Warming of the climate system is unequivocal. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased. The Himalayan region (after Antarctica and the Arctic) has the third largest amount of ice and snow in the world, and is exceptionally vulnerable. The various Global Climate Models (GCM) predict very similar future temperature trends for the region, but projections of future precipitation patterns differ widely. As a consequence, the need for increased knowledge about future climate change remains high. The main focus of GCMs thus far was on temperature increases and potential changes to the hydrological cycle. The overall tendency that has emerged is that wetter regions are likely to become wetter and drier regions drier. Increased scientific knowledge, coupled with recent weather events, show that changes in hydrological extreme events can be substantial and the geographical and temporal resolution of predicted changes remains low in many areas.

For Statkraft, as the largest generator of renewable energy in Europe and a leading company in hydropower internationally, an understanding of future changes to the hydrological cycle and its uncertainty is crucial for effective business planning. Investment decisions regarding the business strategy for the next 50 years depend on accurate predictions of climate change impacts on inflow over that period.  In addition, changing probabilities and magnitudes of extreme events can put additional risk on infrastructure (dams and hydropower plants) or on other crucial infrastructure (roads and transmission lines).  Statkraft’s intention to grow in the region makes it necessary to assess short, medium and long-term impacts, risks and opportunities resulting from climate change, to ensure sustainable management of the water resources for all stakeholders. Currently, Statkraft’s main business focus lies with northern India (mainly the state of Himachal Pradesh) and Nepal, while Bhutan and Myanmar might be areas of future business development as well.

Kaligandaki Hydro power located in Nepal.

Through the International Centre for Integrated Mountain Development (ICIMOD), the inter-governmental learning and knowledge sharing Centre serving the eight regional member countries of the Hindu Kush Himalayas (HKH), FutureWater provided a comprehensive review study on climate change and the impacts on cryosphere, hydrological regimes and glacier lakes in the Indus, Ganges, and Brahmaputra river basins. This review study was done in the context of future hydropower development in the region.

ICIMOD is the implementing agency for the Himalayan Climate Change Adaptation Programme (HICAP) that runs from January 2011 to December 2015. HICAP addresses climate change adaptation challenges across different related disciplines such as water resources, ecosystem services, food security, vulnerability and gender. Part of the project is related to the generation of water availability scenarios from upstream river basins that are primarily characterized by snow and glacial melt. ICIMOD has contracted FutureWater to generate these scenarios based on a high resolution hydrological model that FutureWater has developed. The project runs from January 2012 until June 2013. FutureWater will generate climate change and water availability scenarios for the upstream parts of the Indus, Ganges and Brahmaputra river basins.

With the overall goal to improve our knowledgebase on climate change impact on water availability and demand in the upper parts of the Indus, Ganges and Brahmaputra basins, the specific objectives of the proposed study are to:

  • Assess climate change scenarios and develop water availability scenarios corresponding to base and future climate scenarios at sub-basin and catchment scales in the three basins
  • Improve our understanding of the partitioning of runoff contribution from different natural sources (snow, glacier, rainfall and base flow)
  • Detailed analysis of uncertainty of water availability scenarios and assessment of hydropower potential for five pilot catchments