The detection of on-site farm reservoirs and ponds in large areas is a complex task that can be addressed through the combination of visual inspection of orthophotos and the application of automatic pixel classification algorithms.
This analysis applied a general workflow to detect and quantify the area and density of on-farm reservoirs and water bodies in three representative Mediterranean irrigated oases in Sicily-Italy, Northern of Morocco, and Israel. For each area of analysis, the most recent orthophotos available were collected from Google Earth, and the ilastik algorithms were implemented for the pixel classification (Random Forest -RF-) and semantic-segmentation. The RF classifier, which is previously applied to a set of filtered imagery and iteratively trained, provides probability maps of different classes that are finally used for quantitative analysis, or the retrieval of a segmentation-categorical (water vs non-water) maps.
The Middle East and North Africa (MENA) region is considered the most water-scarce region of the world. Disputes over water lead to tension within communities, and unreliable water services are prompting people to migrate in search of better opportunities. Water investments absorb large amounts of public funds, which could often be used more efficiently elsewhere. As the region’s population continues to grow, per capita water availability is set to fall by 50 percent by 2050, and, if climate change affects weather and precipitation patterns as predicted, the MENA region may see more frequent and severe droughts and floods
The need for alternative and improved water management options is therefore urgently needed, but a clear overview on what the main focus should be is lacking. A broad range of options exists which can be grouped by different approaches such as reducing the demand, increasing the supply, transfer between different sectors, transfer within different sectors, increase storage etc. An important aspect for the MENA region includes desalination.
To explore different options the World Bank initiated an initiative to generate an improved understanding of water issues in the region and overview of available options under different scenarios of water supply and demand management with special focus on desalination, taking into account the energy nexus and environmental concerns. As part of this initiative, FutureWater will carry out an assessment of water stress in the MENA region, including associated marginal cost of water supply to meet the water supply need. Conducting consultation workshops and meetings will be organized with relevant parties in the region (governmental, universities, civil society groups).