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Summary 

High Mountain Asia (HMA) contains the world’s largest ice and snow reserves outside the polar regions. 

It serves as a crucial source of water for Asia’s major river systems, which sustain the livelihoods of more 

than a billion people, a rapidly increasing population. As the global climate warms, glaciers and snow 

cover are changing rapidly, affecting water availability throughout the year and changing the risks of 

floods and droughts. Due to the topography, multiple climate zones, large elevation differences, and the 

presence of snow and glaciers, river discharge in the HMA region originates from a combination of 

glaciers, snowmelt, rainfall, and groundwater. This creates complex hydrological regimes that are difficult 

to model.  

 

Glacio-hydrological models (GHM) are important for water management as they help in understanding 

and predicting the complex interactions between glaciers, snowmelt, and surface and groundwater in 

mountainous regions. These models are critical in regions such as the Himalayas, where a considerable 

proportion of the population depends on water supplied by snowmelt and glacier melt. GHMs can provide 

valuable information to water managers and policymakers to make informed decisions regarding water 

allocation, infrastructure development, and environmental regulations. These models also help assess 

the impact of climate change on the water cycle. This is especially important in mountainous regions, 

where the effects of global warming are often more severe than in other regions. 

 

This report offers practical, step-by-step guidelines for setting up and applying the glacio-hydrological 

model SPHY (Spatial Processes in Hydrology) in the HMA region. This document covers model 

configuration, data requirements, calibration approaches, and applications for assessing the impacts of 

climate change on water resources. It also explains how GHM outputs can be integrated into water 

allocation planning frameworks to promote sustainable water management. This manual was created to 

support researchers, practitioners, and policymakers working on water resource management and 

climate adaptation in high-mountain regions.  
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1 About these guidelines 

 Background 

High Mountain Asia (HMA) contains the world's largest ice and snow reserves outside the polar regions 

and serves as an important source of water for the major river systems in Asia, providing water for a 

population of more than a billion people, which is increasing rapidly (Immerzeel, 2010; Immerzeel et al., 

2020; Kraaijenbrink et al., 2021; Stocker et al., 2013). As the global climate warms, glaciers and snow 

cover are changing rapidly, impacting water availability throughout the year and altering the risks of 

flooding and droughts. Owing to the region's topography, multiple climate zones, significant elevation 

differences, and the presence of snow and glaciers, river discharge in the HMA region is a result of a 

combination of glacier melt, snowmelt, rainfall, and groundwater. This creates complex hydrological 

regimes that are difficult to model. HMA encompasses a vast region that includes the Hindu Kush, 

Karakoram, and Himalayan Mountain ranges.  

 

To address these challenges, glacio-hydrological models (GHMs) have become essential tools for 

understanding and predicting the intricate interactions between glaciers, snowmelt, and surface and 

groundwater in mountainous regions. These models are particularly important in regions such as the 

Himalayas, where a significant proportion of the population depends on water supplied by snowmelt and 

glacier melt. GHMs can provide valuable information to water managers and policymakers to make 

informed decisions regarding water allocation, infrastructure development, and environmental regulation. 

These models also help in assessing the impact of climate change on the water cycle. This is especially 

important in mountainous regions, where the effects of global warming are often more severe than in 

other regions. 

 

This guidelines report was prepared as part of the project Development of a Glacio-Hydrological Model 

and Integrated Water Resources Management Plan for the Uttarakhand Subbasin, commissioned by the 

Swiss Agency for Development and Cooperation (SDC) under the Strengthening Climate Change 

Adaptation in Himalayas (SCA-Himalayas) Program. The project was implemented between 2021 and 

2023 by a consortium comprising FutureWater, Utrecht University, the University of Geneva, and the 

Energy and Resources Institute (TERI) in India. This report was the final deliverable for this project. The 

guideline uses a study performed in the Bhagirathi Basin in northern India (see Section 4.7) as a case 

study for setting up a GHM (Present-day and future changes in the hydrology of the Bhagirathi Basin 

(Khanal et al., 2022)). 

 

 Scope 

This guideline report is designed to assist researchers, practitioners, and policymakers engaged in water 

resource planning, climate impact analysis, and catchment management within the glaciated and snow-

fed basins of HMA. It provides practical, step-by-step instructions for setting up and utilizing the Spatial 

Processes in Hydrology (SPHY) model in the HMA region. The report covers the sourcing and 

preparation of model input data, calibration of essential processes such as snow and glacier melt, climate 

impact assessments, and integration of hydrological simulations with water allocation models. 
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 Reading guide 

The document is structured to be both a reference and practical manual. 

• Chapter 2 introduces glacio-hydrological modelling concepts, types of GHMs, key processes, and 

the challenges associated with setting up GHMs. 

• Chapter 3 provides information on the modelling of key glacio-hydrological processes and their 

overall implementation within the SPHY model.  

• Chapter 4 offers guidance on retrieving model input data and setting up and calibrating a SPHY 

model. 

• Chapter 5 describes the assessment of climate change impacts and provides information on 

sourcing and processing climate projections. 

 

Readers can follow the chapters sequentially or consult specific sections as needed for project-specific 

tasks. 
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2 Introduction to glacio-hydrological modelling  

 Introduction to glacio-hydrological modelling 

A model is a simplified replica of a real system in which knowledge of the system is condensed into 

mathematical equations (Beven, 2012). Hydro-meteorological processes are often complicated to model 

because of limited information on catchment characteristics, system states, boundary conditions, 

governing equations, and underlying heterogeneity (Beven, 2012; Blöschl and Sivapalan, 1995). 

Hydrological models (HMs) represent intricate relationships between input and output signals, through 

intermediate fluxes and states, satisfying mass, energy, and momentum balances. Hydrological fluxes 

and storage, such as evaporation, groundwater, soil moisture, snow, and riverine storage, are often 

associated with memory and dependence at various spatiotemporal scales, and these complex 

interactions are represented by HMs.  

 

A Glacio-hydrological model (GHM) typically integrates data and processes related to glaciology, 

hydrology, meteorology, and other relevant disciplines to simulate the behavior of glaciers and their 

influence on the hydrological cycle. A GHM falls under the broad category of HMs and mainly focuses 

on snow and glacier processes and their influence on the overall hydrological cycle. Thus, HMs and 

GHMs are used interchangeably in the hydrological modelling community.  

 

GHMs can simulate various processes such as snow accumulation and ablation, ice melt, glacier 

movement, and runoff generation. GHMs are valuable tools for studying glacier dynamics and 

hydrological processes in glacierized regions and for assessing the impact of climate change on water 

resources. GHMs are often used by glaciologists, hydrologists, climatologists, and other scientists to 

improve our understanding of glacier behavior and its influence on hydrological systems, which can have 

significant implications for water management, ecosystem dynamics, and human livelihoods in 

glacierized regions.  

 

A well-configured and calibrated GHM model serves as a robust and reliable tool for estimating the 

magnitude and frequency of extreme hydro-meteorological events for both current and future climates. 

It can also be used to assess climate adaptation options by integrating potential interventions in the 

model set-up, serving as a “digital twin” a tool to evaluate how decisions play out in a possible future. 

The propagation of uncertainty in magnitude, spatial extent, and time from climate and non-climate 

drivers to hydrological response and impact can also be estimated well with GHMs. 

 Types of GHMs 

HMs and GHMs can be defined in terms of processes and spatial complexity across model elements 

(Clark et al., 2017; Hrachowitz and Clark, 2017). HMs can be categorized into two broad categories: 

conceptual and physically based models. A conceptual HM is based on the understanding of processes, 

their interactions, and overall system behavior (Arnold et al., 1998; Bergström, 1992; Martinec and 

Rango, 1986). These HMs (and GHMs) require calibration and validation to comply with the purpose of 

use, and if the model does not meet its objective, it should be revised and amended. Thus, conceptual 

GHMs represent a top-down approach in which the uncertainty of the processes in a catchment is defined 

a priori.  

 

On the other hand, physically based GHMs are based on a bottom-up approach, which assumes that 

the overall performance is the result of a combination of all small-scale processes, where each of these 

processes is defined based on physical laws and equations (Ragettli and Pellicciotti, 2012; Schulla, 

2017). Physically based HMs incorporate the space-time variability of precipitation, radiation, and 

variation in physiographic characteristics, and resolve spatial heterogeneity issues (Fatichi et al., 2016).  
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GHMs can also be categorized based on their ability to model processes at different spatial scales, that 

is, lumped and distributed (also semi-distributed). Lumped HMs consider the entire system (or 

catchment) as a single entity. In contrast, distributed HMs are lumped models applied at the grid scale 

and account for distributed forcing and catchment characteristics (Kampf and Burges, 2007). Distributed 

HMs provide a better understanding of the spatial variability in system behavior and thus provide 

additional information on the spatiotemporal processes of the system (Reed et al., 2004; Smith et al., 

2004b). Based on data availability, the parameters in distributed HMs (and GHMs) can vary spatially 

(Beven, 2001). The lack of spatial observations limits the application of distributed HMs (Grayson et al., 

2002). Often, physically based distributed HMs have many parameters and are associated with higher 

computational times and costs (Koch et al., 2016).  

 

 Key processes for glacio-hydrological modelling 

The cryosphere (the portion of the Earth’s surface where water exists in a solid form as snow, ice, lakes, 

glaciers, and permafrost) plays a key role in the global water cycle and affects water availability, weather, 

energy, and agriculture (Hock et al., 2017; Huggel et al., 2015). Each of these components is associated 

with a different response and spatiotemporal scale. A change in the state of these variables affects the 

overall water cycle differently (both in space and time) and thus requires a proper understanding of the 

process and its current and future states. The following are the key processes relevant to the HMA 

region. 

 Melt modelling  

Melt estimation, from snow-covered or glaciated areas, is a key element in the assessment of river runoff, 

flood risk, water resources and cryosphere-related changes associated with climate change in high 

mountains (Hock, 2003). A robust river runoff simulation, in a mountainous environment such as HMA, 

requires proper representation of snow and ice melting processes in GHMs (Pellicciotti et al., 2012). The 

degree-day approach (also known as the temperature index model), which is based on the empirical 

assumption between near-surface air temperature and melt rates, is commonly used in HMs to simulate 

snow and ice (Braithwaite and Zhang, 2000; Hock, 2003). This approach has been widely used because 

of its simplicity and parsimony in terms of data requirements (Pellicciotti et al., 2005). However, this 

method is sensitive to the time integration process of daily mean temperatures (use of different periods 

and time frames used to calculate the average) and is unable to capture diurnal changes. For instance, 

the daily mean temperature could be zero or negative, indicating no melt, but the melt conditions may 

fluctuate throughout the day (Tobin et al., 2013). GHMs generally assume a constant degree-day factor 

over the entire spatial modelling domain. Spatiotemporal variability, due to changes in seasons, 

topographic characteristics (slope, aspect and shading), albedo changes, and atmospheric conditions 

should be considered while calculating the melt rates (Hock, 2003). The other approach to calculating 

melt requires the estimation of all relevant fluxes based on physical equations, which often require 

numerous input data at fine spatial and temporal scales (Cazorzi and Dalla Fontana, 1996; Che et al., 

2019; Hock, 2005; Hock and Holmgren, 2005). Energy balance models can resolve the complex 

interactions between the fluxes and internal states that cannot be resolved by temperature index models 

(Cazorzi and Dalla Fontana, 1996; Hock, 2005).  

 

However, the implementation of an energy balance scheme in GHMs is a cumbersome and 

computationally expensive task. Moreover, many variables in energy balance models are still abstract, 

far from being easy to identify from measurements, and indirectly estimated, thus increasing the 

uncertainty in the results (Essery et al., 2013; Günther et al., 2019; Hock, 2005). 
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 Snow sublimation 

Snow sublimation is an important component of the water cycle in the high-altitude HMA region and thus 

requires proper representation in GHMs (Lv and Pomeroy, 2020; Sexstone et al., 2018; Stigter et al., 

2018; Strasser et al., 2008). Studies have reported that snow sublimation in mountainous areas is highly 

variable, ranging from 10% to 90% of winter snowfall (Groot Zwaaftink et al., 2011; Lv and Pomeroy, 

2020; MacDonald et al., 2010; Montesi et al., 2004; Pomeroy and Gray, 1995; Reba et al., 2012; 

Sexstone et al., 2016, 2018; Stigter et al., 2018; Strasser et al., 2008). Snow sublimation is a local-scale 

process that depends on the available energy for the turbulent flux, vapor pressure gradient between the 

snow and the atmosphere, wind speed, and solar exposure (MacDonald et al., 2010; Sexstone et al., 

2018). The direct measurement of sublimation is a difficult task and only provides an estimate at a point 

scale (Bowling et al., 2004). Sublimation of snow is categorized into surface sublimation (representing 

water vapor fluxes between the atmosphere and the snowpack surface), canopy sublimation 

(representing intercepted snow held within the forest canopy), and blowing sublimation (representing 

snow that is transported by wind) (Groot Zwaaftink et al., 2011; Sexstone et al., 2018; Strasser et al., 

2008). The degree-day approach, often used by GHMs, is representative only when surface melt is the 

only dominant ablation component as ablation represents the ensemble of the processes such as melt, 

evaporation, wind and gravity-driven transport and sublimation (Litt et al., 2019; Mott et al., 2018; 

Saloranta et al., 2019; Stigter et al., 2018; Wagnon et al., 2013). The empirical relationship between 

sublimation and meteorological variables is generally used to scale sublimation processes from the point 

level to the catchment scale (Stigter et al., 2018). However, these empirical relationships are often 

region-specific and thus require a more sophisticated energy balance approach (Clark et al., 2015a; 

Knowles et al., 2012). The lack of data (e.g., albedo decay time scale and aerodynamic roughness 

length) and the difficulty in measuring parameters, hinder the implementation of energy balance schemes 

and models in HMs (Bowling et al., 2004; Günther et al., 2019). 

 Permafrost 

Permafrost constitutes any type of ground (soil, sediment, or rock that extends vertically from a few feet 

to a few miles beneath the ground) that has been frozen (< 0 °C) continuously for a minimum of two 

years (Dobinski, 2011). A quarter of the Northern Hemisphere and 17% of the Earth's land surface 

(exposed) are covered by permafrost (Biskaborn et al., 2019). Hydrological processes, such as quick 

surface runoff, movement of water in soil layers, and storage and exchange of surface and subsurface 

water, are affected by the low hydraulic conductivity of permafrost (Dobinski, 2011; McNamara et al., 

1998; Woo and Winter, 1993). The increasing warming rates, which are significantly higher in polar and 

high-elevation regions than the global average, impact permafrost and associated hydrological 

processes (Lafrenière and Lamoureux, 2019; Pepin et al., 2015; Quinton and Baltzer, 2013). Degradation 

in permafrost (or thawing), either from climate or human-induced changes, can change surface drainage 

patterns by generating ponding and inducing soil skin flow and gully effects (Lafrenière and Lamoureux, 

2019; Walvoord and Kurylyk, 2016). Understanding hydrologic changes and permafrost-carbon feedback 

mechanisms in response to permafrost degradation and climate change is critical for ecosystems 

(Lawrence et al., 2015; Schuur et al., 2015; Walvoord and Kurylyk, 2016). Permafrost processes are 

associated with diurnal changes, microclimates, physiographic characteristics, and spatial heterogeneity 

(Gao et al., 2021). Permafrost processes are difficult to implement in GHMs because they require 

sophisticated energy balance and phase transformation schemes (Walvoord and Kurylyk, 2016). 

Although some models include permafrost processes, the uncertainty in representing permafrost 

dynamics remains high because of the complex local conditions and limited observational data. 

 

 Evapotranspiration 

Evapotranspiration is an important component of the water and energy balance. It affects weather and 

climate through its influence on boundary layer and thermal dynamics (Clark et al., 2015b). Globally, only 
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30-35% of the total inland precipitation ends up in rivers (or river systems), and the remainder evaporates 

(Rodell et al., 2015). Evapotranspiration, which constitutes surface evaporation, transpiration, 

evaporation from interception, and open-water evaporation, strongly influences hydrological conditions 

(Savenije, 2004). Evapotranspiration is not only affected by meteorological conditions (radiation, wind 

speed, atmospheric humidity and air temperature), but also depends on hydrological (soil moisture 

availability) and biological factors (such as type and growing stage of vegetation). Most HMs and GHMs 

use potential evapotranspiration (or actual evapotranspiration if available) to calculate the water balance 

(Zhao et al., 2013). Spatially distributed HMs and GHMs often require evapotranspiration information at 

the grid level, which is not available as it is measured at the point scale. Also, the relative contributions 

of various sources and processes that make up evapotranspiration are not well understood (Coenders-

Gerrits et al., 2014; Nelson et al., 2020; Sutanto et al., 2014). Thus, more data measurement efforts are 

required to improve our understanding of evaporation processes (Harrigan and Berghuijs, 2016). It is 

found that the hydrological simulations that include explicit biological processes, such as vegetation 

dynamics, tend to predict lower future droughts and small evapotranspiration changes in a warmer 

climate than models not include them (Prudhomme et al., 2014). This highlights that evapotranspiration 

should not be separated from the physical and biological processes it is connected to. There are vast 

arrays of methods and equations available, differing in complexity and data requirements, to estimate 

potential evapotranspiration (Oudin et al., 2005). Potential evapotranspiration estimation methods can 

be divided into three categories: energy-based, temperature-based, and mass-transfer-based. The 

energy-based implementation of evapotranspiration processes in GHMs is difficult to implement because 

it requires a large amount of input data compared with the other two methods.  

 

 Groundwater 

Groundwater is an essential component of GHMs and HMs and plays a critical role in the hydrological 

cycle and water availability (Taylor et al., 2013). It acts as a vast storage reservoir, interacting with 

surface water bodies and influencing their flow dynamics, water quality, and ecological processes. 

Accurate modelling of groundwater flow is crucial for assessing sustainable pumping rates, impacts on 

water availability and quality, and human water use. Groundwater flow is particularly important in regions 

where surface water availability is limited and groundwater is the primary source of water for domestic, 

agricultural, and industrial purposes. By incorporating groundwater flow in GHMs and HMs, a 

comprehensive understanding of water storage and release dynamics, surface water interactions, 

human water use, and climate change impacts can be obtained, providing valuable insights into water 

resource management, planning, and adaptation strategies. 

 

GHMs and HMs that exclude groundwater processes may underestimate water availability, overestimate 

human water use, and fail to capture the impact of climate change on water resources. Therefore, it is 

crucial to include groundwater flow in GHMs to obtain accurate and reliable estimates of water 

availability, water use, and the impact of climate change on water resources. This information can help 

policymakers make informed decisions regarding water allocation, water management, and adaptation 

strategies, ensuring the sustainable and equitable use of water resources for both present and future 

generations. 

 Flow routing 

Flow routing, i.e., transport of water from upstream cells (source) to downstream cells (sink) through a 

river network, in physically based distributed HMs is a difficult task as it requires solving the Saint-Venant 

equations (Beven, 2012; Chaudhry, 2007; Te Chow, 2010). This physical method requires solving 

complex partial differential equations (i.e., continuity and momentum), and often has high data 

requirements related to river geometry, morphology and floodplain, which are often not available for large 

spatial scales (Singh and Woolhiser, 2002). Several simple numerical approximations of these complex 
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partial differential equations have been proposed and implemented in several HMs (and GHMs) in the 

past (Beven, 2012; Chanson, 2004; Cunge, 1969). The choice of routing scheme has a significant 

influence on the timing of simulated river discharge and its peak values (Hattermann et al., 2017; 

Zaherpour et al., 2018; Zhao et al., 2017). 

 Typical challenges in setting up GHMs 

 Data availability 

The availability and quality of spatial ground-based information are crucial for selecting HM and GHM 

types (Clark et al., 2017). Over the past decades, many efforts have been made to improve the 

technology, quantity, and quality of data required for HMs and GHMs (Singh, 2018). Advancements in 

remote sensing technology, such as satellites and radars, have made it easier to model the hydrological 

characteristics of ungauged or data-scarce regions such as HMA. However, for most hydrological 

processes, such as snow sublimation, avalanching, glacier melt and characteristics (debris, ponds, and 

cliffs), permafrost, groundwater processes, and routing processes, such spatial data do not exist 

(Beniston et al., 2018; Dobinski, 2011). The use of GHMs, especially in high mountains where the 

hydrological processes vary considerably with altitude, is hampered by the limited qualitative data 

availability in higher and remote regions.  

 

It is extremely challenging to perform reliable streamflow simulations, particularly for ungauged 

catchments and data-scarce regions such as HMA (Immerzeel et al., 2015a; Wortmann et al., 2018). 

Existing hydrometeorological stations, mostly located in valleys lower than 4000m, are sparsely and 

unequally distributed in the region (Palazzi et al., 2013; Qin et al., 2009). The point-based station data 

are not representative of the complex surrounding HMA. The low quality and limited availability of data 

at high altitudes impose difficulties in spatial interpolation and often lead to a strong underestimation of 

HMA precipitation (Immerzeel et al., 2015a; Li et al., 2017; Palazzi et al., 2015).  

 

To address these data scarcity issues, GHMs either use a calibration parameter or an approximation 

based on limited data obtained from location-specific studies (e.g., glacier mass balance, snow 

sublimation, and hydraulic conductivity). Most processes are often measured or modelled at a small 

scale (time and space). However, real applications require the estimation of these processes over long 

periods and large regions (such as the lifetime of hydraulic structures). Conversely, some local studies 

use regional and global-scale coarse data and parameters. The use of these approximations renders the 

outcome of HMs (and GHMs) uncertain (Bierkens et al., 2001; Blöschl and Sivapalan, 1995; Peters-

Lidard et al., 2017; Seyfried et al., 2009). 

 

Remote sensing and satellite data provide better geographical coverage compared to sparse point-

based station data and have been extensively used in the past decades to provide a better understanding 

of the states and variables related to the hydrological cycle and water resources (Wagner et al., 2009; 

Xu et al., 2014). The integration of remote sensing information into HMs provides a better uncertainty 

assessment of water resources and water-related issues; and therefore, an in-depth exploration of the 

accuracy of such data is required (Emery and Camps, 2017). 

 Spatiotemporal resolution 

The response time of hydrological processes varies from a few minutes (snow melt, snow avalanche) to 

multiple decades (glacier dynamics, groundwater flow in aquifers) (Hock, 2003, 2005; Koutsoyiannis, 

2005; Marshak, 2008). The choice of an appropriate modelling time step for hydrological simulation 

depends on the availability of the data (temporal resolution of the forcing), dominant hydro-

meteorological processes, geophysical characteristics of the catchments and objective of the study 

(Bastola and Murphy, 2013; Littlewood and Croke, 2008; Ostrowski et al., 2010; Smith et al., 2004; Syed 
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et al., 2003). For urban drainage processes, a sub-hourly resolution time step is recommended, whereas 

for irrigation, a monthly resolution is sufficient (Blöschl and Sivapalan, 1995). For the simulation of highly 

dynamic processes, such as floods, a sub-daily time step is required to represent the high intermittency 

of convective precipitation and fast catchment response time which depends on basin physiographic 

characteristics such as the size, drainage network, steepness, and percentage of impervious area 

(Ochoa-Rodriguez et al., 2015). The spatial resolution of GHMs can vary from less than a meter (for 

unsaturated flow processes) to a few hundred kilometers (monsoon circulation). The coarse spatial 

resolution of GHMs could be an important source of error in the HMA region because of the missing 

interactions between the topography and atmospheric processes required for small-scale processes 

(Beniston et al., 2018; Blöschl and Sivapalan, 1995; Sillmann et al., 2013). 

 Computational time  

The use of physically based HMs and GHMs is limited because of their high computational requirements 

(Huintjes et al., 2015; Koch et al., 2016; North, 1975; Paul and Kotlarski, 2010; Reid and Brock, 2010). 

Conversely, conceptual HMs are becoming popular because they require less data and computational 

resources (Koch et al., 2016). Advances in computational capacity in recent decades have made it 

possible to model the desired system and keep track of the state and fluxes of a system at any given 

time and spatial scale (Fatichi et al., 2016). However, computing remains a present-day challenge as 

expectations have increased beyond the limits (Bierkens et al., 2015; Clark et al., 2017). Issues related 

to the trade-off between the process complexity, spatial complexity, domain size, ensemble size, the 

time period of simulation, single deterministic simulation and model inter-comparisons persist (Clark et 

al., 2017; Wood et al., 2011). 

 Model uncertainty 

Communicating predictive uncertainties with hydrological predictions is essential for water resources and 

other relevant decision-making processes (Georgakakos et al., 2004; Liu and Gupta, 2007). GHMs and 

HMs involve many processes, and each component introduces uncertainty, which ultimately contributes 

to the total uncertainty. Uncertainties in GHMs and HMs stem from parameters, model structure, input 

data, initial conditions, and calibration (Lindenschmidt et al., 2007; Papacharalampous et al., 2019; 

Renard et al., 2010; Sudheer et al., 2011; Troin et al., 2016; Wilby, 2005). Parameter uncertainty in 

GHMs (and HMs) is a result of conceptual simplification which arises due to inadequate process 

understanding, over-approximations, limited data, inability to measure or estimate a process (e.g. 

hydraulic conductivity can be measured at point scale but varies considerably for catchment scale), 

natural process variability, and observational errors (Beven, 2012). Structural uncertainty, sometimes 

referred to as “model uncertainty”, in GHMs and HMs mainly arises due to the simplified representation 

of hydrological processes (Lindenschmidt et al., 2007; Moges et al., 2021; Troin et al., 2016). HMs 

structural uncertainty also includes alternative conceptualizations related to surface and subsurface 

processes (Refsgaard et al., 2012). The input uncertainty in GHMs and HMs is governed by uncertainty 

in forcing (sampling and measurement error in rainfall and temperature, large variability among the 

reanalysis, satellite-derived, and merged products), elevation, soil characteristics, and other catchment-

related information. GHMs and HMs require the calibration of different parameters (including snow, 

glaciers, and rainfall-runoff) and states based on the availability of ground-based observations. Errors 

arising from unsatisfactory calibration and imperfect observations (for e.g., systematic error in stage and 

runoff measurements, rating curve extrapolations and hysteresis errors), contribute to the calibration and 

observational uncertainty of GHMs and HMs (Domeneghetti et al., 2012; Kiang et al., 2018). Parameters 

calibrated to a stationary climate also add uncertainty to hydrological predictions used to assess climate 

change impacts (Brigode et al., 2013; Wilby, 2005). Model structural uncertainty is the dominant source 

of predictive uncertainty in GHMs and HMs under both stationary and non-stationary climates (Højberg 

and Refsgaard, 2005; Mendoza et al., 2015; Rojas et al., 2008). The input uncertainty, especially in data-

scarce mountain environments where the data involve interpolation, scaling and derivation from other 
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measurements, constitutes approximately 10 to 40% of the predictive uncertainty (McMillan et al., 2018). 

To adequately assess and reduce the uncertainty from GHMs and HMs, it is important to understand 

and quantify them (Liu and Gupta, 2007). 
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3 Introduction to the SPHY model  

Despite the proliferation of hydrological models in recent decades, only a limited number incorporate 

snow and glacier processes in a manner that is both physically realistic and coherent with the available 

data. This is particularly critical for HMA, where snow and ice dynamics play dominant roles in seasonal 

water availability and long-term hydrological trends. Rivers originating in the HMA region are the most 

meltwater-dependent river systems on Earth (Schaner et al., 2012). In the regions surrounding the 

Himalayas and the Tibetan Plateau, large human populations depend on the water supplied by these 

rivers (Immerzeel, 2010).  

 

However, the dependency on meltwater differs strongly between river basins within the HMA region, as 

a result of differences in climate and basin topography (Immerzeel et al., 2012). Only by using a 

distributed hydrological modelling approach that includes the simulation of key hydrological and 

cryospheric processes, and the inclusion of transient changes in climate, snow cover, glaciers, and 

runoff, appropriate adaptation and mitigation options can be developed for this region (Sorosg et al., 

2014). The SPHY model is highly suitable for this approach and has therefore been widely applied in the 

region (Khanal et al., 2021). 

 Overall approach of the SPHY model 

SPHY is suitable for a wide range of water resource management applications. Therefore, SPHY is a 

state-of-the-art, easy-to-use, and robust tool that can be applied for operational as well as strategic 

decision support. The SPHY modelling toolbox is available in the public domain and uses only open-

source software. SPHY is developed by FutureWater in cooperation with partners across the world, and 

several in the HMA region, including ICIMOD (visit https://sphymodel.com/ for more information).  

 

SPHY is a spatially distributed leaky bucket-type model that is applied on a cell-by-cell basis. To minimize 

the number of input parameters and avoid complexity and long model runtimes, SPHY does not include 

energy balance calculations and is therefore a water-balance-based model. The main terrestrial 

hydrological processes are described in a physically consistent manner so that changes in storage and 

fluxes can be assessed adequately over time and space. The model is designed for both large- and 

small-scale cryospheric-hydrological studies and integrates different hydrological processes, including 

(a) rainfall-runoff, (b) cryospheric processes, (c) evapotranspiration, and (d) soil hydrological processes. 

SPHY can operate at flexible spatial scales (glaciers, sub-basins, basins, and regions). A schematic 

visualization of the key processes included in the SPHY model is shown in Figure 1. 

 

SPHY enables the user to turn on/off modules that are not required. This concept is very useful if the 

user is studying hydrological processes in regions where not all hydrological processes are relevant. For 

example, a user may be interested in studying irrigation water requirements in central Africa. For this 

region, glacier and snowmelt processes are irrelevant and can thus be switched off. Another user may 

only be interested in simulating moisture conditions in the first soil layer, allowing the possibility of 

switching off the routing and groundwater modules. The advantages of turning off irrelevant modules are 

two-fold: (i) decrease the model run-time and (ii) decrease the amount of required model input data. 

 

https://sphymodel.com/
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Figure 1. A schematic visualization of the key processes included in the SPHY glacio-hydrological model 

(source: https://sphymodel.com/concept/)  

 

 Snow processes 

Snowmelt is an important source of runoff in  mountainous catchments. To obtain a realistic estimate of 

snowmelt, several processes must be considered. Processes such as snow precipitation rates, meltwater 

refreezing in the snowpack, sublimation, and evaporation. The SPHY model simulates dynamic snow 

storage at a daily time step, adopted from the model presented by (Kokkonen et al., 2006).  

 

The model tracks snow storage, which is fed by precipitation and generates runoff from snowmelt. 

Refreezing of snowmelt and rainfall within the snowpack is simulated as well. Depending on the 

temperature threshold, precipitation is defined as either a solid or liquid. To simulate snowmelt, a well-

established and widely used degree-day melt modelling approach is used (Hock, 2003). Runoff from 

snow is generated when the air temperature is above the melting point and no more meltwater can be 

refrozen within the snowpack (for more information, read the SPHY manual1). 

 
1 https://sphymodel.com/publications/   

https://sphymodel.com/concept/


20 

 Glacier processes 

Mountain glaciers are typical features found in high-mountain environments. These features, which are 

also referred to as ‘rivers of ice’, flow from high-altitude areas to valleys due to gravitational forces. 

Glaciers are typically formed when accumulated snow at higher altitudes is transformed into ice and 

flows down under the force of gravity to lower altitudes. The mass balance of a glacier is determined by 

the sum of all processes that add mass to a glacier (accumulation) and remove mass from a glacier 

(ablation), and can be considered to be in equilibrium when accumulation equals ablation (Haeberli, 

2011). When accumulation is higher than ablation due to increased snowfall or a decrease in melt, a 

glacier advances/thickens, and when ablation is higher than accumulation due to decreased snowfall or 

an increase in the melt, a glacier retreats/thins.  

 

In addition to precipitation and temperature, variables such as sublimation, wind-blown transport of snow, 

and avalanching also influence the rate of ablation and accumulation on glaciers. Melting of glacier ice 

contributes to river discharge through slow and fast components: (i) percolation to the groundwater 

reservoir that eventually becomes base flow and (ii) direct runoff. The dynamic behavior of glaciers can 

be considered by incorporating key processes such as accumulation, ablation, and ice mass transfer 

from the accumulation to the ablation zone. Changes in glacier fraction in response to the precipitation 

and temperature are considered by using a mass-conserving ice distribution approach.  

 

The accumulated snow in the accumulation zone is transformed into ice and distributed downwards to 

the ablation area at the end of each melting season (1st of October). The redistribution is proportional to 

the initial total volume of ice so glacier parts with a larger initial ice volume will receive a large volume of 

accumulated ice from the accumulation zone to the ablation zone (Khanal et al., 2021 for further details). 

Ice redistribution is performed once a year (1st of October) at the end of the hydrological year (1st October 

to 30th September next year).  

 

The SPHY model usually operates at a spatial resolution that is too large to include the ice flow and 

dynamics of glaciers. Therefore, glaciers in SPHY are considered melting surfaces that can completely 

or partially cover a grid cell (Khanal et al., 2021). Glacier melt is calculated with a degree-day modelling 

approach as well. Because glaciers covered with debris melt at different rates than debris-free glaciers, 

a distinction can be made between the different degree-day factors for both types. When SPHY is run 

for future scenarios, the fractional glacier cover in a grid cell changes according to a parameterization of 

glacier changes at the river basin scale. This parameterization estimates the changes in a river basin’s 

glacier extent as a function of the glacier size distribution in the basin and the projected temperature and 

precipitation. 

 Soil processes 

Soil water storage properties can determine the amount of rainfall-runoff and infiltration into groundwater. 

The soil water processes in SPHY are modelled for three soil compartments: (i) the first soil layer (root 

zone), (ii) the second soil layer (sub-soil), and (iii) the third soil layer (groundwater store).  

 

The lateral flow of water in the soil between cells, the exchange of water between soil layers and the 

groundwater reservoir through percolation and capillary rise, as well as the release of baseflow from the 

groundwater reservoir, are calculated in the model. 

 Lake or reservoir processes 

Lakes or reservoirs present within a catchment act as natural buffers, resulting in a delayed release of 

water from these water bodies. SPHY allows the user to choose a more complex routing scheme if lakes 
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or reservoirs are located in their basin of interest. The use of this more advanced routing scheme requires 

a known relationship between lake outflow and lake level height (Q(h)-relation) or lake storage. 
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4 Setting up a glacio-hydrological model 

 Spatial resolution 

Among many other factors, the choice of the spatial resolution of the model depends on the objectives 

of the study, time to conduct the study, computational resources, and data availability. For instance, if 

the objective of the study is to assess the impact of climate change on a regional scale or large basin 

scale (such as the Ganges or the Brahmaputra), a spatial resolution ranging from 1 to 5 km would be 

favorable (Khanal et al., 2021; Lutz et al., 2014b; Wijngaard et al., 2017). Conversely, if the objective of 

the study is to assess the impact of climate change on a glacier or smaller sub-basin, a spatial resolution 

of 30m–1000m would be favorable.  

 

The choice of spatial resolution also depends on data availability. If there are fewer observed stations 

where meteorological variables (such as snow, temperature, and precipitation) are available within the 

region of interest, then it is advisable to use a coarser spatial resolution compared to the scenario with a 

dense meteorological station network. Cryospheric processes are associated with different responses 

and spatiotemporal scales. For instance, glacier and snowmelt processes are localized and dominant 

processes in the higher mountains compared to large-scale rainfall-runoff processes, which are dominant 

in the lower plain regions. Thus, snow and glacier melt processes require finer-scale spatial discretization 

than large-scale rainfall-runoff processes.  

 

Because SPHY considers sub-grid variability, it is possible to run the glacier processes at fine resolution 

(50 x 50m) and downstream rainfall-runoff processes at a coarser resolution (5 x 5 km) (Khanal et al., 

2021). The larger the geographical extent (or the number of cells in the model), the longer it will take to 

simulate the hydrological characteristics. Therefore, it is advisable to have a total number of cells less 

than 1 million for faster computation. 

 Model timestep and time-horizon 

Similar to spatial resolution, the selection of an appropriate temporal resolution and time horizon depends 

on several factors. For instance, if the objective is to simulate a particular glacier-specific extreme event, 

then it is advisable to run the model on a sub-daily scale (sub-hourly, hourly, 3-6 hourly time steps). The 

choice of time step is highly dependent on data availability. If meteorological forcings are available only 

on a daily timescale, then it is advisable to run the model on a daily time step.  

 

However, if the objective of the model is to understand the impact of climate change on water availability 

at a large scale at longer time horizons in the future (mid-century and end of century, or centennial time 

scale), then it is advisable to run the SPHY model on daily time steps and aggregate the outputs as per 

need. In the hydrological realm, it is a widely accepted practice to employ a limited set of observed 

discharge data for fine-tuning GHMs (Khanal et al., 2021; Lutz et al., 2014b; Wijngaard et al., 2017).  

 

However, to attain a comprehensive understanding of the hydrological regime and flow characteristics 

exhibited by a given basin, it is strongly recommended to subject the calibrated GHM to an extensive 

simulation period spanning 20–30 years. This extended duration allows for a more robust analysis of the 

model's performance and its ability to capture long-term hydrological patterns. It is recommended that 

the baseline scenario used for this simulation incorporates the most recent and up-to-date data. 

 Data requirement for SPHY model setup  

SPHY requires both static and dynamic data. The most relevant static data are topography, land use 

type, glacier cover, lakes/reservoirs, and soil characteristics. For dynamic data, SPHY uses climate data 
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such as precipitation, temperature, vegetation, snow cover, snow depth, snow water equivalent, glacier 

mass balance, and streamflow. Because SPHY is a grid-based model, the flexible integration of different 

remote sensing and global data sources can be easily performed. For example, the Normalized 

Difference Vegetation Index (NDVI) (Myneni and Williams, 1994) can be used to determine the leaf area 

index to estimate the growth stage of land cover.  

 

Streamflow data are not required to set up the model. However, flow data are required to perform proper 

calibration and validation procedures. The model can also be calibrated using actual evapotranspiration, 

soil moisture content, and/or snow-covered areas. The data required to set up the SPHY model are 

described in the following subsections. 

 Digital Elevation Model (DEM) 

A Digital Elevation Model (DEM) is a representation of the bare ground (bare earth) topographic surface 

of the Earth , excluding trees, buildings, and any other surface objects. A DEM is required to calculate 

the slope, aspect, flow direction, and flow accumulation in the SPHY model. The DEM can be 

downloaded from the following sources: 

• Shuttle Radar Topography Mission (SRTM): This DEM has a spatial resolution of 30m (1-arc 

second global digital elevation) and covers the entire globe. This DEM is freely available in the 

public domain. The data can be downloaded via the USGS Earth Explorer1, Google Earth 

Engine2, or any other source. 

• Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): This DEM has 

a resolution of 90m (3 arc-seconds) and is also available at the global scale. The data can be 

downloaded via the USGS Earth Explorer¹, Google Earth Engine², or any other source. 

• HydroSHEDS: HydroSHEDS, an open-source data available at 3, 15, and 30 arc-seconds as 

well as 5 and 6 arc-minutes, provides hydrographic information in a consistent and 

comprehensive format for regional and global-scale applications. It offers a suite of geo-

referenced datasets (vector and raster), including stream networks, watershed boundaries, 

drainage directions, and ancillary data layers, such as flow accumulations, distances, and river 

topology information. The data can be downloaded from HydroSHEDS3. 

 Soil properties 

The SPHY model requires soil properties as inputs for hydrological simulations. Soil information is the 

basis for all environmental research. Because local soil maps of good quality are often unavailable, global 

soil maps with low resolution are used. FutureWater has developed HiHydroSoil v2.0, a freely available 

high-resolution dataset (250m), with soil properties and classes on a global scale that can be easily used 

for hydrological, erosion, and crop modelling. This can be downloaded from FutureWater4. It is also 

possible to use the observed soil properties values or maps (read the SPHY manual for more 

description). 

 Land use data 

Land use maps represent spatial information on different types (classes) of physical coverage of the 

Earth's surface, such as forests, grasslands, croplands, lakes, wetlands, snow, and glaciers. Land use 

data are an important input for the SPHY model. There are several free sources to acquire land use data 

at the country, regional, and global scales. For glacier-scale studies, it is recommended to generate 

detailed land use data using Sentinel2 images (2015–present coverage). The raw images can be 

 
1 https://earthexplorer.usgs.gov/  
2 https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4  
3 https://www.hydrosheds.org/  
4 https://www.futurewater.eu/projects/hihydrosoil/  

https://earthexplorer.usgs.gov/
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://www.hydrosheds.org/
https://www.futurewater.eu/projects/hihydrosoil/
https://earthexplorer.usgs.gov/
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://www.hydrosheds.org/
https://www.futurewater.eu/projects/hihydrosoil/
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accessed via SCI Hub Copernicus1. Similarly, any available observed land use data can be used in the 

SPHY model. For large-scale applications, land use data can be derived from:  

• Esri Land Cover: The Esri Land Cover provides a very high resolution (10m) land cover from 

2017–2022 generated using Sentinel-2. This 10m resolution data source is open-source and 

available on a global scale. Visit Esri Living Atlas2 to download and for more information. 

• European Space Agency Climate Change Initiative (CCI) Land Cover V2: This data is available 

at a 300m resolution for 1992–2018. The data can be downloaded from ESA Land Cover CCI3 

• MCD12Q10.5 km MODIS: The Terra and Aqua combined Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6 data product provides 

global land cover types at yearly intervals (2001–2020), derived from six different classification 

schemes. The MCD12Q1 Version 6 data product is derived using supervised classifications of 

MODIS Terra and Aqua reflectance data. The data can be downloaded from USGS Earth Data 

– MCD12Q14. 

 Glacier outlines 

Glacier outlines are required to prepare the inputs required for simulating the glacier module in SPHY. 

The observed glacier outlines, if available, can be easily used with the SPHY model. Otherwise, the most 

recent version of the Randolph Glacier Inventory (RGI 6.0) is preferred. RGI 6.0 is freely available on a 

global scale. The dataset can be downloaded from GLIMS5. 

 

Moreover, the SPHY glacier module can distinguish glacier melt from clean ice and debris-covered 

glaciers. However, this requires the pre-distinction of the glacier surface into clean ice and debris. The 

ablation characteristics of debris-covered glaciers differ from those of clean-ice glaciers. On this type of 

glacier, the amount of ablation depends on several factors, such as debris thickness and the presence 

of ice cliffs and supraglacial ponds (Pellicciotti et al., 2015; Ragettli et al., 2016; Reid and Brock, 2010; 

Steiner et al., 2015). The magnitude of ablation depends on the thickness of the debris on the glacier. 

Very thin layers of debris (<2 cm) enhance melt rates due to the lower albedos, whereas thicker layers 

of debris reduce melt rates due to the insulation of the surface (Kraaijenbrink et al., 2017; Nicholson and 

Benn, 2006; Østrem, 1959; Reid and Brock, 2010; Rowan et al., 2015). 

 Glacier ice thickness 

Glacier ice thickness is required to prepare the inputs required for simulating the glacier module in SPHY. 

The observed glacier ice thickness, if available, can be easily used with the SPHY. Otherwise, the 

following data sources are preferred: 

• Farinotti et al. (2019): present a dataset containing an ensemble of up to five models to provide 

a consensus estimate for the ice thickness distribution of 215,000 glaciers outside the 

Greenland and Antarctic ice sheets. The models use principles of ice flow dynamics to invert 

ice thickness from surface characteristics. The dataset is freely available at ETH Zurich 

Research Collection6. 

• Millan et al. (2022): The authors present a comprehensive high-resolution mapping of ice motion 

for 98% of the world’s total glacier area during the period 2017–2018. We use this mapping of 

glacier flow to generate an estimate of global ice volume that reconciles ice thickness 

distribution with glacier dynamics and surface topography. The dataset is freely available 

through nature.com7. 

 
1 https://www.copernicus.eu/en/access-data/conventional-data-access-hubs  
2 https://livingatlas.arcgis.com/landcover/  
3 https://www.esa-landcover-cci.org/  
4 https://lpdaac.usgs.gov/products/mcd12q1v006/  
5 https://www.glims.org/RGI/  
6 https://www.research-collection.ethz.ch/handle/20.500.11850/315707  
7 https://www.nature.com/articles/s41561-021-00885-z  

https://www.copernicus.eu/en/access-data/conventional-data-access-hubs
https://livingatlas.arcgis.com/landcover/
https://www.esa-landcover-cci.org/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.glims.org/RGI/
https://www.research-collection.ethz.ch/handle/20.500.11850/315707
https://www.research-collection.ethz.ch/handle/20.500.11850/315707
https://www.nature.com/articles/s41561-021-00885-z
https://www.copernicus.eu/en/access-data/conventional-data-access-hubs
https://livingatlas.arcgis.com/landcover/
https://www.esa-landcover-cci.org/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.glims.org/RGI/
https://www.research-collection.ethz.ch/handle/20.500.11850/315707
https://www.nature.com/articles/s41561-021-00885-z
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 Meteorological forcings 

SPHY requires spatial daily maps of precipitation and temperature (minimum, maximum, and mean). 

The most preferred option is to use observed station data (or gridded data) if available for hydrological 

simulations. Existing hydrometeorological stations, mostly located in valleys lower than 4000m, are 

sparsely distributed in the mountains. The complex topography and harsh conditions in the mountains 

make it difficult to manage ground stations. Usually, in HMA, such datasets are not available. In such 

cases, satellite-derived and remotely sensed products can be used.  

 

Remotely sensed satellite measurements from geostationary thermal infrared and polar-orbiting passive 

microwave sensors are useful for deriving precipitation measurements based on cloud-top brightness 

temperature and spectral scattering caused by large ice particles. However, the uncertainty is high 

because of the limitations in sensor signals to penetrate clouds and correctly estimating the precipitation 

falling as snow at high altitudes (Immerzeel et al., 2015a). Nevertheless, remotely sensed products, in 

recent decades, have proven to be a cost-effective and reliable tool to understand precipitation patterns 

and trends at various spatial and temporal scales (Gehne et al., 2016).  

 

Several reanalyses and remotely sensed options available for the HMA region are as follows:  

• European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5: The ERA5 is an 

improved (atmosphere, ozone, land, and ocean waves component) and high-resolution 

successor of the ERA-Interim (Dee et al., 2011). The ERA5 uses observations from over 200 

satellite instruments or conventional data types, including ground-based radar–gauge 

observations, PILOT, radiosonde, dropsonde, buoys, and aircraft. The ERA5 data are available 

at an hourly time scale and 31 × 31 km spatial resolution for 137 vertical pressure levels. 

Surface or single-level data are also available, containing two-dimensional parameters such as 

precipitation, 2m temperature, top-of-atmosphere radiation, and vertical integrals over the entire 

atmosphere. ERA5 is a freely available dataset that covers the period from 1950 to 2023 

(present). The dataset can be accessed from Copernicus Climate Data Store1. This dataset has 

been extensively used for hydrological applications in the region and globally (Khanal et al., 

2021). However, the data need to be bias-adjusted and downscaled for hydrological 

applications. The ERA-5 data were bias-adjusted and downscaled at 1 km resolution for the 

entire HMA using the topography-based downscaling scheme TopoSCALE (Fiddes and Gruber, 

2014). TopoSCALE downscales atmospheric fields available on pressure levels to a high-

resolution digital elevation model. The bias adjusted and downscaled ERA5 datasets can be 

accessed freely via the SPHY model website2. 

• ERA5-Land: ERA5-Land is a reanalysis dataset that provides a consistent view of the evolution 

of land variables over several decades at an enhanced resolution compared to ERA5. It is 

available as hourly data from 1950 to the present. The data can be accessed from the 

Copernicus Climate Data Store¹. 

• High Asia Refined analysis version 2 (HAR v2): The High Asia Refined analysis version 2 (HAR 

v2) is an atmospheric dataset generated by dynamical downscaling using the Weather 

Research and Forecasting model (WRF) version 4.1 and freely available for the Tibetan Plateau 

and surrounding mountains. It is available for the period 1980–2020 at hourly, daily, monthly, 

and yearly time scales. 

• Other remotely sensed products commonly used in the HMA region are the Asian Precipitation 

Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), Tropical 

Rainfall Measuring Mission (TRMM), Climate Hazard group Infrared Precipitation (CHIRPS), 

Multi-Source Weighted-Ensemble Precipitation (MSWEP), Climate Prediction Center 

 
1 https://cds.climate.copernicus.eu/  
2 https://sphymodel.com/downloads/  

https://cds.climate.copernicus.eu/
https://sphymodel.com/downloads/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://sphymodel.com/downloads/
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MORPHing product (CMORPH), and Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Network (PERSIANN). 

 

The direct use of such products to derive climatological and hydrological trends often requires validation 

and correction based on in situ observations (Gebregiorgis and Hossain, 2015; Gehne et al., 2016). Such 

corrections for meteorological forcings involve adjusting meteorological data to account for the effects of 

terrain elevation on atmospheric variables. The process consists of several steps aimed at ensuring 

accurate representation of meteorological conditions in areas influenced by topography. The 

meteorological variables (temperature, precipitation, wind speed, and solar radiation) serve as the 

foundation for subsequent correction procedures.  

 

High-resolution elevation data, such as DEMs, is essential for accurately characterizing the terrain of the 

study area. This elevation data provides information on the elevation profile and the presence of 

mountains, valleys, and other topographic features. Statistical analysis, regression models, and empirical 

relationships can be used to investigate and quantify the effects of elevation on temperature, 

precipitation, solar radiation, and other variables of interest. Based on the findings of this analysis, 

correction techniques can be applied to account for the topographic effects on meteorological variables. 

These correction techniques may vary depending on the variables being corrected.  

 

For temperature, adjustments can be made by considering the lapse rate, which describes the decrease 

in temperature with increasing elevation. Precipitation correction involves accounting for the orographic 

effects caused by mountains or hills, which result in increased precipitation at higher elevations. Solar 

radiation correction addresses the shading effects caused by terrain features by incorporating models 

that account for shadowing and terrain slope. After the correction procedures are implemented, the 

corrected meteorological data is validated to ensure its accuracy and reliability. Validation involves 

comparing the corrected data with observed data or independent validation datasets. This step verifies 

the effectiveness of the topographical correction methods applied and helps assess the quality of the 

resulting data. It is important to note that the specific techniques and algorithms for topographical 

correction may vary depending on the available data, study area, and atmospheric variables of interest. 

 Data required for SPHY model calibration 

Datasets are used throughout model delineation, parameterization, calibration, and validation, and are 

essential and integral parts of glacio-hydrological modelling, which will later influence model performance 

and may limit model applications. Traditionally, only observed streamflow datasets have been used to 

calibrate GHMs.  

 

However, parameterizing the GHM along with stream flow induces uncertainties (especially in snow and 

glacier processes). Thus, it is necessary to ensure that snow and glacier-related processes are well 

parameterized in GHMs. The SPHY model can use a large array of observed data sources (to the extent 

available). Here, we provide a list of data that could be useful for parameterizing snow and glacier 

processes in a GHM. 

 Snow cover 

Snow is a significant component of ecosystems and water resources. Snow cover information is required 

to ensure that snow-related processes and model parameters are well-calibrated in the SPHY model. 

Unfortunately, snow cover data sources are limited in this region.  

• Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data were used for this 

project. The most recent version of MODIS snow cover (MOD10CM006) can be downloaded 
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from NSIDC1. This is a global, 0.05° resolution monthly mean snow cover extent derived from 

the MODIS daily snow cover extent product (MOD10C1). The dataset is available from 2000 to 

the present for the entire globe on a monthly timescale. 

• International Centre for Integrated Mountain and Development (ICIMOD) has developed a new 

method to improve the interpretation of snow cover data in the region using Terra and Aqua 

MODIS snow cover data. The improved snow data for HMA covered the MODIS observation 

period between 2002 and 2018. The product is available for free on ICIMOD’s Regional 

Database System2. 

 Glacier mass balance 

Region-wide observed glacier mass balance data are not available in most cases. However, for specific 

glaciers, some information is available in the public domain (e.g., published scientific articles, reports 

and websites). SPHY is sufficiently flexible to incorporate data at both the individual glacier and large 

basin level aggregation. For instance, if information is available on the glacier mass balance for multiple 

glaciers in a basin, different glacier mass balances could be used to parameterize the glaciers. However, 

if such information is not available, only one glacier mass balance for the entire basin can be used to 

parameterize the glacier processes. Some regional databases are available for the HMA region. 

• Shean et al. (2020): This database consists of 5,797 high-resolution DEM) from available sub-

meter commercial stereo imagery (DigitalGlobe WorldView-1/2/3 and GeoEye-1) acquired over 

HMA glaciers from 2007 to 2018 (primarily 2013–2017). The project reprocessed 28,278 

ASTER DEMs over HMA from 2000 to 2018 and combined these observations to generate 

robust elevation change trend maps and geodetic mass balance estimates for 99% of HMA 

glaciers between 2000 and 2018. The dataset is freely available through Frontiers in Earth 

Science3. 

• Brun et al. (2017): This database provides the mass balance for approximately 92% of the 

glacierized area of HMA using time series of digital elevation models derived from satellite 

stereo-imagery between 2000 and 2016. The dataset is freely available on Nature.com4. 

• Wang et al. (2021): This database provides the recent status of HMA glaciers based on the first 

analysis of Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data between 2003 and 2019. 

This database uses the Gravity Recovery and Climate Experiment (GRACE) and GRACE 

Follow-On (FO) data to complement ICESat-1,2 data and validate them independently. The 

dataset is freely available from Advancing Earth and Space Sciences5. 

 Discharge  

Discharge is the most crucial variable required to correctly parameterize the GHM and is important for 

water resource projects, such as energy production, irrigation planning, water quality improvements, and 

waterway transport. However, discharge data in the HMA region are often considered confidential, and 

there are many restrictions on their open use. Lack of observed data most of the time becomes a big 

barrier to parametrizing the qualitative GHM and its further use for estimation and prediction purposes. 

It is advisable to use the observed discharge data if available; however, such information is not readily 

available in the remote regions of HMA.  

 

For example, in the IHR, the Central Water Commission (CWC) has the mandate to monitor, collect, and 

collate information regarding hydro-meteorological data. It is advisable to check with the CWC for 

location-specific discharge data. However, in some cases, the discharge data are also available from 

 
1 https://nsidc.org/data/mod10_l2/versions/61  
2 https://rds.icimod.org/  
3 https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2019.00363/full  
4 https://www.nature.com/articles/ngeo2999  
5 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL090954  

https://nsidc.org/data/mod10_l2/versions/61
https://rds.icimod.org/
https://rds.icimod.org/
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2019.00363/full
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2019.00363/full
https://www.nature.com/articles/ngeo2999
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL090954
https://nsidc.org/data/mod10_l2/versions/61
https://rds.icimod.org/
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2019.00363/full
https://www.nature.com/articles/ngeo2999
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL090954
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educational institutes such as universities, research institutes, and agencies such as the department of 

forestry, hydropower/irrigation development corporation, and disaster management authority.  

 

If data are not available at the local scale, a few global datasets are available. However, the quality and 

quantity of these global datasets are limited. The following databases are available on a global scale: 

• Global Runoff Data Centre (GRDC): The GRDC is an international archive, operating under WMO, 

of data up to 200 years old, and fosters multinational and global long-term hydrological studies. 

This database consists of information on long-term daily flow data (mean daily and monthly) and 

catchment information from more than 10,000 river gauging stations across 159 countries and 

regions. To date, this is the largest river discharge time series database. The GRDC station 

locations are available on Google Earth Engine. The datasets are freely available at the Global 

Runoff Data Centre1. 

• Global Monthly River Discharge dataset: The Global River Discharge (RivDIS) dataset contains 

monthly discharge measurements for 1018 stations worldwide. The period of record varies widely 

from station to station, with a mean of 21.5 years. The datasets are freely available at PANGAEA2. 

 

It is advisable to use the observed discharge data at daily (or sub-daily) time steps, but if the data are 

not available at this temporal resolution, then monthly (or even annual) average values are still very 

useful for calibrating and validating the GHMs. 

 

 Optional complementary data and challenges  

Hydrometeorological measurements in high mountains pose unique challenges owing to the inaccessible 

terrain, harsh weather conditions, and complex environmental factors. Establishing and maintaining 

measurement stations in remote locations can be difficult, and extreme weather conditions can damage 

instruments and hinder data collection. The significant elevation changes and orographic effects in 

mountainous regions necessitate the installation of sensors at different heights.  

 

Additionally, snow and glacial processes, limited data transmission and power supply, and environmental 

considerations further complicate the measurements. Overcoming these challenges requires specialized 

equipment, sensors, innovative techniques, and collaboration among multidisciplinary teams. Despite 

these difficulties, accurate high-mountain measurements are crucial for understanding hydrological 

processes, managing water resources, and mitigating natural hazards.  

 

Various sensors are used to collect hydrometeorological data, capturing information on different aspects 

of the water cycle and meteorological variables. The choice of sensors depends on the specific research 

or monitoring objectives, variables of interest, and environmental conditions of the study area. The 

following common types of sensors are used in hydrometeorological monitoring: 

• Rain gauges: Rain gauges are used to measure precipitation, including rainfall and snow. They 

come in various designs, such as tipping bucket gauges, weighing gauges, disdrometers, 

pluviographs, and optical sensors, and are used to record the amount and intensity of precipitation 

over specific periods. Importantly, the effectiveness of rain gauge monitoring can be significantly 

enhanced by integrating data from multiple gauges within a network. This approach facilitates the 

consideration of spatial variability in rainfall patterns, thereby enabling a comprehensive 

understanding of precipitation distribution across a given area.  

• Temperature sensors: Thermocouples, which generate a voltage based on temperature 

differences, are commonly employed because of their ruggedness and wide temperature range. 

Resistance Temperature Detectors offer high accuracy and stability over a broad temperature 

 
1 https://grdc.bafg.de/  
2 https://grdc.bafg.de/  

https://grdc.bafg.de/
https://grdc.bafg.de/
https://grdc.bafg.de/
https://grdc.bafg.de/
https://grdc.bafg.de/
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span, making them suitable for mountainous regions. Thermistors provide good sensitivity and 

accuracy, although they have a limited temperature range. Infrared thermometers offer non-

contact temperature measurements, making them useful in inaccessible or hazardous mountain 

locations. Data loggers integrated with temperature sensors provide convenient solutions for 

continuous monitoring. Considering factors such as accuracy, temperature range, and 

ruggedness, along with sensor placement at different elevations, ensures comprehensive 

temperature measurements in high mountain environments. 

• Discharge: Traditional area-volume, rated structure, current meters, acoustic Doppler current 

profilers, tracer methods, stage-discharge rating curves, and remote sensing techniques are 

available to measure discharge. These methods involve the use of instruments, data analysis, and 

modelling techniques to estimate streamflow. Combining multiple approaches, ongoing 

monitoring, technological advancements, and interdisciplinary collaborations are vital for 

improving the precision and reliability of discharge measurements in high mountain regions. 

• Other sensors, such as water level, snow depth, soil moisture, evapotranspiration, and water 

quality sensors, would help improve our understanding of mountain hydrology, assess water 

resources, and mitigate natural hazards in these critical regions. 

 Model parameter sensitivity analysis 

In glacio-hydrological modelling, it is important to conduct a sensitivity analysis of model parameters to 

determine the possible values to be assigned to the parameters and the qualitative and/or quantitative 

variations (McCuen, 1973). Model parameter sensitivity analysis is a critical step in glacio-hydrological 

modelling that involves evaluating how changes in model parameters influence model outputs and 

performance.  

 

GHMs typically have a large number of parameters (more than 100) that represent various physical and 

process-related characteristics of the hydrological system, such as precipitation, evapotranspiration, 

glaciers, snow, infiltration, runoff, and storage parameters ( Table 1). These parameters need to be fine-

tuned based on the climate and catchment characteristics (Khanal et al., 2021; Lutz et al., 2014c; 

Wijngaard et al., 2017). Such a task is practically impossible and highly resource-intensive.  

 

Sensitivity analysis quantifies the effects of parameter variations on model outputs, such as streamflow, 

groundwater levels, and water balance components. This helps us understand how changes in 

parameter values affect model performance and whether the model is sensitive or robust to parameter 

changes. Sensitivity analysis reveals which parameters have a significant impact on the model results 

and which parameters have negligible effects, allowing for the prioritization of parameter estimation 

efforts and model calibration. Therefore, sensitivity analysis helps identify which parameters are most 

influential in determining model behavior and outputs.  

 

Sensitivity analysis is typically done through techniques such as one-at-a-time sensitivity analysis, where 

individual parameters are varied while others are held constant, or global sensitivity analysis methods 

that evaluate the combined influence of multiple parameters (Khanal et al., 2021; Song et al., 2015; 

Wijngaard et al., 2017). The most sensitive parameters, along with the calibrated values and plausible 

range, identified for the Bhagirathi case study are presented in  

Table 2. Overall, parameter sensitivity analysis enhances the understanding and applicability of 

hydrological models, making them more reliable tools for water resource management, planning, and 

decision-making.? 
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Table 1 Overview of the SPHY model parameters. The last column indicates whether the parameter is 

observable or can be determined by calibration (‘free’). 

 
 

Table 2 Calibrated SPHY model parameters for the Bhagirathi case study along with description units and 

plausible range 

Parameters Description Units Range Calibrated value 

DDFS Degree day factor for snow mm °C-1 day-1 2 – 11 6.1 

DDFDG Degree day factor for debris cover 

glacier 

mm °C-1 day-1 2 – 11 4.8 

DDFG Degree day factor for Snow for 

glacier 

mm °C-1 day-1 2 – 11 7.7 

Tcrit Critical temperature °C-1 -1 – 3 0.7 

SnowSC Water storage capacity of snowpack - - 0 – 1 0.5 

Kx Routing recession coefficient - - 0 – 1 0.9 

RootDepthFlat Thickness of root zone Mm 50 – 1500 300 

SubDepthFlat Thickness of subsoil Mm 50 – 1500 150 

alphaGw Baseflow recession coefficient - - 0 – 1 0.5 

YieldGw Specific aquifer yield - - 0.01 – 0.5 0.05 

 Model calibration approach 

GHM calibration can suffer from ‘equifinality’. Equifinality is a phenomenon in which different parameter 

combinations can lead to the same simulated discharge pattern. For example, a shortage in snowmelt 

can be compensated for by excess glacier melt, and underestimating precipitation input can be 

compensated for by melting extra water from the glacier; however, this results in incorrect melt estimates 

and estimations of glacier geometry changes.  
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To avoid such internal error compensation effects and to better constrain the parameter, a multi-data or 

multi-signal calibration is highly recommended by several other studies (He et al., 2018; van Tiel et al., 

2020). To overcome equifinality problems, we suggest using a three-step modelling strategy to calibrate 

the snow, glaciers, and rainfall-runoff processes in the model (Immerzeel, 2010; Khanal et al., 2021; Lutz 

et al., 2014c; Pellicciotti et al., 2012).  

 Snow 

The first step is to parameterize the snow and snowmelt-related processes. Parameters related to snow 

storage and melt (degree-day factor snow, water storage capacity of snowpack, minimum slope for 

gravitational snow transport, minimum snow holding depth, and sublimation factor) can be calibrated 

independently by comparing observed snow flow with modelled snow flow from GHM. In most cases, 

observed snow runoff is difficult to obtain. Therefore, alternative methods, such as snow cover 

comparison, as mentioned in Section 0, could be used to calibrate the snow module of a GHM.  

 

Remotely sensed (or observed) data can be used to calculate indicators such as snow cover area, snow 

seasonality, and snow persistence (i.e., the percentage of the time a pixel is covered with snow). These 

indicators can be simulated with a GHM and thus help to fine-tune the snow parameters1. Depending on 

the need and data availability, other snow parameters, such as critical temperature, snow water 

equivalent, snow cover threshold, and snow depth, can also be parameterized. 

 Glaciers  

The second step is to parameterize glacier-related processes without altering snowmelt-related 

processes. Parameters related to glacier processes are calibrated to observe (or geodetic) glacier mass 

balance data. To calibrate the SPHY model, the geodetic mass balance data mentioned in Section 0 

could be used. Users can simulate the glacier mass balance in SPHY and compare it with the observed 

mass balance. The parameters related to glacier mass balance in the SPHY model are the degree-day 

factor for clean ice, degree-day factor for debris-covered glaciers, glacier fraction, lapse rate for glaciers, 

and temperature and precipitation, which can be fine-tuned. 

 Rainfall-runoff and groundwater  

The last step is to calibrate the rainfall-runoff-related processes without altering the snow and glacier 

melt-related parameters. After calibrating the model parameters related to snow and glacier melt, the 

remaining parameters related to soil, infiltration, groundwater, and routing (root depth, capillary rise, 

seepage, infiltration excess, groundwater depth, saturated water content, baseflow recession constant, 

and routing coefficient) can be calibrated to the observed discharge at the existing station. 

 Typical outputs of the SPHY and their application 

SPHY includes a large number of processes from which outputs can be generated. SPHY allows the 

user to output the variable as (a) time-series data at specified locations and (b) spatial maps for the 

model domain. The spatial maps outputs can be aggregated for the user-specified time. In a separate 

CSV file, that is, “reporting.csv”, the user can decide how the output should be generated for over 50 

model variables (Figure 2). The CSV file has six columns. The first column refers to the variable name 

in the model, which should not change. In the second column, the user can decide the frequency at 

which the map output should be generated, with Y (yearly), M (monthly), and D (daily) aggregations. The 

option MS (Monthly Sum) results in 12 output maps with a long-term monthly average sum. In the third 

column, the average per year (Y) and month (M) can be determined, which is most suitable for storage 

 
1 Khanal, S., Nick, F., Fiddes, J., Kraaijenbrink, P., Immerzeel, W., Hunink, J. 2022. Present-day and 

future changes in the hydrology of the Bhagirathi Basin. FutureWater Report 252 
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components such as soil water storage and groundwater storage. The option MA (Monthly Average) 

results in 12 output maps with the long-term monthly average. In the second and third columns, more 

than one output frequency can be selected, which should be separated with a “+” symbol. For example, 

when the user wants to obtain the yearly and average monthly outputs the following combination should 

be provided: “Y+MA”. In the fourth column, time series can be generated at the stations, for instance, for 

discharge and sediment yield. In the fifth column, the user can define the file name (prefix), with a 

maximum of six characters. The sixth column provides information on each model variable. Furthermore, 

SPHY is sufficiently flexible to output any intermediate flux or variable used in the model. 

 

The aggregated time series and spatial map outputs from SPHY help understand hydrological cycle 

processes such as evapotranspiration, infiltration, snow or glacier melt, runoff and groundwater flow, 

flood and drought risk assessment, environmental impact assessment, water availability, and water 

management through water allocation planning. These outputs can provide valuable information to 

support IWRM planning, which is a framework for the coordinated and sustainable development and 

management of water resources. For instance, the time-series outputs of snow, glaciers, rainfall-runoff, 

and baseflow can be used to understand the flow contribution of each component to the overall flow 

(Figure 3). Such analysis would provide the basin aggregated flow contribution analysis which helps 

water managers to plan water resources in the basin. Moreover, SPHY outputs in the form of spatial 

maps can be used to understand the spatial variation of the fluxes across the basin (Figure 4). Spatial 

maps would help water managers assess the sources and contributions of water, its availability, and 

variability (floods and droughts) across different units/subunits of the catchment.  

 

These outputs would also help in understanding the trends of different components of flow across the 

subunits of the basin. These outputs, together with water quality, land use, socioeconomic, institutional, 

and infrastructure data, can be further used to simulate various water allocation scenarios, considering 

different priorities for water use. This information is essential for developing plans that balance the 

competing demands for water resources of various stakeholders. Therefore, the outputs of SPHY can 

provide valuable information for formulating an IWRM plan by assessing water availability, identifying 

flood and drought risks, evaluating environmental impacts, and developing water allocation plans that 

balance competing demands. 

 

 
Figure 2 A snippet of the reporting.csv file, which allows the user to output the desired variables from SPHY 
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Figure 3 Baseline-averaged monthly runoff with the distinction of flow components (base, snow, glacier, and 

rain-runoff) at the Dokriani outlet for 1991-2020. The top right part of the figure shows the contribution of 

stream flow contributors to the total flow (expressed in %) (Khanal et al., 2022)  

 

 

 
Figure 4 Spatial patterns of the flow components (base, snow, glacier, and rain-runoff) at the outlet of the 

Bhagirathi Basin (just before the confluence of the Alaknanda River) for 1991-2020. The gray and red 

boundaries represent the Bhagirathi and Din Gad catchments, respectively (Khanal et al., 2022). 
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 Scaling up and transferring a model to another HMA river basin 

Scaling up GHMs refers to the process of extending or adapting existing GHMs to larger spatial and 

temporal scales. Scaling up GHMs is necessary to address various challenges, such as studying regional 

or global water resource management, understanding the impacts of climate change on hydrological 

processes, and supporting decision-making for water-related infrastructure projects. Scaling up 

hydrological models can be challenging because of the complexities and uncertainties associated with 

hydrological processes at larger scales, the availability and quality of data, and the computational 

requirements of larger models. SPHY was developed with the explicit aim of simulating terrestrial 

hydrology at flexible scales under various land use and climate conditions. Because the input data 

required to set up the SPHY model are mostly available for the entire HMA region (as described in 

Sections 0 and 0), the SPHY model can be easily scaled up or applied to different regions of HMA.  

 

Basins adjacent to each other with similar climatic and physiographic characteristics tend to 

hydrologically behave in a similar manner (Merz and Blöschl, 2004; Patil and Stieglitz, 2014). Thus, the 

calibrated parameters (Table 2) can be transferred to hydrologically similar basins in HMA. A parameter 

regionalization approach, in which the replica of the parameters from the gauged catchment can be 

transferred to the ungauged catchment, can be used for basins in the HMA region (e.g. Bárdossy, 2007). 

This approach has been widely used for regional SPHY studies in which discharge data are unavailable 

(Khanal et al., 2021; Lutz et al., 2014c; Wijngaard et al., 2017).  

 

However, proper validation and verification of scaled-up and regionalized models are essential to ensure 

their reliability and accuracy. Even if no discharge data are available, some validation can be performed 

using remote sensing-based snow cover data in ungauged catchments. The regionalized parameters 

can then be re-adjusted based on the discrepancy between the simulated and observed snow cover, as 

explained in Section 0. 

 

Satellite-based observations of surface water elevation and extent are a promising new source of 

discharge data that can be useful for calibrating and validating larger-scale models. One of its new 

groundbreaking applications is the remote estimation of river discharge, especially in ungauged or poorly 

gauged basins. The SWOT (Surface Water and Ocean Topography) mission is a satellite mission led by 

NASA and CNES (French Space Agency), which currently provides the most state-of-the-art datasets 

for this purpose. Currently, testing is taking place in several regions of the world by FutureWater, within 

the Europe-funded SOS-Water project1. It is expected that in the near future, the availability of this type 

of data in terms of spatial and temporal coverage will expand, and that it has great potential to improve 

glacio-hydrological modelling in the HMA region. 

 

  

 
1 https://sos-water.eu/  

https://sos-water.eu/
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 The Bhagirathi river basin case study 

A glacio-hydrological model was developed to inform an Integrated Water Resources Management 

(IWRM) plan for the Bhagirathi sub-basin in Uttarakhand, India. The project was led by FutureWater in 

collaboration with Utrecht University, TERI, the University of Geneva, and the Swiss Agency for 

Development and Cooperation (SDC), as part of the 3SCA Phase II program under SCA-Himalayas. The 

initiative ran from 2020 to 2023 and aimed to enhance water resource management in a glacier-fed 

Himalayan basin under current and future climate scenarios. 

 

The main objectives were to model the present and future hydrological dynamics of the Dokriani glacier 

catchment and the broader Bhagirathi sub-basin, to support IWRM decision-making with a dedicated 

Decision Support System (DSS), and to strengthen local technical capacity through training and 

knowledge exchange. The modeling approach was structured in multiple scales. At the headwater level, 

the Dokriani glacier catchment was simulated using a high-resolution SPHY (Spatial Processes in 

HYdrology) model. This allowed for detailed process-based simulation of snow and glacier melt. At the 

sub-basin scale, a second SPHY model was used to integrate upstream dynamics with broader basin 

hydrology. In addition, the WEAP–PODIUMSim framework was used to simulate water allocation and 

demand scenarios for downstream users under changing climatic and socioeconomic conditions. 

 

The models were forced using downscaled and bias-corrected data from four CMIP6 global climate 

models, under two emission scenarios: SSP2-4.5 and SSP3-7.0. Simulations were run for both mid-

century and end-century periods, using a baseline period of 1991–2020 for calibration and validation. 

This setup enabled the team to assess not only long-term water availability, but also seasonal variations 

and the risk of extreme events such as flood waves. 

 

Stakeholder engagement was central to the project’s success. Consultations held in Dehradun in 

November 2022 brought together government agencies, researchers, and local stakeholders to co-

design adaptation strategies. These strategies were integrated into the IWRM plan, which addresses 

both short- and long-term needs in terms of water security, disaster risk reduction, and ecosystem 

protection. Capacity building was achieved through a combination of virtual and in-person training 

sessions for Central Water Commission staff, ensuring knowledge transfer and local ownership of the 

modeling tools. 

 

The project revealed several critical insights. While total water availability is expected to remain relatively 

stable or even increase slightly under future climate scenarios, significant shifts in the seasonality of 

flows are anticipated. Reduced snowfall and increased meltwater could lead to more intense and earlier 

peak flows, thereby heightening the risk of downstream flooding. Infrastructure such as hydropower 

facilities, irrigation canals, and roads may be particularly vulnerable. The IWRM plan therefore includes 

policy recommendations such as improved early warning systems, ecotourism controls, bans on non-

biodegradable waste, and promotion of electric transport in sensitive zones. 

 

Several lessons can be drawn from this experience. First, the use of nested SPHY models allowed for a 

comprehensive understanding of both localized glacial processes and basin-wide water dynamics. 

Second, integrating climate projections from multiple models provided robust scenario planning. Third, 

involving stakeholders from the outset ensured that the modeling outcomes were aligned with local 

priorities and institutional capacities. Finally, building capacity through targeted training has laid the 

groundwork for replicating this approach in other Himalayan sub-basins. 

 

The Uttarakhand case provides a strong example of how physically realistic, stakeholder-informed 

glacio-hydrological modeling can directly inform water policy and climate adaptation strategies. The 

workflow established in this project—including multi-scale modeling, climate scenario integration, 
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stakeholder engagement, and DSS application—offers a transferable model for data-scarce mountain 

regions confronting similar climate and water management challenges.  

 

For more information, please refer to the report on “Present-day and future changes in the hydrology of 

the Bhagirathi Basin” by Khanal et al. (2022 and “Water Allocation Modeling for the Bhagirathi Basin”, by 

Droogers et al., (2022). 

 

 
Figure 5 The Bhagirathi river basin and the Dingad sub-catchment (FutureWater, 2024). 
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5 Climate change impact assessment 

Mountains are highly significant regions in the context of climate change and sustainable development. 

Over the past few decades, the HMA region has experienced many climatic changes. Past climate 

change has led to changes in the cryosphere and hydrological cycle. These changes include rapid glacier 

shrinkage, reduction in snow cover, permafrost degradation, changes in the area of seasonally frozen 

grounds, and increases in the frequency of snow and ice avalanches (Ballesteros-Cánovas et al., 2018; 

Bolch et al., 2012; Kang et al., 2010). Changes in climate and cryosphere lead to shifts in the timing and 

magnitude of river discharge (Immerzeel, 2010; Khanal et al., 2021; Lutz et al., 2014b; Maurer et al., 

2019). Furthermore, climate change has led to increases in the area and volume of glacial lakes further 

exacerbating the risk of glacial lake outburst floods (King et al., 2019). The impacts of climate change on 

the cryosphere and water resources in mountains are typically assessed using GHM.  

 

Climate change assessments serve as important syntheses of the science associated with biophysical 

characteristics, ecosystems, and socio-economic conditions, and provide useful information and context 

for management and policy decisions. Climate change assessments usually focus on understanding the 

what, why, where, and how of climate change, its consequences, and the options for responding to it. 

Climate change assessment usually depends on the location, context, objectives, and type of information 

needed.  

 Assessing climate change impact 

This manual focuses on the impact of climate change on the cryosphere and water resources in the 

mountainous regions of HMA. Usually, climate change impact studies identify and quantify the expected 

impacts of climate change for decades to centuries on different sectors, such as water, agriculture, 

energy, and transportation. The impact assessment begins by understanding the changes in the 

magnitude, frequency, and patterns of hydro-meteorological variables, such as temperature, rainfall, 

snow, and streamflow, for the historical period. The observed station data, gridded data, and remotely 

sensed satellite-based information provided in Section 0 can be used to derive changes in the historical 

hydroclimate of a region or sector.  

 

For the future, climate information is obtained from ‘climate projections’. Climate projections are 

simulations of the Earth’s climate in future decades (typically until 2100) based on assumed ‘scenarios’ 

for the concentrations of greenhouse gases, aerosols, and other atmospheric constituents that affect the 

planet’s radiative balance. Climate projections are obtained by running numerical models of the Earth’s 

climate. These numerical models are used to simulate the fundamental processes driving weather and 

climate, which may cover either the entire globe or a specific region, such as Asia. These models are 

referred to as Global Climate Models (GCMs), also known as General Circulation Models. A GCM 

combines a series of models of the Earth’s atmosphere, ocean, and land surface. GCMs divide the Earth 

into many layers and thousands of three-dimensional gridded spaces (100–400 km spatial resolution 

and ~30–50 vertical layers between the surface and the top of the atmosphere). A Regional Climate 

Model (RCM) is similar to a GCM, but it is run at a higher resolution over a smaller domain (e.g., Asia) 

to generate higher-resolution data. RCM are used to downscale GCM information to regional or local 

scales, and they require boundary information from a GCM. These models are skilled at replicating past 

and current climates.  

 

Many research institutions worldwide develop and maintain GCM/RCM. Currently, there are more than 

100 climate models available. To streamline activities between different institutions worldwide, a 

collaborative framework was designed to improve knowledge of climate change by the World Climate 

Research Programme (WCRP) in 1995. This framework is known as the Coupled Model Intercomparison 

Project (CMIP). The CMIP was developed in phases to foster climate model improvements and support 
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national and international assessments of climate change. The objective of CMIP is to better understand 

past, present, and future climate changes arising from natural, unforced variability or in response to 

changes in radiative forcing in a multi-model context. The number of climate models in CMIP has 

increased over time: CMIP1-2 (1996, 18 GCMs), CMIP3 (2005-2006, 20 GCMs), CMIP5 (2010-2014, 34 

GCMs), and CMIP6 (2016-present, >100 GCMs). CMIP6 is the most recent CMIP and includes over 100 

models from more than 50 modelling centers worldwide. 

 

The Intergovernmental Panel on Climate Change (IPCC) reviews and assesses the latest scientific, 

technical, and socio-economic climate change information. These modelling groups around the world 

coordinate their updates with the IPCC assessment reports. The 2013 IPCC fifth assessment report 

(AR5) featured climate models from CMIP5, while the 2021 IPCC sixth assessment report (AR6) features 

the new state-of-the-art CMIP6 models. CMIP6 uses Shared Socio-economic Pathways (SSPs) 

scenarios, which are the most complex created to date and span a range from very ambitious mitigation 

to ongoing growth in emissions. The SSPs use narratives about future societal development (the SSPs) 

in conjunction with Representative Concentration Pathways (RPCs), which describe trajectories of 

change in atmospheric GHG and aerosol concentrations (and corresponding changes in radiative 

forcing) over time. SSPs provide storylines regarding global societal developments and narratives about 

how the world might develop over the coming century in the presence and absence of climate change 

mitigation and adaptation policies. The most ambitious mitigation scenario suggested by the Paris 

Agreement, that is, holding the increase in global temperature to well below 2°C above pre-industrial 

levels and pursuing efforts to limit the increase to 1.5°C, are included in the SSPs. Five SSPs were 

created, with varying assumptions about human developments, including population, education, 

urbanization, gross domestic product (GDP), economic growth, rate of technological developments, 

greenhouse gas (GHG) and aerosol emissions, energy supply and demand, and land-use changes. The 

following SSPs were defined: 

• SSP1 - Sustainability - Taking the green road (low challenges to mitigation and adaptation) 

• SSP2 - Middle of the road - (medium challenges to mitigation and adaptation) 

• SSP3 - Regional rivalry - A rocky road (high challenges to mitigation and adaptation) 

• SSP4 - Inequality - A road divided (low challenges to mitigation, high challenges to adaptation) 

• SSP5 - Fossil-fueled development - Taking the highway (high challenges to mitigation, low 

challenges to adaptation) 

 
Figure 6 Shared Socio-economic Pathways and year 2100 radiative forcing combinations 
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The different levels of radiative forcing (a measure of the extent to which GHGs in the atmosphere warm 

or cool the climate, measured in watts per meter squared (Wm-2)) by the year 2100 range from 1.9 to 8.5 

Wm-2, with higher values representing stronger climate warming effects, and are used in conjunction 

with SSPs (Figure 6). 

 Download climate change projections 

Downloading and working with CMIP6 GCM data can be complex and require specialized programming 

software and expertise. These data are usually available in the Network Common Data Form (netCDF) 

and Hierarchical Data Format (HDF) formats. There are different ways to access the raw GCM variables, 

which can be downloaded from the following: 

• National Centers for Environmental Information (NCEI): The NCEI is the world's largest 

repository of climate and weather data. The CMIP6 GCM data can be downloaded from the 

NCEI website. 

• The Program for Climate Model Diagnosis and Intercomparison (PCMDI) is a research 

organization that works to improve our understanding of climate variability and change. The 

CMIP6 GCM data can be downloaded from the PCMDI website (https://pcmdi.llnl.gov/CMIP6/). 

• DKRZ: The DKRZ acts as a "laboratory" for all German climate researchers working with climate 

models. DKRZ's hardware and services of DKRZ are specifically tailored for complex 

simulations using numerical models of the climate system. You can download CMIP6 GCM data 

from the DKRZ website1. 

• Climate Data Store (CDS): The CDS is a service provided by the European Center for Medium-

Range Weather Forecasts (ECMWF) that provides access to a wide range of climate data sets. 

You can download CMIP6 GCM data from the Copernicus Climate Data Store2 

Of the above, Copernicus’ Climate Data Store (CDS) is the preferred platform, as it contains the most 

comprehensive and harmonized set of climate data. The data can also be accessed freely through an 

API, and there are numerous existing scripts and guiding materials to get started. 

 Selection of GCMs  

The selection of GCMs is important because not all models perform equally well in representing the 

climatology of HMA. Additionally, it is a cumbersome and resource-intensive task to process all GCM 

(>100 models). Therefore, a selection of representative GCMs should be made for use in hydrological 

models. The selection of climate models is not straightforward and can be performed using different 

strategies. An approach explained by Lutz et al. (2016) is to select climate models by combining the 

envelope and past-performance approaches, which have been widely adopted in different studies in 

HMA. The goal is to select an ensemble consisting of a manageable number of climate model runs, 

which still represents all possible futures in terms of future mean air temperature and annual precipitation 

sums, and only includes models with acceptable performance in simulating the historical climate. The 

following steps are recommended for sub-selection of models: 

 

1. Determine the research question or application: The first step in selecting a climate model is to 

define the research question or application. For example, how will global warming impact a 

particular region, or how will extreme precipitation and temperature patterns change in the 

coming years? 

 

2. Identify the relevant variables and time horizons: The second step is the identification of climate 

variables, such as temperature, precipitation, wind patterns, or other variables, for the analysis. 

The timeframe used for climate change impact assessment can vary depending on the specific 

 
1 https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/  
2 https://cds.climate.copernicus.eu/datasets/projections-cmip6?tab=overview  

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncei:CMIP6
https://pcmdi.llnl.gov/CMIP6/
https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/
https://cds.climate.copernicus.eu/datasets/projections-cmip6?tab=overview
https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/
https://cds.climate.copernicus.eu/datasets/projections-cmip6?tab=overview
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research question or application. For example, some studies may focus on analyzing climate 

data for a specific year or season, while others may focus on analyzing decadal or centennial 

trends in climate data. In many cases, climate change impact assessment focuses on a baseline 

period, which is typically a 20- or 30-year period used as a reference for assessing changes in 

climate over time. The baseline period is often chosen to represent a period of relatively stable 

climatic conditions. Climate models simulate future climate conditions by dividing the future into 

discrete time slices or periods that typically span several decades. These periods are often 

referred to as "time slices" or "time horizons," and are used to assess how climate conditions 

may change over time. The most commonly used time slices for future climate change 

projections are 20-year or 30-year periods, such as 2036–2065 (mid-century) or 2071–2100 

(end-of-the-century). These time slices are often used to provide projections of climate 

conditions that can be compared to historical data and used to assess the magnitude of climate 

change that is likely to occur over different periods of time. 

 

3. Changes in climatic means were calculated based on the range of projections of changes in the 

mean state of the variable. For instance, changes in air temperature (ΔT) and annual 

precipitation sum (ΔP) between historical (1985–2014) and future time horizons (mid-century 

and end-of-the-century). For the model runs included in the SSP-RCP combination, low (5th or 

10th) and high (95th or 90th) percentiles of ΔT and ΔP were determined (to exclude outliers). 

These values represent the four corners of the spectrum of projections for temperature and 

precipitation changes. For instance, the 10th percentile value for ΔT and the 10th percentile 

value for ΔP are in the ‘cold, dry’ corner of the spectrum. The 10th percentile value for ΔT and 

the 90th percentile values for ΔP are in the ‘cold, wet’ corner of the spectrum. The 90th 

percentile value for ΔT and the 10th percentile value for ΔP are in the ‘warm, dry’ corner of the 

spectrum. The 90th percentile value for ΔT and the 90th percentile value for ΔP are in the ‘warm, 

wet’ corner of the spectrum. The proximity of the model runs to these low/high quantiles is then 

calculated. Few models (5–10) close to each of these corner are selected for each SSP-RCP 

scenario.  

 

4. Refining the selection by evaluating the performance of the selected models: The next step is 

to evaluate the performance of each model in simulating the relevant climate variables. In this 

step, the model runs are evaluated for their projected changes in climatic extremes with the 

help of extreme climate change indicators1. A score (from 1 to the number of initially selected 

models), based on the ranking (or largest change), is assigned to each climate model. Based 

on the final score, a few models (2-3) with the highest scores are selected.  

 

5. Final selection based on past performance: The ability or criteria, or skill of the models in 

reproducing historical climate conditions, is assessed in this step. The skill assessment is done 

for the historical period from GCM and observations. These criteria might include choosing 

models that perform well in simulating a particular variable, models that have shown 

consistency across different scenarios, and models that have been widely used in previous 

studies. There are several skill functions available for different variables in the literature (see 

Lutz et al., 2016, for details).  

 

Overall, the sub-selection of climate models requires careful consideration of the research question, 

relevant variables, and model performance. It is important to note that no single model can fully capture 

the complexity of the Earth's climate system, and the use of multiple models can help account for 

uncertainty and variability in the results. 

 

 
1 http://etccdi.pacificclimate.org/list_27_indices.shtml 
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For the Bhagirathi case study, two scenarios, namely the “ middle of the road”  (SSP2-RCP4.5) and a 

more extreme one (SSP3-RCP7.0), were used to select four GCMs representing each of the four corners 

of the envelope (cold, wet/cold, dry/warm, wet/warm, and dry). For this study, only GCM runs with daily 

mean air temperature, daily maximum air temperature, daily minimum air temperature, and daily 

precipitation were selected. 

 

 Bias-correction 

Bias correction in climate refers to the process of adjusting climate model outputs or observational data 

to remove systematic errors or biases. These biases can arise from various factors, such as errors in the 

underlying physics of the model, inadequate spatial or temporal resolution, or incomplete or inaccurate 

data input. In climate modelling, bias correction techniques are commonly used to improve the accuracy 

of model simulations by matching the model output with observed data. This can help reduce 

uncertainties in future climate projections and improve our understanding of how the climate system is 

likely to change under different scenarios. 

 

Bias correction can be applied to a wide range of climate variables, including temperature, precipitation, 

and atmospheric circulation. Various methods for bias correction exist, including statistical methods such 

as quantile mapping and distribution-based scaling, as well as more complex techniques that involve the 

use of machine learning or data assimilation approaches. The choice of method and quality of the input 

data can significantly affect the effectiveness of the correction. Therefore, careful evaluation and 

validation of the results are essential to ensure that the corrected data are appropriate for the intended 

use. For more information regarding bias correction, readers are referred to the detailed climate change 

report of the Bhagirathi case study.  

 

 Downscaling 

Downscaling is a technique used in climate science to provide more detailed and localized information 

on climate variables, such as temperature and precipitation, than that typically provided by global climate 

models.  Global climate models (GCMs) simulate the behavior of the Earth's climate system at a coarse 

resolution, typically spanning hundreds of kilometers. However, for many applications, such as water 

resource management and agriculture, more localized and detailed information is required. 

 

Downscaling is the process of taking the coarse-resolution output from a global climate model and using 

statistical or dynamical methods to generate higher-resolution climate data that are more relevant to 

specific regions or locations. In some countries or regions, Regional Climate Models (RCMs) have been 

developed, and downscaled products are available; however, these datasets are often not open access 

or can be difficult to obtain and validate. Consequently, the choice of downscaling approach and data 

sources depends strongly on the geographical focus and data availability in the study area. Downscaling 

can be performed in two ways: 

 

• Statistical downscaling: Statistical downscaling uses statistical relationships between large-

scale climate variables (such as atmospheric pressure patterns) and local-scale climate 

variables (such as precipitation or temperature) to produce more detailed information. This 

method is typically applied when there is a strong relationship between large- and local-scale 

climate variables. 

• Dynamical downscaling: Dynamical downscaling uses regional climate models (RCMs) to 

simulate the behavior of the Earth's climate system at a finer resolution, typically between 10 

and 50 km. RCMs are driven by the boundary conditions provided by GCMs and can provide 

more detailed information on climate variables over specific regions or locations. 
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Downscaled climate data can be used to assess the impact of climate change on specific regions or 

sectors, such as agriculture or water resources. It can also be used to develop adaptation strategies and 

inform decision-making in sectors that are particularly vulnerable to climate variability and change effects. 

 

For the Bhagirathi case study, a monthly delta change approach was adopted. The following procedure 

for downscaling using monthly deltas was implemented: 

• The GCM data were resampled to the model grid (50m and 500m) using bilinear interpolation. 

• Monthly climatological means (temperature) and sums (precipitation) were calculated for both the 

historical GCM data and the baseline series from 1991 to 2020. 

• Monthly climatological differences, that is, deltas, between the historical GCMs and the baseline 

data were determined using subtraction (temperature) and division (precipitation). 

• Future GCM series were downscaled by adding (temperature) or multiplying (precipitation) the 

resampled daily values with the offsets and using scaling factors determined using the delta values 

(Section 5.3, step 3) monthly. In other words, all daily values corresponding to a specific calendar 

month were multiplied by the same bias correction factor. The output of the monthly delta change 

bias correction includes leap days. 

 

Several recent initiatives and projects have focused on downscaled climate change projections for the 

HMA region. These projects utilize various climate models and observational data to provide detailed 

insights into the future climatic conditions of these ecologically and culturally significant regions. 

However, it is crucial to validate these data before application. These validation efforts include the 

following: 

• High Mountain Asia Daily 5 km Downscaled SPEAR Precipitation and Air Temperature 

Projections, Version 1: This dataset provides daily precipitation and air temperature projections 

for HMA from 2015 to 2100. These projections were based on 0.5° resolution model data from 

the GFDL SPEAR model. It includes two Shared Socioeconomic Pathways (SSP2-4.5 and 

SSP5-8.5) and historical data from 01-01-1990 to 31-12-2014. The data is in netCDF-4 format, 

with a 5 km spatial resolution, and the spatial coverage ranges between latitudes 20.025°N to 

45.975°N and longitudes 60.025°E to 110.975°E. For more information, you can access the 

dataset on the National Snow and Ice Data Center's website1. 

• NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6): This 

dataset comprises global downscaled climate scenarios from CMIP6 GCM runs, supporting the 

IPCC AR6. It includes downscaled projections for all four Tier 1 greenhouse gas emission 

scenarios (SSPs). The dataset aims to provide high-resolution, bias-corrected climate change 

projections for evaluating the impacts of local-scale climate gradients and topographic effects. 

Data are accessible via AWS and NCCS THREDDS, with a spatial subset feature for custom 

data retrieval. The dataset, in netCDF4 format, covers a global scale with a daily temporal and 

25 km spatial resolution. For more details, visit the NASA NEX-GDDP-CMIP6 page2. 

 Future hydrological impact assessment 

After bias correction and downscaling of the GCMs, the selected climate models and emission scenarios 

are used to generate future climate projections, such as changes in temperature, precipitation, and 

evapotranspiration. These future forcings are then used in conjunction with the calibrated and validated 

GHM. Thus, the GHM simulates the effects of climate change on variables such as river flow, 

groundwater recharge, and soil moisture. Evaluation of the GHM results to assess the potential impacts 

of climate change on water resources is further required. This process can involve comparing future 

hydrological variables with historical baseline conditions and assessing the sensitivity of the results to 

 
1 https://nsidc.org/data/hma2_dspat/versions/1  
2 https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6  

https://nsidc.org/data/hma2_dspat/versions/1
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
https://nsidc.org/data/hma2_dspat/versions/1
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
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different model assumptions and uncertainties. It is important to note that assessing future hydrological 

changes due to climate change involves a high degree of uncertainty because it is not possible to predict 

future climate conditions with complete accuracy. Therefore, it is important to account for this uncertainty 

in the assessment and use multiple models and scenarios to generate a range of possible outcomes. 

The results of the impact assessment are used to inform decision-making and planning for water 

resources management. This may involve identifying areas that are particularly vulnerable to changes in 

water availability, exploring different adaptation strategies, and evaluating the costs and benefits of 

various options. 

 Links to water allocation and downstream demand 

Hydrological models and water allocation models are interconnected and play a crucial role in effective 

water management. Hydrological models estimate the amount of water available in an area by simulating 

the physical processes of the water cycle. Water allocation models use hydrological data to determine 

the amount of water that can be allocated to different users while considering factors such as water 

quality, environmental regulations and competing demands. Hydrological models provide input data to 

water allocation models, which in turn make informed decisions regarding water allocation. 

 

Linkages between these models are essential for providing critical information for sustainable water 

management, such as infrastructure development, dam construction, reservoirs, and irrigation systems. 

These models can also inform decision-making processes to ensure the social, economic, and 

environmental well-being of the community. Effective linkages between hydrological and water allocation 

models are necessary to ensure sustainable water management, which is vital for community well-being.  

 

These water allocation modelling exercises should be participatory and involve stakeholders from 

different sectors, including government agencies, local communities and private sector actors. This will 

ensure that the models reflect the diverse perspectives and needs of stakeholders and are relevant to 

their decision-making processes. 

 

For water allocation assessments, models that can incorporate natural hydrological processes and 

scenario analyses to assist decision-makers are necessary. The selection of the most suitable model for 

this purpose involves evaluating the strengths and weaknesses of different, well-known, and established 

models. The various models were scored based on the following criteria and functionalities: 

• Drought 

• Floods 

• Allocation 

• Crops 

• Complexity 

• Scalable 

• Scenarios 

 

Figure 7 provides an overview of the various models, each scored based on its various functionalities. 
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Figure 7 Qualitative (expert-based) assessment of catchment-scale models that might be used for the project. 

Scores ranged from 1 (=limited) to 5 (=well suited). Note that the color scale for “Complexity” is reversed to 

maintain green for “better” and red for “worse.” 

 

The Water Evaluation and Planning (WEAP) model1 is particularly suitable for water allocation and 

scenario analysis, and its scalability is a significant advantage. With its low level of complexity and user-

friendly interface, the WEAP model is suitable for training purposes. 

 

Other strengths of WEAP not covered by these seven functionalities are as follows: 

• WEAP is used in over 180 countries and has many active users in India. 

• WEAP can be automated and coupled with other models to enhance its capabilities. Coupling 

with SPHY (also used in the Bhagirathi Basin case study) has been successfully performed in 

many other projects. 

• WEAP has excellent (and free) training modules. 

• WEAP is tailored to start in an explorative way and gradually include other components for a 

more detailed analysis. 

• WEAP is the de facto standard for many developing and funding agencies to make investment 

decisions in the water sector.  

• WEAP is freely available. 

 

Glacio-hydrological impacts on water allocation can be studied using a water allocation model, such as 

WEAP (Figure 8 and Figure 9). Within the SDC-funded project presented earlier in section 4.9, for the 

Bhagirathi river basin, the WEAP model has been enhanced by the addition of "virtual tracers," which is 

an innovative approach to monitoring the various sources and reuse of water (Simons et al., 2020). This 

involves adding user-specific virtual tracers to different sources of water in the model to assess the 

mixing of return flows from each water user in the sources of water supply to subsequent users. The use 

of virtual tracers in the WEAP model is an innovative approach for better understanding water allocation 

and management. For more information on how this approach was implemented for the Bhagirathi river 

basin, please refer to Droogers et al. (2022). 

 

 
1 https://www.weap21.org/  

https://www.weap21.org/
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Figure 8 Screenshot of the WEAP model as developed for the Bhagirathi Basin to analyse water allocation 

scenarios (source: Droogers et al., 2022) 

 

 
Figure 9 Same as the figure above, zoomed in on the western part of the Bhagirathi Basin. 

 

Some typical examples of analyses that can be performed with the WEAP model in terms of tracing 

different water sources are presented below (Figure 10). Note that the WEAP model simulations also 

consider water use and return flows to the river, whereas a model like SPHY does not consider water 

withdrawals and returns.  
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Figure 10 shows the origin of the water. Mean monthly 2001-2020. Top: upstream users Bhatwari_H; bottom 

inflow Tehri Reservoir 

 

For more details on water allocation modelling and other inputs required beyond the glacio-hydrological 

modelling outputs, please refer to the WEAP manual or the manuals of related software. 



47 

6 References 

Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol Earth 

Syst Sci, 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007. 
Bastola, S. and Murphy, C.: Sensitivity of the performance of a conceptual rainfall-runoff model to 

the temporal sampling of calibration data, Hydrology Research, 44, 484–494, 

https://doi.org/10.2166/nh.2012.061, 2013. 

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., 

Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J. I., Magnusson, 

J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., 

Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: A 

review of its current state, trends, and future challenges, Cryosphere, 12, 

https://doi.org/10.5194/tc-12-759-2018, 2018. 

Beven, K.: Rainfall-Runoff Modelling: The Primer, https://doi.org/10.1002/9781119951001, 2012. 

Bierkens, M. F. P., Finke, P., and Willigen, P.: Upscaling and Downscaling Methods for 

Environmental Research, Dordrecht etc., Kluwer, 2000. Dev. Plant Soil Sci. 88, 190 pp, 88, 

2001. 

Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., De Roo, A., Döll, 

P., Drost, N., Famiglietti, J. S., Flörke, M., Keune, J., Kollet, S., Maxwell, R. M., Reager, J. 

T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., and Wood, E. F.: Hyper-resolution global 

hydrological modelling: what is next? &quot; Everywhere and locally relevant &quot;, Hydrol 

Process, https://doi.org/10.1002/hyp.10391, 2015. 

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., 

Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., 

Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., 

Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, 

H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, 

J. P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, 

M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., 

Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat 

Commun, 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019. 

Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol Process, 9, 

251–290, https://doi.org/10.1002/hyp.3360090305, 1995. 

Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along 

the Himalaya, Geophys Res Lett, 33, 1–5, https://doi.org/10.1029/2006GL026037, 2006. 

Bowling, L. C., Pomeroy, J. W., and Lettenmaier, D. P.: Parameterization of Blowing-Snow 

Sublimation in a Macroscale Hydrology Model, J Hydrometeorol, 

https://doi.org/10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2, 2004. 

Braithwaite, R. J. and Zhang, Y.: Sensitivity of mass balance of five Swiss glaciers to temperature 

changes assessed by tuning a degree-day model, Journal of Glaciology, 

https://doi.org/10.3189/172756500781833511, 2000. 

Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of 

additional uncertainty in estimating the hydrological impacts of climate change?, J Hydrol 

(Amst), 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013. 

Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially resolved estimate of 

High Mountain Asia glacier mass balances from 2000 to 2016, Nat Geosci, 10, 668, 2017. 



48 

Cannon, F., Carvalho, L. M. V., Jones, C., and Norris, J.: Winter westerly disturbance dynamics 

and precipitation in the western Himalaya and Karakoram: a wave-tracking approach, Theor 

Appl Climatol, 125, 27–44, https://doi.org/10.1007/s00704-015-1489-8, 2016. 

Cazorzi, F. and Dalla Fontana, G.: Snowmelt modelling by combining air temperature and a 

distributed radiation index, J Hydrol (Amst), 181, 169–187, https://doi.org/10.1016/0022-

1694(95)02913-3, 1996. 

Chanson, H.: Hydraulics of Open Channel Flow - 2nd Edition, 2004. 

Chaudhry, M. H.: Open-channel flow, Springer Science \& Business Media, 2007. 

Che, Y., Zhang, M., Li, Z., Wei, Y., Nan, Z., Li, H., Wang, S., and Su, B.: Energy balance model of 

mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No.1 in 

the Chinese Tien Shan, Sci Rep, 9, 1–13, https://doi.org/10.1038/s41598-019-50398-4, 

2019. 

Te Chow, V.: Applied hydrology, Tata McGraw-Hill Education, 2010. 

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., 

Gutmann, E. D., Wood, A. W., Gochis, D. J., Rasmussen, R. M., Tarboton, D. G., Mahat, V., 

Flerchinger, G. N., and Marks, D. G.: A unified approach for process-based hydrologic 

modeling: 2. Model implementation and case studies, Water Resour Res, 51, 2515–2542, 

https://doi.org/10.1002/2015WR017200, 2015a. 

Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., 

Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and 

Zeng, X.: Improving the representation of hydrologic processes in Earth System Models, 

Water Resour Res, 51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015b. 

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., 

Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-

based hydrologic models: Historical challenges and the collective quest for physical realism, 

Hydrol Earth Syst Sci, 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. 

Coenders-Gerrits, A. M. J., Van Der Ent, R. J., Bogaard, T. A., Wang-Erlandsson, L., Hrachowitz, 

M., and Savenije, H. H. G.: Uncertainties in transpiration estimates, 

https://doi.org/10.1038/nature12925, 12 February 2014. 

Cunge, J. A.: On the subject of a flood propagation computation method (musklngum method), 

Journal of Hydraulic Research, 7, 205–230, https://doi.org/10.1080/00221686909500264, 

1969. 

Dobinski, W.: Permafrost, Earth Sci Rev, 108, 158–169, 

https://doi.org/10.1016/j.earscirev.2011.06.007, 2011. 

Domeneghetti, A., Castellarin, A., and Brath, A.: Assessing rating-curve uncertainty and its effects 

on hydraulic model calibration, Hydrol Earth Syst Sci, 16, 1191–1202, 2012. 

Droogers, P., Khanal, S., Hunink, J.E. 2022. Water Allocation in Bhagirathi Basin, India.  

           FutureWater Report 253. 

Emery, W. and Camps, A.: Introduction to satellite remote sensing: Atmosphere, ocean, 

cryosphere and land applications, Elsevier, 1–860 pp., https://doi.org/10.1016/C2015-0-

04517-8, 2017. 

Essery, R., Morin, S., Lejeune, Y., and B Ménard, C.: A comparison of 1701 snow models using 

observations from an alpine site, Adv Water Resour, 55, 131–148, 

https://doi.org/10.1016/j.advwatres.2012.07.013, 2013. 

Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A 

consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat Geosci, 12, 

168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019. 



49 

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., 

Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., 

Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current 

applications, challenges, and future trends in distributed process-based models in hydrology, 

J Hydrol (Amst), 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016. 

Gao, H., Wang, J., Yang, Y., Pan, X., Ding, Y., and Duan, Z.: Permafrost Hydrology of the Qinghai-

Tibet Plateau: A Review of Processes and Modeling, 

https://doi.org/10.3389/feart.2020.576838, 12 January 2021. 

Gebregiorgis, A. S. and Hossain, F.: How well can we estimate error variance of satellite 

precipitation data around the world?, Atmos Res, 154, 39–59, 

https://doi.org/10.1016/j.atmosres.2014.11.005, 2015. 

Gehne, M., Hamill, T. M., Kiladis, G. N., and Trenberth, K. E.: Comparison of global precipitation 

estimates across a range of temporal and spatial scales, J Clim, 29, 7773–7795, 

https://doi.org/10.1175/JCLI-D-15-0618.1, 2016. 

Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J., and Butts, M. B.: Towards the 

characterization of streamflow simulation uncertainty through multimodel ensembles, in: 

Journal of Hydrology, 222–241, https://doi.org/10.1016/j.jhydrol.2004.03.037, 2004. 

Groot Zwaaftink, C. D., Löwe, H., Mott, R., Bavay, M., and Lehning, M.: Drifting snow sublimation: 

A high-resolution 3-D model with temperature and moisture feedbacks, Journal of 

Geophysical Research Atmospheres, 116, 1–14, https://doi.org/10.1029/2011JD015754, 

2011. 

Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in Snowpack Simulations—

Assessing the Impact of Model Structure, Parameter Choice, and Forcing Data Error on 

Point-Scale Energy Balance Snow Model Performance, Water Resour Res, 55, 2779–2800, 

https://doi.org/10.1029/2018WR023403, 2019. 

Haeberli, W.: Glacier mass balance, in: Encyclopedia of Earth Sciences Series, 

https://doi.org/10.1007/978-90-481-2642-2_341, 2011. 

Harrigan, S. and Berghuijs, W.: The Mystery of Evaporation, Streams of Thought (Young 

Hydrologic Society), 1–5, 2016. 

Hattermann, F. F., Krysanova, V., and Gosling, S. N.: Cross ‐ scale intercomparison of climate 

change impacts simulated by regional and global hydrological models in eleven large river 

basins, Clim Change, 561–576, https://doi.org/10.1007/s10584-016-1829-4, 2017. 

He, Z., Vorogushyn, S., Unger-Shayesteh, K., Gafurov, A., Kalashnikova, O., Omorova, E., and 

Merz, B.: The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in 

Glacierized Basins, Water Resour Res, 54, 2336–2361, 

https://doi.org/10.1002/2017WR021966, 2018. 

Hock, R.: Temperature index melt modelling in mountain areas, J Hydrol (Amst), 282, 104–115, 

https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. 

Hock, R.: Glacier melt: A review of processes and their modelling, 

https://doi.org/10.1191/0309133305pp453ra, 2005. 

Hock, R. and Holmgren, B.: A distributed surface energy-balance model for complex topography 

and its application to Storglaciären, Sweden, Journal of Glaciology, 51, 25–36, 

https://doi.org/10.3189/172756505781829566, 2005. 

Hock, R., Hutchings, J. K., and Lehning, M.: Grand challenges in cryospheric sciences: Toward 

better predictability of glaciers, snow and sea ice, Front Earth Sci (Lausanne), 5, 1–14, 

https://doi.org/10.3389/feart.2017.00064, 2017. 

Højberg, A. and Refsgaard, J.: Model uncertainty - Parameter uncertainty versus conceptual 

models, Water Sci Technol, 52, 177–186, https://doi.org/10.2166/wst.2005.0166, 2005. 



50 

Huggel, C., Carey, M., Clague, J. J., and Kääb, A.: The high-mountain cryosphere: Environmental 

changes and human risks, Cambridge University Press, 1–371 pp., 

https://doi.org/10.1017/CBO9781107588653, 2015. 

Huintjes, E., Sauter, T., Schroter, B., Maussion, F., Yang, W., Kropaček, J., Buchroithner, M., 

Scherer, D., Kang, S., and Schneider, C.: Evaluation of a Coupled Snow and Energy 

Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements 

and Time-Lapse Photography, Arct Antarct Alp Res, 47, 573–590, 

https://doi.org/10.1657/AAAR0014-073, 2015. 

Immerzeel, W. W.: Climate change will effect the asian water tower, Science (1979), 1382, 

https://doi.org/10.1126/science.1183188, 2010. 

Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B., and Bierkens, M. F. P.: 

Hydrological response to climate change in a glacierized catchment in the Himalayas, Clim 

Change, 110, 721–736, https://doi.org/10.1007/s10584-011-0143-4, 2012. 

Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high 

altitude precipitation with glacier mass balances and runoff, Hydrol Earth Syst Sci, 12, 4755–

4784, https://doi.org/10.5194/hessd-12-4755-2015, 2015a. 

Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-

altitude precipitation in the upper Indus basin, 4673–4687, https://doi.org/10.5194/hess-19-

4673-2015, 2015b. 

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., 

Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. 

S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, 

P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., 

Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of 

the world’s water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 

2020. 

Khanal, S., Lutz, A. F., Kraaijenbrink, P. D. A., van den Hurk, B., Yao, T., and Immerzeel, W. W.: 

Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at 

Seasonal to Decadal Time Scales, Water Resour Res, 57, e2020WR029266, 

https://doi.org/10.1029/2020wr029266, 2021. 

Khanal, S., Tiwari, S., Lutz, A. F., Hurk, B. V. D., and Immerzeel, W. W.: Historical Climate Trends 

over High Mountain Asia Derived from ERA5 Reanalysis Data, 263–288, 

https://doi.org/10.1175/JAMC-D-21-0045.1, 2023. 

Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J., Westerberg, I. K., Belleville, A., 

Sevrez, D., Sikorska, A. E., Petersen-Øverleir, A., and others: A comparison of methods for 

streamflow uncertainty estimation, Water Resour Res, 54, 7149–7176, 2018. 

Klemeš, V.: The modelling of mountain hydrology: the ultimate challenge, in: Hydrology of 

Mountainous Areas (Proceedings of the Strbské Pleso Workshop, Czechoslovakia, June 

1988). IAHS Publ. no. 190, 1990. 

Knowles, J. F., Blanken, P. D., Williams, M. W., and Chowanski, K. M.: Energy and surface 

moisture seasonally limit evaporation and sublimation from snow-free alpine tundra, Agric 

For Meteorol, 157, 106–115, https://doi.org/10.1016/j.agrformet.2012.01.017, 2012. 

Koch, J., Cornelissen, T., Fang, Z., Bogena, H., Diekkrüger, B., Kollet, S., and Stisen, S.: Inter-

comparison of three distributed hydrological models with respect to seasonal variability of 

soil moisture patterns at a small forested catchment, J Hydrol (Amst), 533, 234–249, 

https://doi.org/10.1016/j.jhydrol.2015.12.002, 2016. 

Kokkonen, T., Koivusalo, H., Jakeman, A., and Norton, J.: Construction of a degree–day snow 

model in the light of the ten iterative steps in model development, Proceedings of the iEMSs 



51 

Third Biennial Meeting: “Summit on Environmental Modelling and Software” (July 2006), 12, 

2006. 

Koutsoyiannis, D.: Uncertainty, entropy, scaling and hydrological stochastic 2. Time dependence of 

hydrological processes and time scaling, Hydrological Sciences Journal, 50, 405–426, 2005. 

Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.: Impact of a global 

temperature rise of 1.5 degrees Celsius on Asia’s glaciers, Nature, 549, 257, 2017. 

Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T., and Immerzeel, W. W.: Climate change decisive for 

Asia’s snow meltwater supply, Nature Climate Change 2021 11:7, 11, 591–597, 

https://doi.org/10.1038/s41558-021-01074-x, 2021. 

Lafrenière, M. J. and Lamoureux, S. F.: Effects of changing permafrost conditions on hydrological 

processes and fluvial fluxes, Earth Sci Rev, 191, 212–223, 

https://doi.org/10.1016/j.earscirev.2019.02.018, 2019. 

Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A. G.: Permafrost thaw 

and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 

emissions, Environmental Research Letters, 10, https://doi.org/10.1088/1748-

9326/10/9/094011, 2015. 

Li, L., Gochis, D. J., Sobolowski, S., and Mesquita, M. D. S.: Evaluating the present annual water 

budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology 

model, Journal of Geophysical Research: Atmospheres, 122, 4786–4807, 

https://doi.org/10.1002/2016JD026279, 2017. 

Lindenschmidt, K.-E., Drastig, K., and Baborowski, M.: Structural Uncertainty in a River Water 

Quality Modelling System, Ecol Modell, 204, 289–300, 

https://doi.org/10.1016/j.ecolmodel.2007.01.004, 2007. 

Litt, M., Shea, J., Wagnon, P., Steiner, J., Koch, I., Stigter, E., and Immerzeel, W.: Glacier ablation 

and temperature indexed melt models in the Nepalese Himalaya, Sci Rep, 9, 5264, 

https://doi.org/10.1038/s41598-019-41657-5, 2019. 

Littlewood, I. G. and Croke, B. F. W.: Data time-step dependency of conceptual rainfall-streamflow 

model parameters: An empirical study with implications for regionalisation, Hydrological 

Sciences Journal, 53, 685–695, https://doi.org/10.1623/hysj.53.4.685, 2008. 

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data 

assimilation framework, Water Resour Res, 43, 1–18, 

https://doi.org/10.1029/2006WR005756, 2007. 

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High 

Asia ’ s runo due to increasing glacier melt and precipitation, Nat Clim Chang, 1–6, 

https://doi.org/10.1038/NCLIMATE2237, 2014a. 

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High 

Asia’s runoff due to increasing glacier melt and precipitation, Nat Clim Chang, 4, 

https://doi.org/10.1038/nclimate2237, 2014b. 

Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High 

Asia’s runoff due to increasing glacier melt and precipitation, Nat Clim Chang, 4, 587–592, 

https://doi.org/10.1038/nclimate2237, 2014c. 

Lv, Z. and Pomeroy, J. W.: Assimilating snow observations to snow interception process 

simulations, Hydrol Process, 34, 2229–2246, https://doi.org/10.1002/hyp.13720, 2020. 

MacDonald, M. K., Pomeroy, J. W., and Pietroniro, A.: On the importance of sublimation to an 

alpine snow mass balance in the Canadian Rocky Mountains, Hydrol Earth Syst Sci, 14, 

1401–1415, https://doi.org/10.5194/hess-14-1401-2010, 2010. 

Marshak, S.: Earth: Portrait of a Planet, 3rd ed., W. W. Norton & Company, Inc., 2008. 



52 

McCuen, R. H.: The role of sensitivity analysis in hydrologic modeling, J Hydrol (Amst), 18, 37–53, 

https://doi.org/10.1016/0022-1694(73)90024-3, 1973. 

McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its 

implications, Wiley Interdisciplinary Reviews: Water, 5, e1319, 2018. 

McNamara, J. P., Kane, D. L., and Hinzman, L. D.: An analysis of streamflow hydrology in the 

Kuparuk River Basin, Arctic Alaska: A nested watershed approach, J Hydrol (Amst), 206, 

39–57, https://doi.org/10.1016/S0022-1694(98)00083-3, 1998. 

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., 

Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and Arnold, J. R.: Effects of hydrologic 

model choice and calibration on the portrayal of climate change impacts, J Hydrometeorol, 

16, 762–780, https://doi.org/10.1175/JHM-D-14-0104.1, 2015. 

Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters, J Hydrol (Amst), 287, 

95–123, https://doi.org/10.1016/j.jhydrol.2003.09.028, 2004. 

Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world’s 

glaciers, Nature Geoscience 2022 15:2, 15, 124–129, https://doi.org/10.1038/s41561-021-

00885-z, 2022. 

Moges, E., Demissie, Y., Larsen, L., and Yassin, F.: Review: Sources of hydrological model 

uncertainties and advances in their analysis, Water (Switzerland), 13, 1–23, 

https://doi.org/10.3390/w13010028, 2021. 

Montesi, J., Elder, K., Schmidt, R. A., and Davis, R. E.: Sublimation of intercepted snow within a 

subalpine forest canopy at two elevations, J Hydrometeorol, 5, 763–773, 

https://doi.org/10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2, 2004. 

Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover Dynamics: Review on Wind-

Driven Coupling Processes, Front Earth Sci (Lausanne), 6, 

https://doi.org/10.3389/feart.2018.00197, 2018. 

Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., Gimeno, T. E., 

Wohlfahrt, G., Desai, A. R., Gioli, B., Limousin, J. M., Bonal, D., Paul-Limoges, E., Scott, R. 

L., Varlagin, A., Fuchs, K., Montagnani, L., Wolf, S., Delpierre, N., Berveiller, D., Gharun, M., 

Belelli Marchesini, L., Gianelle, D., Šigut, L., Mammarella, I., Siebicke, L., Andrew Black, T., 

Knohl, A., Hörtnagl, L., Magliulo, V., Besnard, S., Weber, U., Carvalhais, N., Migliavacca, M., 

Reichstein, M., and Jung, M.: Ecosystem transpiration and evaporation: Insights from three 

water flux partitioning methods across FLUXNET sites, Glob Chang Biol, 26, 6916–6930, 

https://doi.org/10.1111/gcb.15314, 2020. 

Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer using meteorological 

data, Journal of Glaciology, https://doi.org/10.3189/172756506781828584, 2006. 

North, G. R.: Theory of Energy-Balance Climate Models, Journal of Atmospheric Sciences, 32, 

2033–2043, https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2, 1975. 

Ochoa-Rodriguez, S., Wang, L. P., Gires, A., Pina, R. D., Reinoso-Rondinel, R., Bruni, G., Ichiba, 

A., Gaitan, S., Cristiano, E., Van Assel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B., 

Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and Ten Veldhuis, M. C.: Impact of 

spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A 

multi-catchment investigation, J Hydrol (Amst), 531, 389–407, 

https://doi.org/10.1016/j.jhydrol.2015.05.035, 2015. 

Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine 

Ridges, Geografiska Annaler, https://doi.org/10.1080/20014422.1959.11907953, 1959. 

Ostrowski, M., Bach, M., Desimone, S., and Gamerith, V.: Analysis of the time-step dependency of 

parameters in conceptual hydrological models, 2010. 



53 

Oudin, L., Michel, C., and Anctil, F.: Which potential evapotranspiration input for a lumped rainfall-

runoff model? Part 1 - Can rainfall-runoff models effectively handle detailed potential 

evapotranspiration inputs?, J Hydrol (Amst), 303, 275–289, 

https://doi.org/10.1016/j.jhydrol.2004.08.025, 2005. 

Palazzi, E., Von Hardenberg, J., and Provenzale, A.: Precipitation in the hindu-kush karakoram 

himalaya: Observations and future scenarios, Journal of Geophysical Research 

Atmospheres, 118, 85–100, https://doi.org/10.1029/2012JD018697, 2013. 

Palazzi, E., Von Hardenberg, J., Terzago, S., and Provenzale, A.: Precipitation in the Karakoram-

Himalaya: a CMIP5 view, Clim Dyn, 45, 21–45, https://doi.org/10.1007/s00382-014-2341-z, 

2015. 

Papacharalampous, G., Koutsoyiannis, D., and Montanari, A.: Quantification of predictive 

uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology 

development and investigationusingtoymodels, Adv Water Resour, 136, 1–63, 2019. 

Patil, S. and Stieglitz, M.: Modelling daily streamflow at ungauged catchments: What information is 

necessary?, Hydrol Process, 28, 1159–1169, https://doi.org/10.1002/hyp.9660, 2014. 

Paul, F. and Kotlarski, S.: Forcing a distributed glacier mass balance model with the regional 

climate model REMO. Part II: Downscaling strategy and results for two swiss glaciers, J 

Clim, 23, 1607–1620, https://doi.org/10.1175/2009JCLI3345.1, 2010. 

Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced 

temperature-index glacier melt model including the shortwave radiation balance: 

Development and testing for Haut Glacier d’Arolla, Switzerland, Journal of Glaciology, 

https://doi.org/10.3189/172756505781829124, 2005. 

Pellicciotti, F., Buergi, C., Immerzeel, W. W., Konz, M., and Shrestha, A. B.: Challenges and 

uncertainties in hydrological modeling of remote hindu KushKarakoramHimalayan (HKH) 

Basins: Suggestions for calibration strategies, Mt Res Dev, 32, 39–50, 

https://doi.org/10.1659/MRD-JOURNAL-D-11-00092.1, 2012. 

Pellicciotti, F., Stephan, C., Miles, E. S., Herreid, S., Immerzeel, W. W., and Bolch, T.: Mass-

balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 

1999, Journal of Glaciology, 61, 373–386, https://doi.org/10.3189/2015JoG13J237, 2015. 

Pepin, N., Bradley, R. S., Diaz, H. F., Baraër, M., Caceres, E. B., Forsythe, N., Fowler, H., 

Greenwood, G., Hashmi, M. Z., Liu, X. D., and Others: Elevation-dependent warming in 

mountain regions of the world, Nat Clim Chang, 5, 424–430, 

https://doi.org/10.1038/nclimate2563, 2015. 

Peters-Lidard, C. D., Clark, M., Samaniego, L., Verhoest, N. E. C., Van Emmerik, T., Uijlenhoet, R., 

Achieng, K., Franz, T. E., and Woods, R.: Scaling, similarity, and the fourth paradigm for 

hydrology, Hydrol Earth Syst Sci, 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-

2017, 2017. 

Pomeroy, J. W. and Gray, D. M.: Snowcover Accumulation, Relocation and Management, National 

Hydrology Research Institute, 1995. 

Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., 

Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, 

Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: Hydrological droughts in the 21st 

century, hotspots and uncertainties from a global multimodel ensemble experiment, Proc 

Natl Acad Sci U S A, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2014. 

Qin, J., Yang, K., Liang, S., and Guo, X.: The altitudinal dependence of recent rapid warming over 

the Tibetan Plateau, Clim Change, 97, 321–327, https://doi.org/10.1007/s10584-009-9733-9, 

2009. 



54 

Quinton, W. L. and Baltzer, J. L.: The active-layer hydrology of a peat plateau with thawing 

permafrost (Scotty Creek, Canada), Hydrogeol J, 21, 201–220, 

https://doi.org/10.1007/s10040-012-0935-2, 2013. 

Ragettli, S., Bolch, T., and Pellicciotti, F.: Heterogeneous glacier thinning patterns over the last 40 

years in Langtang Himal, Nepal, Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-

2075-2016, 2016. 

Reba, M. L., Pomeroy, J., Marks, D., and Link, T. E.: Estimating surface sublimation losses from 

snowpacks in a mountain catchment using eddy covariance and turbulent transfer 

calculations, Hydrol Process, 26, 3699–3711, https://doi.org/10.1002/hyp.8372, 2012. 

Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., and Troldborg, L.: 

Review of strategies for handling geological uncertainty in groundwater flow and transport 

modeling, Adv Water Resour, 36, 36–50, 

https://doi.org/https://doi.org/10.1016/j.advwatres.2011.04.006, 2012. 

Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered glaciers including heat 

conduction through the debris layer, Journal of Glaciology, 56, 903–916, 

https://doi.org/10.3189/002214310794457218, 2010. 

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.: Understanding predictive 

uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, 

Water Resour Res, 46, 1–22, https://doi.org/10.1029/2009WR008328, 2010. 

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, 

R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., 

Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., 

Sheffield, J., and Wood, E. F.: The observed state of the water cycle in the early twenty-first 

century, J Clim, 28, 8289–8318, https://doi.org/10.1175/JCLI-D-14-00555.1, 2015. 

Rojas, R., Feyen, L., and Dassargues, A.: Conceptual model uncertainty in groundwater modeling: 

Combining generalized likelihood uncertainty estimation and Bayesian model averaging, 

Water Resour Res, 44, 1–16, https://doi.org/10.1029/2008WR006908, 2008. 

Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling the feedbacks between 

mass balance, ice flow and debris transport to predict the response to climate change of 

debris-covered glaciers in the Himalaya, Earth Planet Sci Lett, 430, 427–438, 

https://doi.org/10.1016/j.epsl.2015.09.004, 2015. 

Saloranta, T., Thapa, A., Kirkham, J. D., Koch, I., Melvold, K., Stigter, E., Litt, M., and Møen, K.: A 

Model Setup for Mapping Snow Conditions in High-Mountain Himalaya, Front Earth Sci 

(Lausanne), 7, https://doi.org/10.3389/feart.2019.00129, 2019. 

Savenije, H. H. G.: The importance of interception and why we should delete the term 

evapotranspiration from our vocabulary, Hydrol Process, 18, 1507–1511, 

https://doi.org/10.1002/hyp.5563, 2004. 

Schaner, N., Voisin, N., Nijssen, B., and Lettenmaier, D. P.: The contribution of glacier melt to 

streamflow, Environmental Research Letters, 7, 034029, https://doi.org/10.1088/1748-

9326/7/3/034029, 2012. 

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, 

G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., 

Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the 

permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 

2015. 

Sexstone, G. A., Clow, D. W., Stannard, D. I., and Fassnacht, S. R.: Comparison of methods for 

quantifying surface sublimation over seasonally snow-covered terrain, Hydrol Process, 30, 

3373–3389, https://doi.org/10.1002/hyp.10864, 2016. 



55 

Sexstone, G. A., Clow, D. W., Fassnacht, S. R., Liston, G. E., Hiemstra, C. A., Knowles, J. F., and 

Penn, C. A.: Snow Sublimation in Mountain Environments and Its Sensitivity to Forest 

Disturbance and Climate Warming, Water Resour Res, 54, 1191–1211, 

https://doi.org/10.1002/2017WR021172, 2018. 

Seyfried, M. S., Grant, L. E., Marks, D., Winstral, A., and McNamara, J.: Simulated soil water 

storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, 

USA, Hydrol Process, 23, 858–873, https://doi.org/10.1002/hyp.7211, 2009. 

Shean, D. E., Bhushan, S., Montesano, P. M., Rounce, D., Arendt, A., and Osmanoglu, B.: A 

systematic, regional assessment of High-Mountain Asia glacier mass balance, Front Earth 

Sci (Lausanne), 7, 363: 1–19, 2020. 

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.: Climate extremes indices in 

the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, Journal of 

Geophysical Research Atmospheres, 118, 1716–1733, https://doi.org/10.1002/jgrd.50203, 

2013. 

Singh, V. P.: Hydrologic modeling: progress and future directions, Geosci Lett, 5, 

https://doi.org/10.1186/s40562-018-0113-z, 2018. 

Singh, V. P. and Woolhiser, D. A.: Mathematical modeling of watershed hydrology, J Hydrol Eng, 7, 

270–292, 2002. 

Smith, M. B., Koren, V. I., Zhang, Z., Reed, S. M., Pan, J. J., and Moreda, F.: Runoff response to 

spatial variability in precipitation: An analysis of observed data, in: Journal of Hydrology, 

267–286, https://doi.org/10.1016/j.jhydrol.2004.03.039, 2004. 

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in 

hydrological modeling: Review of concepts, methods, theoretical framework, and 

applications, J Hydrol (Amst), 523, 739–757, https://doi.org/10.1016/j.jhydrol.2015.02.013, 

2015. 

Sorg, A., Huss, M., Rohrer, M., and Stoffel, M.: The days of plenty might soon be over in 

glacierized Central Asian catchments, Environmental Research Letters, 9, 

https://doi.org/10.1088/1748-9326/9/10/104018, 2014. 

Steiner, J. F., Pellicciotti, F., Buri, P., Miles, E. S., Immerzeel, W. W., and Reid, T. D.: Modelling 

ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya, Journal of 

Glaciology, https://doi.org/10.3189/2015JoG14J194, 2015. 

Stigter, E. E., Litt, M., Steiner, J. F., and Bonekamp, P. N. J.: The Importance of Snow Sublimation 

on a Himalayan Glacier, 6, 1–16, https://doi.org/10.3389/feart.2018.00108, 2018. 

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., 

Bex, V., Midgley, P. M., and others: Climate change 2013: The physical science basis, 

Contribution of working group I to the fifth assessment report of the intergovernmental panel 

on climate change, 1535, 2013. 

Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W.: Is snow sublimation 

important in the alpine water balance?, 2008. 

Sudheer, K. P., Lakshmi, G., and Chaubey, I.: Application of a pseudo simulator to evaluate the 

sensitivity of parameters in complex watershed models, Environmental Modelling and 

Software, 26, 135–143, https://doi.org/10.1016/j.envsoft.2010.07.007, 2011. 

Sutanto, S. J., Van Den Hurk, B., Dirmeyer, P. A., Seneviratne, S. I., Röckmann, T., Trenberth, K. 

E., Blyth, E. M., Wenninger, J., and Hoffmann, G.: HESS Opinions “a perspective on isotope 

versus non-isotope approaches to determine the contribution of transpiration to total 

evaporation,” Hydrol Earth Syst Sci, 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-

2014, 2014. 



56 

Syed, K. H., Goodrich, D. C., Myers, D. E., and Sorooshian, S.: Spatial characteristics of 

thunderstorm rainfall fields and their relation to runoff, J Hydrol (Amst), 271, 1–21, 

https://doi.org/10.1016/S0022-1694(02)00311-6, 2003. 

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., 

Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, 

M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., 

Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.: 

Ground water and climate change, Nat Clim Chang, 3, 322–329, 

https://doi.org/10.1038/nclimate1744, 2013. 

van Tiel, M., Stahl, K., Freudiger, D., and Seibert, J.: Glacio-hydrological model calibration and 

evaluation, Wiley Interdisciplinary Reviews: Water, 7, https://doi.org/10.1002/wat2.1483, 

2020. 

Tobin, C., Schaefli, B., Nicótina, L., Simoni, S., Barrenetxea, G., Smith, R., Parlange, M., and 

Rinaldo, A.: Improving the degree-day method for sub-daily melt simulations with physically-

based diurnal variations, Adv Water Resour, 55, 149–164, 

https://doi.org/10.1016/j.advwatres.2012.08.008, 2013. 

Troin, M., Poulin, A., Baraer, M., and Brissette, F.: Comparing snow models under current and 

future climates: Uncertainties and implications for hydrological impact studies, J Hydrol 

(Amst), 540, 588–602, https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.06.055, 2016. 

Wagner, W., C. Verhoest, N. E., Ludwig, R., and Tedesco, M.: Editorial Remote sensing in 

hydrological sciences, Hydrol Earth Syst Sci, 13, 813–817, https://doi.org/10.5194/hess-13-

813-2009, 2009. 

Wagnon, P., Vincent, C., Arnaud, Y., Berthier, E., Vuillermoz, E., Gruber, S., Ménégoz, M., Gilbert, 

A., Dumont, M., Shea, J. M., Stumm, D., and Pokhrel, B. K.: Seasonal and annual mass 

balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007, Cryosphere, 7, 1769–

1786, https://doi.org/10.5194/tc-7-1769-2013, 2013. 

Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing Permafrost-A Review, Vadose 

Zone Journal, 15, vzj2016.01.0010, https://doi.org/10.2136/vzj2016.01.0010, 2016. 

Wang, Q., Yi, S., and Sun, W.: Continuous Estimates of Glacier Mass Balance in High Mountain 

Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data, Geophys Res Lett, 48, 1–

11, https://doi.org/10.1029/2020GL090954, 2021. 

Wijngaard, R. R., Lutz, A. F., Nepal, S., Khanal, S., Pradhananga, S., Shrestha, A. B., and 

Immerzeel, W. W.: Future changes in hydro-climatic extremes in the Upper Indus, Ganges, 

and Brahmaputra River basins, PLoS One, 12, 26, 

https://doi.org/10.1371/journal.pone.0190224, 2017. 

Wilby, R. L.: Uncertainty in water resource model parameters used for climate change impact 

assessment, Hydrol Process, 19, 3201–3219, https://doi.org/10.1002/hyp.5819, 2005. 

Woo, M. K. and Winter, T. C.: The role of permafrost and seasonal frost in the hydrology of 

northern wetlands in North America, J Hydrol (Amst), 141, 5–31, 

https://doi.org/10.1016/0022-1694(93)90043-9, 1993. 

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., 

Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, 

S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., 

and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand 

challenge for monitoring Earth’s terrestrial water, Water Resour Res, 47, 

https://doi.org/10.1029/2010WR010090, 2011. 

Wortmann, M., Bolch, T., Menz, C., Tong, J., and Krysanova, V.: Comparison and correction of 

high-mountain precipitation data based on glacio-hydrological modeling in the Tarim river 



57 

headwaters (High Asia), J Hydrometeorol, 19, 777–801, https://doi.org/10.1175/JHM-D-17-

0106.1, 2018. 

Xu, X., Li, J., and Tolson, B. A.: Progress in integrating remote sensing data and hydrologic 

modeling, Prog Phys Geogr, 38, 464–498, https://doi.org/10.1177/0309133314536583, 

2014. 

Zaherpour, J., Masaki, Y., Hanasaki, N., Gosling, S. N., Mount, N., Hannes, M., and Ted, I. E.: 

Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models 

that account for human impacts OPEN ACCESS Worldwide evaluation of mean and extreme 

runoff from six global-scale hydrological models that account for human impacts, 

Environmental Research Letters, 13, 065015, 2018. 

Zhao, F., Masaki, Y., Hanasaki, N., Biemans, H., Zaherpour, J., Gosling, S. N., Veldkamp, T. I. E., 

Frieler, K., Schewe, J., Ostberg, S., and Willner, S.: The critical role of the routing scheme in 

simulating peak river discharge in global hydrological models The critical role of the routing 

scheme in simulating peak river discharge in global hydrological models, Environmental 

Research Letters, 12, 075003, 2017. 

Zhao, L., Xia, J., Xu, C. yu, Wang, Z., Sobkowiak, L., and Long, C.: Evapotranspiration estimation 

methods in hydrological models, Journal of Geographical Sciences, 23, 359–369, 

https://doi.org/10.1007/s11442-013-1015-9, 2013. 

  

 


	Summary
	1 About these guidelines
	1.1 Background
	1.2 Scope
	1.3 Reading guide

	2 Introduction to glacio-hydrological modelling
	2.1 Introduction to glacio-hydrological modelling
	2.2 Types of GHMs
	2.3 Key processes for glacio-hydrological modelling
	2.3.1 Melt modelling
	2.3.2 Snow sublimation
	2.3.3 Permafrost
	2.3.4 Evapotranspiration
	2.3.5 Groundwater
	2.3.6 Flow routing

	2.4 Typical challenges in setting up GHMs
	2.4.1 Data availability
	2.4.2 Spatiotemporal resolution
	2.4.3 Computational time
	2.4.4 Model uncertainty


	3 Introduction to the SPHY model
	3.1 Overall approach of the SPHY model
	3.2 Snow processes
	3.3 Glacier processes
	3.4 Soil processes
	3.5 Lake or reservoir processes

	4 Setting up a glacio-hydrological model
	4.1 Spatial resolution
	4.2 Model timestep and time-horizon
	4.3 Data requirement for SPHY model setup
	4.3.1 Digital Elevation Model (DEM)
	4.3.2 Soil properties
	4.3.3 Land use data
	4.3.4 Glacier outlines
	4.3.5 Glacier ice thickness
	4.3.6 Meteorological forcings

	4.4 Data required for SPHY model calibration
	4.4.1 Snow cover
	4.4.2 Glacier mass balance
	4.4.3 Discharge
	4.4.4 Optional complementary data and challenges

	4.5 Model parameter sensitivity analysis
	4.6 Model calibration approach
	4.6.1 Snow
	4.6.2 Glaciers
	4.6.3 Rainfall-runoff and groundwater

	4.7 Typical outputs of the SPHY and their application
	4.8 Scaling up and transferring a model to another HMA river basin
	4.9 The Bhagirathi river basin case study

	5 Climate change impact assessment
	5.1 Assessing climate change impact
	5.2 Download climate change projections
	5.3 Selection of GCMs
	5.4 Bias-correction
	5.5 Downscaling
	5.6 Future hydrological impact assessment
	5.7 Links to water allocation and downstream demand

	6 References

