification and segmentation, namely R packages (kmeans, canny edges, superpixels, contours), QGIS GRASS segmentation package, and ilastik software. This study shows some initial results of using flying sensor imagery in combination with these algorithms. In addition, comparison is made with high resolution satellite imagery (commercial and publicly available) to indicate the differences in processing and results.

With the conclusions from this pilot project, next steps can be made in using flying sensor imagery or high resolution satellite imagery for small-scale agriculture in Mozambique. The time and effort needed for the delineation of field boundaries can be largely reduced by using remote sensing imagery and algorithms for automatic classification and segmentation.