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Abstract: Weather forecasting is essential for agriculture, yet current methods often lack
the localized accuracy required to manage extreme weather events and optimize irriga-
tion. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a
modular system that integrates novel European space-based, airborne, and ground-based
technologies. Unlike conventional forecasting systems, MAGDA enables precise, field-level
predictions through the integration of cutting-edge technologies: Meteodrones provide
vertical atmospheric profiles where traditional data are sparse; GNSS-reflectometry of-
fers real-time soil moisture insights; and all observations feed into convection-permitting
models for accurate nowcasting of extreme events. By combining satellite data, GNSS,
Meteodrones, and high-resolution meteorological models, MAGDA enhances agricultural
and water management with precise, tailored forecasts. Climate change is intensifying
extreme weather events such as heavy rainfall, hail, and droughts, threatening both crop
yields and water resources. Improving forecast reliability requires better observational data
to refine initial atmospheric conditions. Recent advancements in assimilating reflectivity
and in situ observations into high-resolution NWMs show promise, particularly for convec-
tive weather. Experiments using Sentinel and GNSS-derived data have further improved
severe weather prediction. MAGDA employs a high-resolution cloud-resolving model
and integrates GNSS, radar, weather stations, and Meteodrones to provide comprehensive
atmospheric insights. These enhanced forecasts support both irrigation management and
extreme weather warnings, delivered through a Farm Management System to assist farmers.
As climate change increases the frequency of floods and droughts, MAGDA’s integration
of high-resolution, multi-source observational technologies, including GNSS-reflectometry
and drone-based atmospheric profiling, is crucial for ensuring sustainable agriculture and
efficient water resource management.
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1. Introduction
Based on six international datasets, 2024 was confirmed by the World Meteorological

Organization (WMO) as the warmest year on record. The global average surface tempera-
ture reached 1.55 °C above the 1850–1900 average [1]. The decade from 2015 to 2024 was the
warmest on record, and climatic extremes have become increasingly frequent and intense.

Climate change is fundamentally reshaping agricultural systems by altering temper-
ature regimes, precipitation patterns, and the availability of water resources [2]. Rising
global temperatures have intensified evaporation rates, reduced soil moisture retention,
and increased the frequency and severity of extreme weather events, such as heatwaves,
droughts, and heavy precipitation. These changes pose significant risks to crop yields,
irrigation practices, and food security, forcing the agricultural sector to adapt rapidly to
evolving environmental conditions to tackle crop damage [3–6].

One of the most pressing challenges is precipitation variability, which has led to
prolonged droughts in some regions and excessive rainfall in others. Southern Europe has
experienced below-average rainfall, exacerbating drought conditions and increasing stress
on water resources, while Northern Europe has faced above-average precipitation, leading
to flooding, soil erosion, and reduced agricultural productivity.

Moreover, a crucial consequence of climate change is the decline in snow water volume,
which impacts seasonal water availability for agriculture, as snow buffers winter precipitation
into summer melt, when water demand peaks while precipitation declines [7–9]. These
fluctuations create unstable growing conditions during the crop season, making it difficult for
farmers to plan irrigation schedules and crop cycles effectively.

The Food and Agriculture Organization (FAO) of the United Nations reports that
around 70% of global water use is attributed to agriculture. Furthermore, by 2030, irrigation
water withdrawal is expected to grow by about 14%, according to the FAO irrigated area
forecast [10]. This highlights the growing importance of optimizing irrigation water usage
in addressing the challenges of increasing water scarcity [11].

The unpredictability of water availability due to climate variability increases the
demand for advanced decision-support tools to optimize water distribution and minimize
waste. Recent projections indicate that climate change could lead to yield reductions of up
to 22% for grain maize in Europe, with Southern regions being particularly affected [12].
Wheat yields in Southern Europe are expected to decrease by up to 49%, while Northern
Europe may experience some compensatory benefits from increasing atmospheric CO2

levels and altered precipitation regimes [12]. Adaptation measures such as crop variety
changes, enhanced irrigation techniques, and soil management could mitigate losses, but
sustainable water limits may restrict large-scale expansion. Additionally, extreme weather
events, including heatwaves and heavy rainfall, could impact both crop yields and soil
conditions, posing further challenges for farmers [12–14].

Modern technologies have significantly improved irrigation water management over
recent decades, addressing water scarcity challenges through mechanical, electrical, and
software advancements [15,16]. These innovations enable precise control over water distri-
bution and support optimized allocation at larger scales.

Irrigation scheduling determines the optimal timing and volume of water application.
Over the past two decades, various Decision Support Systems for Irrigation Scheduling (IS-
DSS) have been developed to assist farmers and managers [17–19]. These systems integrate
Earth Observation (EO) techniques for crop monitoring [20–24], weather forecasts [25–30], soil
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water balance models [31,32], and machine learning [15,16,33], offering a combined approach
to efficient irrigation planning. Each of these methodologies presents specific advantages and
limitations, requiring a combined approach to maximize efficiency in irrigation planning, as
demonstrated in the MOSES project [34], and highlighting the need for systems that can more
accurately forecast high-impact weather events affecting crops [35–37].

In this context, the MAGDA (Meteorological Assimilation from Galileo and Drones for
Agriculture) project delivers a highly innovative approach to precision irrigation, address-
ing key challenges in climate-resilient agriculture. By integrating real-time atmospheric
data from GNSS signals, drone-based meteorological profiling, Copernicus Earth Observa-
tion data, ground-based radar, and in situ sensors, MAGDA creates a dynamic, data-driven
framework for weather and irrigation forecasting. The system significantly improves
short- and very short-term predictions, enabling farm-specific adaptive water manage-
ment strategies. Using cost-efficient GNSS stations and Meteodrones for high-resolution
atmospheric profiling, MAGDA overcomes limitations of defining initial conditions for
numerical weather prediction models and contributes to enhancing weather forecasts. Its
irrigation advisory service integrates the SPHY hydrological model, offering accurate water
balance simulations, while severe weather forecasts are generated using high-resolution nu-
merical weather prediction models assimilating various types of observations. Furthermore,
MAGDA delivers its insights through developer-friendly APIs for seamless integration into
Farm Management Systems, making advanced, hyper-local weather and irrigation data
accessible and actionable for end-users. Through this combination of multi-source data
assimilation, predictive modeling, and user-oriented services, MAGDA provides a novel,
operational solution that enhances resilience and efficiency in agricultural water manage-
ment. It represents a step forward for precision irrigation by combining high-resolution,
multi-source datasets, real-time monitoring, and predictive analytics, ensuring sustainable
agricultural water management and improved extreme weather forecasting under climate
change conditions.

This paper is structured as follows: Section 2 describes the materials and methods,
MAGDA demonstrator sites, and the advanced observation technologies deployed, includ-
ing GNSS, Meteodrones, in situ sensors, and satellite data. It also outlines the forecasting
models, the integration of MAGDA services into Farm Management Systems, and the vali-
dation methods used for meteorological and hydrological assessments. Section 3 presents
the results, followed by a discussion in Section 4 and final conclusions in Section 5.

2. Materials and Methods
2.1. MAGDA Demonstrator Sites

The MAGDA project is being tested across three demonstrator sites strategically
selected in different agricultural regions of Europe. These sites, located in Italy, France, and
Romania, encompass diverse climatic conditions, soil types, and crop types, allowing for
the evaluation of MAGDA’s integrated system in a variety of agricultural contexts (Figure 1).
Each site is characterized by distinct crop water requirements, irrigation methods, and
vulnerability to climate variability, providing a comprehensive assessment of MAGDA’s
flexibility and performance.

2.1.1. Italy–Fruit Orchards

The first demonstrator site is situated in the Cuneo province, in the Piedmont region
of northern Italy, one of the most significant fruit-producing areas in the country. The
region specializes in the cultivation of apples, peaches, kiwis, plums, cherries, almonds,
and hazelnuts. Farmers in this area rely on both natural rainfall and irrigation systems,
which vary from traditional drip irrigation to more advanced precision techniques.
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The primary objective at this site is to improve short-term rainfall forecasting and
optimize water resource management for fruit orchards. The MAGDA system integrates
GNSS receivers, Meteodrones, and in situ sensors to measure soil moisture, atmospheric
water vapor, temperature, and precipitation. This information helps farmers make data-
driven irrigation decisions, reducing water waste while ensuring optimal conditions for
crop growth.

Figure 1. MAGDA project sites location and crop types with an example of the deployed sensors.

Several farms within a 4.5–7 km radius have been equipped with MAGDA sensors,
strategically positioned to monitor microclimatic variations. These data points are also used
for assimilation into weather models, particularly for forecasting localized thunderstorms
and hail events, which represent a major risk factor for fruit production.

2.1.2. France–Vineyards

The second demonstrator site is located in Burgundy, France, particularly in the Beaune
Valley, a globally renowned wine-producing region. The test site includes vineyards owned
by Maison Louis Jadot, a prestigious winery producing high-quality wines. Burgundy’s
vineyards are highly sensitive to temperature fluctuations, frost events, drought stress, and
extreme rainfall, all of which can impact grape quality and yield.

MAGDA’s deployment in Burgundy focuses on climate adaptation for viticulture,
using an array of GNSS sensors, Meteodrones, and in situ weather monitoring stations
installed across different vineyard locations. These sensors track air and soil temperature,
humidity, wind speed, and solar radiation, helping viticulturists anticipate weather-related
risks and optimize vineyard management strategies.

MAGDA’s implementation in Burgundy is designed to enhance extreme weather antic-
ipation, particularly for convective storms and hail events, although the countermeasures
currently available to vineyard managers remain only partially effective. Among the strate-
gies currently in use at Maison Louis Jadot and its network of vineyard growers are field
candles and heating wires for late frost, as well as chimney networks for hail protection.

Another key priority for stakeholders is improving the usability of meteorological
data for decision-making. While growers currently rely on an existing forecasting portal,
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they find the data difficult to interpret and not always reliable. There is strong interest
in more actionable and accessible weather insights, which aligns closely with MAGDA’s
interoperability and dashboard tasks.

Although vineyards in Burgundy do not require irrigation infrastructure, there is a
strong demand for better water status monitoring at the vineyard level. Understanding
soil moisture conditions can inform adaptive soil management practices, helping growers
optimize grape production. The transition from macro-level weather insights to local-
ized, field-specific data is a critical step in improving climate resilience in viticulture, and
MAGDA’s sensor network is designed to support this shift.

2.1.3. Romania–Cereal and Oilseed Farming

The third demonstrator site is located in Brăila County, Romania, within the Danube
River floodplain and the Bărăgan Plain, which is the most fertile agricultural area in Eastern
Europe. This region supports large-scale industrial farming of summer crops, including
corn, sunflower, soybean, wheat, and barley. Farmers in Brăila face significant challenges
related to water availability, soil moisture variability, and extreme weather events such as
droughts and floods.

The MAGDA test site in Brăila consists of three sensor deployment areas: one within
the Embanked Great Island of the Danube River and two further inland in the Bărăgan
Plain. These locations have been selected to assess spatial variability in soil moisture and
crop water requirements.

MAGDA’s real-time data assimilation system aims to improve irrigation planning
by integrating satellite-derived soil moisture data, in situ GNSS reflections, and atmo-
spheric observations from Meteodrones. By correlating historical precipitation data with
current field conditions, the system helps agricultural stakeholders optimize their irrigation
schedules and prepare for extreme weather events, ensuring better crop resilience and
resource efficiency.

2.2. Data-Collecting Sensors Used in the Project: GNSS, Meteodrones, In Situ Sensors, Sentinel

The observation system developed within the MAGDA project integrates GNSS re-
ceivers, Meteodrones, in situ meteorological and soil sensors, and Copernicus Sentinel
satellite data, forming a multi-platform, high-resolution monitoring network. This system
is designed to improve the accuracy of numerical weather prediction (NWP) models and
hydrological simulations by providing continuous, multi-source observational data.

In addition to leveraging pre-existing observation networks—including weather
radars, meteorological stations, and permanent GNSS networks—MAGDA has deployed
new observational assets directly within agricultural fields of interest. The installation of
low-cost GNSS receivers, Meteodrones, and in situ metIS sensor hubs enables localized,
high-resolution environmental monitoring, improving the characterization of key mete-
orological and hydrological variables. The newly deployed sensors are integrated with
existing data sources through dedicated assimilation and processing frameworks, ensuring
a synergistic use of satellite, airborne, and ground-based observations.

2.2.1. Gnss-Based Atmospheric and Soil Moisture Observations

GNSS data are used to retrieve tropospheric delay parameters for atmospheric water
vapor estimation, as well as soil moisture content via GNSS-Reflectometry (GNSS-R).
The MAGDA project utilizes a combination of permanent GNSS networks—such as the
European Permanent Network (EPN)—and newly installed GNSS receivers at agricultural
demonstration sites to provide high-resolution data.

The primary meteorological parameter derived from GNSS is Zenith Total Delay
(ZTD), computed using Precise Point Positioning (PPP) algorithms [38], which represent
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the total atmospheric delay experienced by GNSS signals due to refraction by water vapor
and dry air. In the MAGDA project, ZTD is assimilated into the WRF model (WRFDA),
where it helps improve short-term weather forecasts by refining atmospheric moisture
fields [39]. The assimilation of ZTD allows for a direct constraint on atmospheric humidity,
reducing errors in water vapor estimation and improving forecast skill, particularly in
convective events.

For soil moisture estimation, GNSS-R techniques analyze signal-to-noise ratio (SNR)
interference patterns from dual-frequency GNSS receivers, enabling the retrieval of surface
soil moisture variability [40]. The integration of GNSS-R soil moisture retrievals with
Sentinel-derived soil moisture products and in situ soil sensors provides a multi-source
validation framework for hydrological modeling.

2.2.2. Meteodrones for High-Resolution Vertical Profiling

Meteodrones were strategically deployed in agricultural regions to complement ra-
diosonde observations and ground-based meteorological station networks, offering high-
resolution vertical atmospheric profiling. The Meteodrone MM-670 is equipped with
high-precision sensors for temperature, relative humidity, and pressure. Wind speed and
direction are computed from the attitude of the Meteodrone. Meteodrones can operate in
wind speeds of up to 90 km/h, withstand moderate rain, and fly through fog and clouds
under icing conditions thanks to their integrated de-icing system.

The Meteodrones are pre-programmed to perform a straight vertical ascent/descent
at a constant climb rate of 10 m/s up to a maximum altitude of 6000 m (AMSL). A typical
flight profile takes 22 min. However, custom flights are also possible. The flights are
controlled by an onboard autopilot system. The flights in Italy were conducted on-site by a
pilot using a mobile drone system, while the flights in France and Romania were operated
remotely from Meteomatics’ headquarters in St. Gallen, Switzerland, using a Meteobase.
The Meteobase serves as a ground station for remote Meteodrone operations, enabling the
automated launch and landing of Meteodrones.

Meteodrone flights were conducted at all demonstration sites (Italy, France, and
Romania), providing detailed vertical profiles of atmospheric stability, boundary layer
processes, and moisture transport. The collected data were integrated into WRF simula-
tions, ensuring a coherent assimilation strategy alongside GNSS-ZTD and in situ tempera-
ture/humidity data.

2.2.3. In Situ Meteorological and Soil Sensors

The MAGDA project deployed metIS hubs as part of its in situ sensor network to
enhance localized environmental monitoring in agricultural areas. These hubs were specifi-
cally designed to provide high-frequency meteorological and soil measurements and were
deployed across the demonstration sites. The metIS hubs integrate various sensor con-
figurations, including air temperature and humidity sensors, anemometers, rain gauges,
soil moisture probes, and leaf wetness sensors, making them a versatile solution for both
meteorological and agronomic monitoring.

The hubs were deployed in two configurations: as standard weather stations, and as
in-crop sensors placed directly within cultivated fields to provide more representative environ-
mental data. The weather station configuration included wind speed, rainfall, air temperature,
humidity, and soil temperature and moisture sensors, while the in-crop configuration focused
on leaf wetness duration and soil properties relevant to precision agriculture.

Data from the metIS hubs were transmitted every 15 min via cellular networks, initially
using 2G connectivity, which was later upgraded to LTE-M to improve data transmission
reliability, particularly in rural areas where network coverage was initially problematic.
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These data were processed and stored in the CAP 2020 infrastructure and made accessible
to the MAGDA forecasting system through a structured API, ensuring seamless integration
with numerical weather prediction (NWP) and hydrological models.

The validation of the metIS hub measurements was conducted by comparing their
outputs with data from existing meteorological station networks, Sentinel satellite obser-
vations, and GNSS-Reflectometry (GNSS-R) soil moisture retrievals. This multi-source
validation framework ensured that the hubs provided accurate and reliable environmental
data, thus enhancing the representation of small-scale meteorological and soil moisture
variations essential for agricultural decision-making.

The modular and easy-to-deploy nature of the metIS hubs allowed MAGDA project
partners to install them efficiently across different demonstration sites, reducing setup
costs while significantly enhancing localized meteorological monitoring capabilities. Their
integration into the broader observation network, alongside GNSS, Meteodrones, and
Sentinel, further strengthened the multi-scale, high-resolution monitoring strategy adopted
within the project, providing valuable input for improved weather forecasting, hydrological
modeling, and agricultural risk assessment.

2.2.4. Copernicus Sentinel Earth Observation Data

The Copernicus Sentinel satellite constellation, developed by the European Space
Agency (ESA), provides high-resolution Earth observation data that are critical to envi-
ronmental monitoring, land surface characterization, and hydrological modeling. The
MAGDA project integrates data from Sentinel-1, Sentinel-2, and Sentinel-3, leveraging their
complementary capabilities to retrieve key parameters such as soil moisture, land cover,
vegetation indices, and land surface temperature (LST).

Sentinel-1, a synthetic aperture radar (SAR) mission, is particularly valuable for all-
weather soil moisture estimation. Unlike optical sensors, SAR data acquisition is unaffected
by cloud cover and sunlight availability, making it suitable for continuous soil moisture
monitoring. Within the MAGDA framework, Sentinel-1 backscatter coefficients are pro-
cessed to derive surface soil moisture variability, complementing GNSS-Reflectometry
(GNSS-R) and in situ soil moisture sensors. The integration of Sentinel-1 data enables
frequent and high-resolution monitoring of soil moisture conditions, which is critical for
hydrological applications.

Sentinel-2, a multi-spectral imaging mission, provides high-resolution optical data for
vegetation monitoring, agricultural land use classification, and water stress assessment. The
project utilizes the Normalized Difference Vegetation Index (NDVI) and the Moisture Stress
Index (MSI) to evaluate crop health and irrigation needs. NDVI is calculated using the
near-infrared (NIR) and red spectral bands to assess vegetation vigor, with values ranging
from −1 (water bodies) to 1 (dense vegetation). The MSI, derived from the shortwave
infrared (SWIR) and NIR bands, provides a quantitative estimate of vegetation moisture
stress, where higher values indicate greater water stress. These vegetation indices are
processed at 10 m spatial resolution and analyzed for the period from 2015 to the present,
ensuring a long-term perspective on crop conditions.

Sentinel-3, specifically its Sea and Land Surface Temperature Radiometer (SLSTR),
provides Land Surface Temperature (LST) products at a 1 km resolution with a daily
frequency of four observations (two from Sentinel-3A and two from Sentinel-3B). LST is
a critical variable for evapotranspiration (ET) estimation, an essential component of the
agricultural water balance and drought assessment. The MAGDA project processes actual
evapotranspiration using the Sen-ET SNAP plugin, developed by EOatDHI (Hørsholm,
Denmark) in the Sen-ET project (https://www.esa-sen4et.org/) and financed by ESA. It is
a model based on the Two-Source Energy Balance (TSEB) approach [41]. This methodology

https://www.esa-sen4et.org/
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integrates solar radiation flux, latent heat flux, and atmospheric parameters to compute
actual evapotranspiration (ETdaily), which is crucial for precision irrigation and water
resource management.

The integration of Sentinel-derived products with in situ observations and numeri-
cal weather prediction (NWP) models ensures that remote sensing datasets are properly
validated and assimilated. The Sentinel datasets were assessed for temporal and spatial
alignment with key weather events, ensuring that their outputs could be effectively incor-
porated into MAGDA’s forecasting and hydrological modeling framework. However, the
feasibility of operational integration is influenced by satellite revisit times, particularly for
real-time monitoring of fast-developing weather phenomena. This limitation is addressed
through continuous in situ monitoring of soil moisture, which offers high temporal reso-
lution. By integrating Sentinel-derived products with in situ data, it is possible to bridge
the spatial and temporal gaps inherent to each monitoring approach, thereby enhancing
high-resolution environmental analysis within MAGDA.

2.3. Forecasting Models
2.3.1. Meteorological Model Setup

The meteorological model used in the MAGDA project is based on the Weather
Research and Forecasting (WRF) system [42], configured to simulate atmospheric conditions
over the selected study areas. The model was implemented with two domain configurations:
one covering Italy and France, and the other focused on Romania. Each configuration
consists of three nested domains with spatial resolutions of 22.5 km, 7.5 km, and 2.5 km
(Figure 2A,B).

The model employs physical parameterization schemes validated in prior studies on
similar meteorological events [39,43–46]. The schemes adopted for the WRF-OL (Open
Loop, without assimilation) and WRF-DA (Data Assimilation) simulations include the
WSM6 microphysics scheme [47], the YSU planetary boundary layer scheme [48], the
RRTMG longwave and shortwave radiation schemes [49], and the RUC land surface
model [50]. Cumulus parameterization is explicitly applied in the innermost domain (D03).
These parameterizations were selected for their ability to accurately reproduce the regional
meteorological conditions relevant to the project. The YSU scheme ensures a realistic
representation of vertical mixing, while the WSM6 scheme simulates mixed-phase cloud
processes, thereby improving precipitation forecasts.

Data assimilation was performed using a three-dimensional variational (3DVAR)
approach available in WRFDA [51], incorporating an outer-loop procedure [52]. This
iterative process updates the analysis field, allowing previously rejected observations to be
assimilated in subsequent cycles. The number of outer loops was determined via sensitivity
tests on selected use cases balancing computational cost and the number of assimilated
observations. Three outer loops were found to offer an optimal trade-off, significantly
improving the analysis while maintaining reasonable computational demand. This setup
is consistent with CIMA’s operational meteorological forecasting chains, including those
used for nowcasting [53,54], and ensures progressive refinement of the background field
through each assimilation cycle.

The background error covariance matrix (B matrix) was computed using the NMC
method [55], applied to July 2020 forecasts with 24-h and 12-h lead times at 00:00 UTC.
Differences between t + 24 and t + 12 forecasts for the same initialization time were used
to derive domain-specific error statistics, enabling seasonally adjusted background error
estimates for each simulation period.

Two forecasting strategies were implemented to support hydrological and convective
storm applications. For hydrological and irrigation use cases, a 120-h (5-day) forecast is
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initialized daily at 00:00 UTC, assimilating observations at 18:00, 21:00, and 00:00 UTC
(Figure 2C). The impact of assimilation is primarily evaluated within the first 24 h, while the
full forecast provides input to the hydrological model. For convective storm nowcasting,
a rapid-update cycle was adopted, featuring a 3-hourly 3DVAR assimilation and a 12-h
forecast horizon (Figure 2D).

The main objective of the MAGDA project was to design a forecasting chain with
a high degree of operational readiness by the end of the project. For this reason, the
configuration of the assimilation cycles was not exploratory, but instead built upon a robust
foundation of prior research, consolidated over time through multiple peer-reviewed
publications, applications across various contexts, and several years of experience in
operational forecasting environments [39,45,46,53,54,56–60].

Figure 2. MAGDA domain configuration and data assimilation setup. (A) shows the three nested
WRF domains used for the Italian and French demonstrator sites, and (B) for the Romanian site. The
outermost domain (D01) covers approximately 30–60°N and 20°W–30°E in (A), and 30–60°N and
0–50°E in (B), with a horizontal resolution of 22.5 km. The intermediate domain (D02) spans roughly
35–55°N and 10–20°E in (A), and 35–55°N and 10–40°E in (B), at 7.5 km resolution. The innermost
domain (D03) focuses on the pilot areas, ranging from approximately 39°N to 50°N and 0° to 15°E in
(A), and from 42°N to 48°N and 20°E to 30°E in (B), with 2.5 km resolution. Latitude and longitude
tick labels are shown for both panels. (C) illustrates the forecast configuration for hydrological and
irrigation applications, where 3DVAR assimilation is applied at 18:00, 21:00, and 00:00 UTC, followed
by a 120-h free forecast starting at 00:00 UTC. (D) presents the rapid-update scheme adopted for
convective storm forecasting, involving 3-hourly 3DVAR cycles and a 12–24-h forecast horizon to
enhance short-term storm prediction.

2.3.2. Agrohydrological Model Setup

The irrigation advisory service of MAGDA rests on the SPHY model [61], whose
irrigation module has been improved and adapted for delivering short-term and mid-term
forecasts (up to 5 days ahead) of Irrigation Water Requirements (Figure 3).
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Figure 3. Flowchart of the MAGDA irrigation advisory service.

Irrigation Water Requirement (IWR) is defined here as the supplemental water needed
to meet crop water demand that is not fulfilled by rainfall and existing soil moisture. IWR
is computed as:

IWR = ETc − ETc,act = ETc − (Pe f f + ETsm) (1)

where ETc is the crop reference evapotranspiration under non-stress conditions, and Etc,act

is the actual crop evapotranspiration. Pe f f is the effective precipitation, and ETsm is the
fraction of the soil water content at the root-zone that is taken by crops for evapotranspi-
ration (also known as the Root Zone Water Supply). The component Pe f f + ETsm is the
total of water available from rainfall and soil moisture that is used at each timestep to meet
the crop water requirement. Under stress conditions for which rainfall and soil moisture
stored in the root-zone (Pe f f + ETsm) do not match the crop water requirements (ETc), the
Pe f f + ETsm component may be similar to the crop evapotranspiration computed by using
satellite-based evapotranspiration methods.

Conceptually, the SPHY model used in MAGDA adopts a simplified 1D leaky-bucket
approach, which simulates the dynamics of soil water content in the root-zone domain by
considering the main inflows (rainfall) and outflows (interception, actual evapotranspira-
tion, and drainage) that account in the soil–crop–atmosphere continuum (Figure 4A).

The water balance in the root-zone domain is computed as:

∆SM = In f − D − ET (2)

being SM the soil moisture in the root zone in water depth, Inf is the fraction of the
rainfall that infiltrates into the root zone after canopy interception is discounted, D is the
volume of water outflowing the root zone due to vertical or lateral drainage, and ET is the
actual evapotranspiration.

Drainage is computed using a power–law relationship:

D = k · EWCp (3)

where EWC (mm/day) refers to the Excess Water Content or amount of water that exceeds the
soil’s field capacity after accounting for precipitation inflows within the root zone (saturation-
excess approach). Parameters k and p define the soil drainable-water retention curve of
a soil, with k being the diffusivity coefficient (mm2/day) and p the moisture diffusivity
exponent (dimensionless). The impact of different values in p and k controls how drainable
water is retained in the root zone, and therefore the intrinsic capacity of the soil to buffer
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the onset of plant water stress and hence the need for irrigation. Both parameters can be
empirically calibrated from the decay of the soil moisture observed in the root zone profile
immediately after rainfall events, when drainage may account for this and evapotranspiration
losses are minimal. When soil moisture data is not available, typical values from literature
can be adopted. Although the impact of different k-p paired values may have a critical
impact on the generation of drainage and the onset of dryness conditions, this effect can be
abruptly reduced when conditions for the generation of drainage are not met. Conditions for
drainage generation in our analysis were only met in 2% of all the simulation runs due to
the combination of (a) initial conditions with very dry soils very far from the field capacity),
(b) small-size rainfall events (less than 25 mm) that were not enough for reaching the field
capacity of the soils, and (c) an irrigation strategy which aims to meet crop water requirements
at each timestep instead of filling the soil bucket up to the field capacity. Due to the difficulties
found in calibrating the k-p parameters and considering the boundary conditions of our study,
typical values of 0.2 for k and 1.5 for p were adopted.

Actual evapotranspiration from the root-zone domain (ETsm in Equation (1)) is es-
timated using the FAO56 algorithm [62] and incorporates a stress factor (Fstress) when
soil moisture levels fall between the wilting point (wp) and field capacity (fc) (Figure 4B).
Fstress ranges from 0, when soil moisture is lower than the wilting point, to 1 when soil
moisture exceeds the field capacity. Both soil parameters, wp and fc, can be set up based
on laboratory analyses or derived from pedotransfer functions if data on soil texture and
organic matter content are known.

ETsm = ETc · Kc · Fstress (4)

ETc is crop reference evapotranspiration computed according to the Penman–Monteith–
FAO equation [63]. Kc is the crop coefficient under optimal or non-stress conditions.

In this study, SPHY was set up and tested in the SCDAB and Tetto-Bernardo pilot sites,
assuming the general parameters listed in (Table 1)). For Kc values, the 4-stage growth
model suggested by the FAO Irrigation and Drainage Paper No. 24 [64] was adopted.
In both pilot sites, the crop season was split into initial, development, middle, and end
stages; each one characterized by a particular length and a tabulated or expert-based crop
coefficient Kc (see (Table 2)). The starting and ending dates for each stage of the crop were
calculated once the planting date was fixed.

Figure 4. Conceptual flowchart of the MAGDA irrigation advisory service: (A) Main inflow and outflow
fluxes simulated in the root-zone domain, (B) Subdomains of flux simulation based on the actual soil
moisture content in the root-zone and the soil moisture at the wilting point and field capacity.
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Table 1. Site parameters used in the irrigation advisory service.

Site Name SCADB Tetto-Bernardo

Lat, Lon (EPSG:4326) (45.21, 27.92) (44.41, 7.52)
Altitude (m a.s.l.) 13.5 527
Crop type Maize-grain Apple
Planting date 01-apr 01-jul
Root depth (m) 0.5 1
Soil texture Loam Loam
Total porosity (%) 0.85 0.85
Soil wilting point (vol/vol) 0.15 0.15
Soil field capacity (vol/vol) 0.35 0.35
Soil diffusivity coefficient, k (mm2/day) 0.2 0.2
Soil moisture diffusivity exponent, p (dimensionless) 1.5 1.5

Table 2. Duration of crop development stages and crop coefficients for maize-grain (SCDAB) and
apple (Tetto-Bernardo) crops.

SCDAB, Maize-Grain
Initial Develop. Middle End

Lenght crop stage (days) 30 40 50 50
Crop coefficient, Kc 0.10 0.30 1.20 0.50

Tetto-Bernardo, Apples
Initial Develop. Middle End

Lenght crop stage (days) 35 45 40 15
Crop coefficient, Kc 0.15 0.60 0.95 0.70

2.3.3. Weather Forcings and Forecasting Windows

The SPHY model was forced using weather forecasts generated with and without
assimilation. Forecasts without data assimilation (OL) do not include MAGDA system
data from in situ sensors, GNSS, and/or Meteodrones. This configuration is considered
in this study as the benchmark for comparison purposes. DA forecasts assimilate di-
verse data sources, depending on availability: radar data, GNSS data, in situ temperature
measurements, and data retrieved from Meteodrones.

The impact of assimilation is expected to be more relevant during the first 12 to
24 h after the assimilation of in situ data, and progressively decreases as the forecast
window extends. The magnitude of this impact may vary across test cases, depending on
factors such as the quantity and type of observations available, atmospheric conditions at
assimilation time, and event typology. Differences in IWR forecasts between OL and DA
products highlight the potential advantages of using data assimilation in terms of water
savings and more accurate irrigation quota adjustments.

To account for spatial variability and uncertainty in weather forecasts, SPHY was
forced with an ensemble of 49 forecast paired-value vectors of precipitation and refer-
ence evapotranspiration. Each member represents forecast trajectories generated within
a bounding box of 21 km × 21 km area (7 × 7 grid points in the forecast mesh). The final
recommendation of irrigation at each pilot site is delivered as the mean value of all IWR
figures simulated in the ensemble.

The demonstrator was run on the SCDAB (Romania) Tetto-Bernardo (Italy) pilot sites
during different testing periods throughout the summer and autumn of 2024. In selecting
the dates, priority was given to the occurrence of rainfall events and to periods with
the highest availability of MAGDA data from GNSS, Meteodrone flights, and/or field-
scale weather and soil moisture sensors. The final selected dates are reported in Table 3.
In order to comply with the user requirements previously surveyed among farmers and
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stakeholders, IWR forecasts were generated/updated with a frequency of 2 days, starting in
our analysis from the beginning of each testing period. For comparison purposes between
OL and DA, and short-term and medium-term forecast outcomes, results in Section 3 are
delivered as the average of all the IWR retrieved in a common period of 5–6 days.

Table 3. Forecasting time windows tested per pilot site and total rainfall measured.

Site Window of Forecast SCDAB Tetto-Bernardo

Romania

29 June–3 July 2024 10.5
22–26 July 2024 3.2

5–8 August 2024 5
7–11 September 2024 12.1

Italy 20–24 June 2024 43.7
Total rainfall (evaluated period) 30.8 43.7

2.4. Farm Management System Integration

Farm Management Systems (FMS) represent a technological evolution in agriculture,
providing farmers with advanced tools to optimize the management of their farms. These
systems integrate agro-meteorological data, soil and crop information, and predictive
models to guide agronomic decisions in real time.

The benefits are substantial: increased production efficiency, reduced operational costs,
and minimized environmental impact through targeted use of resources such as water and
agrochemicals. Moreover, FMS can enhance product traceability and quality, two aspects
that are increasingly demanded by environmentally and socially conscious consumers.

2.4.1. A Variety of End Users

Potential end users of MAGDA outputs vary significantly across the different demon-
stration sites and regions of Europe. From the small clos in Burgundy to the large agricul-
tural fields in Romania, there is a common interest in enhanced extreme weather forecasts
and decision-supporting data.

End users include not only farmers but also agricultural advisors, operating at various
scales. The demonstration sites also host a variety of crops: vineyards in France and
orchards in Italy, which are perennial crops, and cereals in Romania.

The impacts of extreme events differ between perennial and annual crops. For instance,
frost or hail can affect both the current and subsequent year’s yields in vineyards and
orchards, while extreme heat can result in permanent damage to trees and vines. Hydric
stress primarily affects orchards and cereals, where precise irrigation recommendations
based on reliable forecasts can significantly improve water management practices.

This context led MAGDA’s partners to develop both an API and a dashboard to
provide access to the data collected and generated by the system, paving the way for
seamless integration into Farm Management Systems.

2.4.2. The Challenging Task of FMS Interoperability

The integration of data generated by the infrastructure developed during this project,
which includes meteorological and agro-meteorological information to enhance crop man-
agement, poses significant challenges when attempting to interface with third-party systems
such as Farm Management Systems (FMS). These challenges stem primarily from the pro-
prietary nature of these systems, which often require custom development efforts by their
publishers to enable compatibility with external data sources.

However, these publishers are typically reluctant to invest in such developments unless
there is substantial demand and pressure from their user base. This creates a bottleneck for
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the adoption of innovative data-driven solutions in agricultural management, as the value
of integrating these new data streams is often not immediately recognized or prioritized by
the FMS providers.

To address this issue and ensure the usability of the project’s outputs across diverse
systems, we adopted an open API (Application Programming Interface) approach. By
providing an open API, the results and insights generated through the project can be
made accessible to any third-party system willing to integrate them, without requiring
proprietary developments from the FMS providers themselves.

This approach not only removes the dependency on specific publishers but also
empowers end users and stakeholders to leverage the data in ways that suit their unique
requirements.

The dashboard itself is designed to meet the need for accessible, actionable data from
the MAGDA infrastructure. It also uses MAGDA’s API and demonstrates the interest
of MAGDA to the end user, using visualizations for both raw in situ sensor data and
model outputs.

Dashboard components can also be embedded within third-party systems, such as
graphs integrated into extranets, thus facilitating interoperability and wider adoption.

2.4.3. Functionalities of the Dashboard

We aimed to provide a simple yet powerful dashboard, capable of displaying data
from MAGDA’s infrastructure in a comprehensive and user-friendly way (Table A1). The
dashboard was made accessible to MAGDA’s stakeholders throughout the entire project
via four successive versions, each incorporating additional features.

Initial feature prioritization was based on interviews with key users and resulted in a
first version offering basic data visualization, alert functions, and the ability to group sen-
sors into specialized categories. During the project, field demonstrations of the dashboard
(in France, Italy, and Romania) were conducted to collect feedback and fine-tune specific
functionalities, including enhanced display customization for different user needs.

An additional objective was to ensure that the dashboard could highlight the differ-
ences between forecasts produced with and without assimilation of MAGDA sensor data.
This was particularly useful for demonstration purposes during selected extreme weather
events captured throughout the operational phase of the project.

2.5. Validation Methods
2.5.1. Meteorological Validation

The meteorological validation of the WRF model in the MAGDA project was con-
ducted using the MODE (Method for Object-Based Diagnostic Evaluation) technique, an
object-oriented verification method designed to assess spatial agreement between fore-
casted and observed precipitation fields. This approach provides diagnostic insights that
are more directly interpretable than traditional grid-point verification techniques, making
it particularly useful for evaluating high-resolution numerical weather prediction (NWP)
models [65–67].

MODE identifies precipitation objects in both forecast and observation fields, char-
acterizing their attributes such as area, centroid position, orientation, intersection, and
intensity ratio [68]. Key spatial attributes include rainfall extent characteristics such as
area ratio and intersection area, and spatial relationships such as centroid distance and
angle difference. These descriptors quantify the shape, orientation, and spatial alignment
of forecasted versus observed features. The primary statistical indices used for evaluation
were the Frequency Bias Index (FBIAS), the Probability of Detection (POD), the Critical
Success Index (CSI), and the False Alarm Rate (FAR) [67].
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The assimilation analysis of 2mT, ZTD, and reflectivity was summarized using a box-
plot approach to assess improvements at each assimilation cycle across different variables.
Boxplots provide a visual representation of the distribution of bias and standard deviation,
offering a statistical summary to evaluate how assimilation impacts model accuracy by
examining changes in central tendency, variability, and outliers. The boxplot includes
the first quartile (Q1), third quartile (Q3), and interquartile range (IQR = Q3 − Q1). The
whiskers extend based on 1.5 · IQR, with the actual length depending on data distribution.
The upper whisker reaches the largest value within Q3 + 1.5 · IQR, and the lower whisker
extends to the smallest value within Q1 − 1.5 · IQR. Outliers are represented as dots beyond
this range.

This method effectively evaluates the impact of data assimilation on forecast uncer-
tainty: a reduction in the spread of the box or whiskers indicates decreased variability, and
a shift in the median toward zero suggests improved bias. Outliers highlight specific cases
where assimilation has a localized effect, either correcting or amplifying forecast errors.

2.5.2. Hydrological Validation: Comparison of Outcomes with Traditional Methods

As part of an intercomparison analysis or model validation exercise, recommendations
of irrigation from SPHY have been compared against quotas of irrigation applied at the
SCDAB pilot site during the 2024 crop season. Irrigation at SCDAB is applied according to
the ICITID Baneasa-Giurgiu method [69], a traditional method widely used in the region.
This method rests on monthly mean values of potential evapotranspiration derived from
the Thornthwaite method, crop-specific coefficients previously adjusted for the typical
crops in the region (maize, sunflower, soybean, and wheat), and in situ soil moisture
measurements. The method provides the time and amount of irrigation to be applied in
the loamy soils of the Braila region based on the Management Allowed Depletion (MAD)
concept. MAD is defined in this method as the difference between the field capacity and
the wilting point. For irrigated maize, the method states 50% of the MAD as the threshold
for applying irrigation. When soil moisture is below this threshold, irrigation for applying
is the total volume of water needed to reach the field capacity of the soil. Theoretical
recommendations for irrigation are finally adjusted to the particular and complex irrigation
system of the Braila county, where irrigation is applied less often but with high quotas
per irrigation. During the 2024 summer season, maize was irrigated five times between
May and August, accounting for a total of 2250 m³/ha. The ICITID method does not take
into account precipitation forecast or in situ meteorological forcings. In order to compare
this traditional method with SPHY outcomes, irrigation quotas actually applied in SCDAB
were scaled to daily values to cover the same testing forecasting windows simulated in
this study.

3. Results
3.1. Meteorological Forecasting and Assimilation Performances

A preliminary analysis was conducted to evaluate the model’s performance and
determine the optimal setup to be applied in the demonstrator phase. Specifically, six
case studies (two for each site of interest) were selected to assess the impact of data
assimilation under different meteorological conditions. For each case, forecast model
runs were validated against radar data corrected with rain gauge measurements, and
rainfall verification was performed over various accumulation periods—6 h, 12 h, and
24 h—depending on the event type and agricultural needs. The MODE software (v. 9.1)
was used to identify and match observed and forecasted precipitation patterns, followed
by the calculation of relevant statistical indices. This preliminary analysis enabled the
identification of the most suitable model configuration for subsequent application in the
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demonstrator phase. The results confirmed that data assimilation significantly improves
the accuracy of short-term precipitation forecasts, particularly in terms of spatial alignment
and peak intensity, while still providing a positive, though reduced, effect on 24-h forecasts.
This supports its operational relevance.

This section presents only the results from the demonstrator phase, which leveraged
the validated setup to highlight the overall added value of the forecasting approach de-
veloped within the project. Two distinct demonstrator types were implemented, each
addressing specific practical applications. The first focused on irrigation advice, aiming to
improve water management in agriculture by enhancing forecasts of key variables such as
temperature, humidity, and rainfall—critical parameters for informed irrigation decisions
and crop health. The second demonstrator targeted forecasting of extreme weather events,
particularly localized convective storms such as summer thunderstorms. Given their short
duration, high intensity, and spatial variability, these events pose significant forecasting
challenges. In particular, the French demonstrator applied advanced data assimilation
techniques to improve the short-term prediction of convective storms, thereby supporting
disaster management and early warning systems. In both demonstrators, all available
sensor data from various sources were assimilated to maximize forecast reliability and
operational relevance.

Within the MAGDA framework, which integrates both irrigation management and
extreme weather forecasting demonstrators, different validation strategies were adopted
according to the objectives of each case. For the irrigation-focused demonstrators, rainfall
validation was delegated to the hydrological component, as the hydrological and irrigation
models provide a direct assessment of how rainfall localization and intensity affect water
resource management. This approach aligns with previous studies, where hydrological
output was used as an indirect validation tool to assess the impact of meteorological
forecasts on outcomes relevant to end users [45,54]. Accordingly, validation in these
demonstrators focuses on the contribution of data assimilation, particularly from project-
specific sensors integrated into existing networks, to improved model state and forecast
performance for agriculturally relevant variables during the summer season.

Conversely, for the French demonstrator, which specifically targets short-term fore-
casting of summer convective events in a nowcasting framework, a direct validation of
precipitation forecasts was performed. This approach was intended to highlight the value
of data assimilation in improving convective event predictions, where its impact is most
relevant for timely risk mitigation.

During the demonstrator phase, specific periods and events were selected across the three
pilot sites to evaluate the impact of data assimilation under operational conditions. For the
Italian site, one time window from 20 to 24 June 2024 was analyzed, focusing on hydrological
and irrigation advisory services. In Romania, four different time windows corresponding
to various stages of the 2024 summer crop season were selected: 29 June–3 July, 22–26 July,
4–8 August, and 6–11 September, all related to irrigation management needs. For the French
site, the selected time window of 18–19 June 2024 featured a convective event characterized
by notable spatial variability in rainfall intensity, elevated atmospheric moisture, and the
availability of Meteodrone profiles, making it a representative case for testing improvements
in short-term convective forecasting.

3.1.1. Irrigation-Focused Demonstrators

The Romanian and Italian demonstrators were designed to improve irrigation man-
agement by incorporating data assimilation techniques into weather forecasting. In the
Romanian demonstrator, the data assimilation process involved assimilating 2mT obser-
vations from the national network, radar reflectivity, ZTD data from GNSS stations, and
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Meteodrone data when available. The same data were assimilated in the Italian demonstra-
tor, except for Meteodrone data, which were not available during the study period. The
results obtained from a meteorological and assimilation perspective were similar at both
sites; therefore, the outcomes are presented jointly in the following discussion.

As a first evaluation, the bias and standard deviation values for 2mT, ZTD, and radar
reflectivity were analyzed across the three assimilation cycles, providing insights into
forecast error propagation throughout the assimilation process (Appendix A.2).

To provide an overall assessment of the impact of data assimilation in the Romanian
demonstrator, Figure 5 summarizes the performance of key variables by comparing the
background forecast (BF) and the analysis (DA) against observations. The evaluation
focuses on three variables: 2-m temperature (2mT), radar reflectivity, and GNSS-derived
Zenith Total Delay (ZTD), analyzed across multiple assimilation cycles.

For near-surface temperature, the results show a clear and substantial improvement
after assimilation. Both the standard deviation and bias of 2mT (Figure 5A,B) residuals
are significantly reduced in the analysis compared to the background forecast, confirming
that assimilation effectively corrects temperature errors and stabilizes the forecast near
the surface.

Figure 5. Boxplots showing the standard deviation (SD) and bias of residuals for 2-meter temperature
(2mT, A,B), radar reflectivity (C,D), and GNSS-derived Zenith Total Delay (ZTD, E,F) over multiple
assimilation cycles in the Romanian demonstrator. Results compare the background forecast (obs-
background) and the analysis (obs-analysis) residuals against observations.

In the case of radar reflectivity (Figure 5C,D), the impact of assimilation is more
moderate. The analysis shows a slight reduction in bias, indicating that the assimilation
process helps to nudge the model towards better agreement with observed convective
structures. However, the standard deviation remains largely unchanged. This behavior
is expected, considering the high inherent variability and noise of radar observations, as
well as the limited number of cases available, which constrain the potential for noticeable
improvements in the spread of errors.

Regarding GNSS-ZTD (Figure 5E,F), assimilation leads to a slight reduction in bias,
bringing the model’s representation of atmospheric water vapor closer to observations.
However, the improvement remains within the observational error margin of approximately
1.5 cm, which is already accounted for in the 3D-Var assimilation scheme. Moreover,
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since the analyzed period did not include particularly intense meteorological events, the
background forecast already provided an adequate representation of the vapor field, thus
limiting the potential for further correction through assimilation.

In the Romanian demonstrator, vertical profiles collected by weather drones (Me-
teodrones) were assimilated whenever available, with the objective of assessing their
contribution to improving the model’s representation of key atmospheric variables such
as temperature, dew point temperature, wind speed, and wind direction. In total, eight
assimilation cycles involving drone data were analyzed, corresponding to eight distinct
time instances under different meteorological conditions. These profiles provided high-
resolution information in the lower and middle troposphere, where traditional observations
are typically sparse, making them particularly valuable for short-term forecast improve-
ments. For an evaluation of the impact of cycling assimilation, see Appendix A.1.

Across all cases, the general trend confirms that the data assimilation (DA) step
consistently improves the model state compared to both the background forecast (BF),
which includes observations from previous cycles but not the most recent ones, and the
open-loop (OL) simulation without any assimilation. The DA run systematically shows
better agreement with observations, especially for thermodynamic variables, indicating the
effective integration of drone data into the model.

However, the benefit of assimilation is not uniform across all cases and variables. In
several instances, the BF does not significantly outperform the OL simulation, suggesting
that the improvement introduced by previous assimilation cycles may dissipate depending
on atmospheric dynamics and model characteristics. Additionally, while DA consistently
improves temperature and humidity profiles, its impact on wind-related variables, partic-
ularly wind speed, exhibits greater variability, with performance depending on specific
vertical levels and prevailing meteorological conditions.

Figure 6 provides a detailed example of this behavior, focusing on two consecutive
assimilation cycles: 30 June 2024 at 21:00 UTC and 1 July 2024 at 00:00 UTC. The top panels
show the detailed vertical profiles of temperature, dew point temperature, wind speed,
and wind vector cosine similarity (WCOS), comparing the observations, analysis (DA), and
background forecast (BF). In both cycles, the temperature and dew point profiles reveal
that DA successfully corrects the biases present in BF, particularly near the surface and
around 850–700 hPa.

Wind speed, which is generally underestimated by BF, is also better represented in
the DA run, though some residual discrepancies persist in certain layers, especially near
850 hPa. The WCOS indicator shows that DA improves the directional agreement of wind
vectors with observations, especially in the lower layers, though the improvement is less
pronounced in the first cycle.

The lower panels of the figure present the same variables at predetermined pressure
levels, adding the OL simulation (blue lines) for a comprehensive comparison. This enables
the evaluation of the cumulative effect of assimilation cycles and assesses whether BF
shows any improvement over the OL run. For temperature, all three simulations (OL, BF,
DA) are relatively close to observations, with DA offering slight refinements, particularly
near 925–850 hPa.

Dew point temperature shows a more pronounced improvement in DA, which reduces
the dry bias present in OL and BF. Wind speed profiles confirm that OL underestimates
wind intensity, BF provides partial correction, and DA yields the best alignment with
observations, though discrepancies remain at mid-levels. WCOS similarly shows better
agreement in DA, especially below 800 hPa, indicating an improvement in wind direction
alignment after assimilation.
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3.1.2. Extreme Event Forecasting: Convective Storms

At each site, multiple model runs were performed both with and without data as-
similation to evaluate its potential added value in providing farmers with more accurate
and precise forecasts. To achieve this, a sensitivity analysis was conducted by adjusting
specific parameters within the MODE software to determine the optimal configuration for
comparing predicted and observed weather patterns.

The French demonstrator assimilated data from various sources, including 2 m temper-
ature, Zenith Total Delay (ZTD), and Meteodrone observations, to enhance the prediction
of convective storms. The assimilation of these observations led to significant improve-
ments in spatial and temporal accuracy, especially regarding the intensity and location of
rainfall. By comparing simulations with and without data assimilation, it was found that
assimilation improved the model’s ability to predict the evolution of convection, even in
cases where storms were not particularly severe. The improved forecasts were particularly
valuable for localized storm prediction, as they allowed for more accurate storm tracking
and better-informed decision-making regarding disaster response and preparedness.

For the two French cases (18 June 2024 and 19 June 2024), the evaluation focused on
the effect of assimilation on convective storm forecasts in the vicinity of the area of interest.
These simulations were run in a nowcasting setup, with shorter forecasts initialized closer
to the event. For both events, the verification timestep ranged from 12:00 to 24:00 UTC.

It is worth noting that in both cases, the rainfall events were neither particularly
intense nor severe, and the recorded precipitation amounts were relatively low: these two
days were selected because thunderstorms coincided with the availability of drone data
for assimilation.

The analysis focused on lower precipitation thresholds, not exceeding 15 mm. This
choice was made because setting a higher threshold would have limited the identification
of sufficiently relevant objects in the verification process, thereby reducing the effectiveness
of the evaluation.

In the first French case (18 June 2024), a threshold of 5 mm/12 h was adopted due
to the low event intensity. Figure 7 (top) shows the objects recognized by MODE—both
observed and forecasted. The left columns display WRF OL objects, while the right columns
show WRF DA objects, for the 5 mm/12 h threshold. Blue contours represent observed
objects; brown areas indicate forecasted objects; the red dot marks the Beaune site. Data
assimilation notably improved the model’s performance, especially in terms of spatial
pattern alignment, across all evaluated precipitation thresholds.

An examination of the statistical indices reveals that DA achieves a slightly higher
Critical Success Index (CSI) than OL, indicating a better match between predicted and ob-
served events. CSI excludes correct negatives and focuses solely on relevant forecasts, being
sensitive to hits and penalizing both missed events and false alarms without distinguishing
the source of error.

Both OL and DA exhibit a general overestimation of precipitation; however, DA
slightly amplifies this tendency, as reflected by a higher FBIAS. This also impacts the POD
index, with DA showing a higher value than OL—indicating that a greater fraction of
observed events is correctly predicted. Additionally, DA presents a slightly lower FAR,
indicating fewer false alarms.

Finally, the bottom panels of Figure 7 display the main MODE-derived attributes,
comparing WRF OL (blue bars) and WRF DA (green bars). These confirm the superior
spatial consistency of the DA run.

More specifically, the attribute “angle diff”, which measures the difference in orienta-
tion between forecasted and observed objects, is smaller in the DA run, indicating better
alignment. Moreover, the “area ratio”, which quantifies overprediction or underprediction
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of spatial extent, the “intersection area”, which captures the overlap between forecast and
observation, and the “centroid dist”, which measures spatial displacement, all confirm the
superior performance of DA over OL.

Figure 6. Detailed vertical profiles (first two rows) of temperature (T, first column), dew point
temperature (TD, second column), wind speed (third column), and the cosine of the angle between
wind vectors (fourth column). The comparison is made between Meteodrones observations (black),
background (orange), and DA analysis (red) to evaluate the impact of data assimilation on atmo-
spheric variables at 21 UTC (first row) and 00 UTC (second row). Last two rows: Comparison of
WRF model state in the OL (Open Loop, blue), BF (Background Forecast, orange), and DA (Data
Assimilation, red) configurations against Meteodrone observations (black) at predefined pressure
levels (dots refers to the model values available at the different pressure levels). The panels show the
vertical profiles of temperature (T, first column), dew point temperature (TD, second column), wind
speed (third column), and the cosine of the angle between wind vectors (fourth column) at 21 UTC
(third row) and 00 UTC (fourth row).

Moving on to the second case study in France (20240619), it is evident that the after-
noon thunderstorms were slightly more intense and widespread in the areas surrounding
the site of interest.
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Both model simulations, with and without data assimilation, successfully captured
the spatial distribution and precipitation peaks. As a result, precipitation validation was
conducted for two thresholds: 10 mm and 15 mm/12 h.

Figure 8 (top) displays the objects identified by MODE, both observed and predicted,
offering a graphical representation of the MODE output. The left columns display the
objects for WRF OL, while the right columns show WRF DA for the 10 mm and 15 mm/12 h
thresholds. In the figure, blue contour lines represent observed objects, brown areas indicate
forecasted objects, and the red dot marks the Beaune site.

Figure 7. Graphical representation of MODE output: on the top WRF OL (left column) and WRF
DA (right column) for thresholds 5 mm/12 h where blue line contours represent observation objects,
brown patterns represent forecasted objects, the red dot represents Beaune site; in the middle are
plotted main statistical indices with the red lines the best scores for each index; on the bottom are
plotted main parameters with the red lines the best scores for each index.

A visual inspection reveals that both model runs accurately predicted the location of
observed objects. However, DA demonstrates greater precision compared to OL, along with
improved accuracy in terms of agreement between the forecast and actual observations.

Additionally, the figure presents statistical indices computed using MODE. These
show that while both runs overestimate precipitation at both thresholds, data assimilation
helps to slightly reduce this overestimation.

Since the PODY, FAR, and FBIAS indices should be interpreted together, it can be
observed that in the OL run, where precipitation is more strongly overestimated, the
probability of correctly predicting “yes” events is higher, resulting in a slightly greater
PODY compared to DA. However, this also leads to a higher number of false alarms, as
indicated by the greater FAR value for OL relative to DA.
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Figure 8. Graphical representation by MODE output: (top) WRF OL and WRF DA for thresholds 10 mm and 15 mm/12h where blue line contours represent
observation objects, brown patterns represent forecasted objects, the red dot represents Beaune site; (middle) are plotted main statistical indices with the red lines the
best scores for each index; (bottom) are plotted main parameters with the red lines the best scores for each index.
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Moreover, the CSI index, which measures the agreement between forecast and ob-
served “yes” events, is very similar for both runs and thresholds, with a slight improvement
in DA. Overall, DA improves spatial accuracy by refining feature localization and reduc-
ing overestimation compared to OL. While OL exhibits a higher Probability of Detection
(PODY), it also has a higher False Alarm Ratio (FAR), meaning it tends to overpredict
precipitation, leading to rainfall forecasts where none occurred. DA, although more con-
servative, reduces false alarms and produces a more realistic precipitation field, balancing
detection capability with improved precision.

Finally, the bottom panels of Figure 8 show the main MODE-derived spatial attributes,
comparing WRF OL (blue bars) and WRF DA (green bars). It is observed that the intersec-
tion area, representing the overlapping region between observed and forecasted objects, is
very similar in both OL and DA, with a slight deterioration for DA.

However, looking at the area ratio, defined as the area of the predicted object di-
vided by the area of the observed object and serving as an indicator of overestimation or
underestimation, a clear improvement in DA is evident for both thresholds.

Again, considering the attribute “angle diff”, which indicates the angular difference
between the axes of the forecasted and observed objects, DA performs better at the 15 mm
threshold, while OL shows a smaller angle difference at 10 mm. This suggests that at 10 mm,
the OL forecasted object is more aligned in orientation with the observed object, whereas at
15 mm, DA achieves better angular alignment.

Finally, regarding centroid distance—which quantifies the spatial displacement be-
tween the centroids of forecasted and observed objects, results are comparable between OL
and DA at the 10 mm threshold, while DA shows a significantly smaller displacement at
15 mm. This indicates that at higher intensities, DA better captures the correct location of
precipitation features.

3.2. Irrigation Advice Results from Agro-Hydrological Modeling

The irrigation advisory service of MAGDA provides farmers with forecasts of daily
Irrigation Water Requirements (IWR) in m³/ha/day for short-term (2-day ahead) and
medium-term (5-day ahead) forecast windows. Although sub-daily resolution may be of
high interest under certain circumstances, this temporal resolution for outcomes was not
explicitly requested by local farmers during the earlier phases of the research in which
they were surveyed regarding their specific needs. According to the MAGDA irrigation
approach adopted, IWR estimates represent the supplementary water that farmers may
apply as irrigation to meet the crop’s daily water needs, based on weather forcings, crop
development stage, and current soil moisture levels in the root zone.

Tables 4 and 5 present irrigation recommendations—i.e., IWR values—issued at the
SCDAB and Tetto-Bernardo pilot sites for the selected testing periods. The relative contri-
bution of IWR to the crop reference evapotranspiration (IWR/ETc ratio) is also reported for
comparison purposes.

In SCDAB, with a higher sample size of forecasts than in Tetto-Bernardo, estimates
of IWR and IWR/ETc ratios derived from weather forecasts with data assimilation (DA)
were consistently higher than those retrieved for the benchmark case (OL) for both forecast
windows. However, in Tetto-Bernardo, no clear difference was observed during the single
testing period evaluated.

The results show that, in the SCDAB testing site, short-term (2-day ahead) forecasts of
IWR and IWR/ETc were consistently higher than in medium-term (5-day ahead) forecasts
(0.32–0.23 vs. 0.29–0.19, for DA-OL configurations, respectively) in the SCDAB testing site.
No differences were detected in the Tetto-Bernardo site.
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Recommendations for irrigation derived using the long-term DA forecast were in the
same order of magnitude as irrigation quotas actually applied at the farm level follow-
ing the traditional ICITID method (Table 6). Although not fully comparable due to the
large conceptual differences between methods, in general, the ICITID method provided
recommendations 35% lower than the MAGDA solution. These differences highlight the
importance of accurately simulating the soil moisture dynamics and the climate forcings
that control the water balance in the atmosphere-crop-soil continuum. The MAGDA solu-
tion may provide a clear advantage against current practices that rest on coarse approaches
applied at county and regional scales.

Table 4. Short-term forecasts of precipitation (Pf cast), crop reference evapotranspiration (ETc), and
Irrigation Water Requirement (IWR) derived from different weather forecast products (DA and OL)
at different testing dates and sites. IWR and ETc in m3/ha/day. Total rainfall in the period measured
at the site (Pobs) and forecasted (Pf cast) are in mm.

2-Days
DA OL

Site Testing Period P_obs P_fcast ETc IWR IWR/ETc P_fcast ETc IWR IWR/ETc
29 June–3 July 21.0 10.8 110.71 37.60 0.34 14.0 103.63 28.42 0.27
22 July– 26 July 6.0 7.6 108.39 50.34 0.46 14.7 94.06 29.29 0.31

SCDAB 5 August–9 August 20.26 0.23 12.0 75.97 12.44 0.16
7 September–11 September 24.0 20.7 29.83 0.00 0.00 19.4 29.18 0.00 0.00
Average 15.3 12.8 83.94 27.05 0.32 15.0 75.71 17.54 0.23

Tetto-Bernardo 20 June–24 June 43.7 28.6 39.03 1.72 0.04 24.7 40.63 1.74 0.04

Table 5. Medium-term forecasts of precipitation (Pf cast), crop reference evapotranspiration (ETc), and
Irrigation Water Requirement (IWR) derived from different weather forecast products (DA and OL)
at different testing dates and sites. IWR and ETc in m3/ha/day. Total rainfall in the period measured
at the site (Pobs) and forecasted (Pf cast) are in mm.

5-Days
DA OL

Site Testing Period P_obs P_fcast ETc IWR IWR/ETc P_fcast ETc IWR IWR/ETc
29 June–3 July 21.0 16.2 108.34 30.14 0.28 20.9 102.80 21.29 0.21
22 July– 26 July 6.0 18.3 104.63 44.62 0.43 20.2 92.48 22.86 0.25

SCDAB 5 August–9 August 20.26 0.23 19.5 75.97 12.44 0.16
7 September–11 September 24.0 13.5 30.91 0.00 0.00 24.8 29.85 0.00 0.00
Average 15.3 14.7 82.67 23.76 0.29 21.4 75.27 14.15 0.19

Tetto-Bernardo 20 June–24 June 43.7 50.8 41.5 4.48 0.04 52.9 17.87 3.93 0.04

Table 6. Comparison of recommendations for irrigation derived from SPHY forced with long-term DA
forecasts and the irrigation quotas already applied in the SCDAB pilot site in Romania. Precipitation
values, Pobs and P f cast, refer to the total rainfall in the testing period. ETc and IWR values are in
m3/ha/day.

MAGDA Method-DA (5-Days) ICITID Method

Site Testing period Pobs Pf cast ETc IWR ETc IWR
29 June–3 July 10.5 16.2 108.3 30.1 49.48 20.0
22 July–26 July 3.2 18.3 104.6 44.6 56.23 28.1

SCDAB 5 August–9 August 5.1 10.6 86.8 20.3 52.23 10.7
7 September–11 September 12.1 13.5 30.9 0.0 25.20 10.7

Average 7.7 14.7 82.7 23.8 45.8 17.4

3.3. Farm Management System Integration: Communication to End Users

The versatility of the developed dashboard allowed the creation of distinct user
accounts tailored to a wide range of user types—farmers or wine producers, cooperatives,



Remote Sens. 2025, 17, 1855 25 of 36

advisors, and experts. Data access could be either unrestricted or limited to a specific
demo site, depending on the user’s profile. Farmers who agreed to host part of MAGDA’s
infrastructure were granted an account with access to all available data for their respective
national demonstrator site (Figure 9).

Figure 9. View of an Italian farmer’s dashboard with access to Meteodrone data and three in-crop in
situ sensors.

Available data included Meteodrone flight data, in situ sensor data, forecast model
outputs, and agro-hydrological results. Feedback from farmers was collected by Cap 2020
through interviews with users of its in situ sensors in France during the 2023 and 2024
campaigns, conducted independently of MAGDA, including users of the API that allows
seamless data integration into third-party systems such as disease modeling applications
or farm management software (Figure 10).

Figure 10. Numerical weather forecast model using MAGDA’s infrastructure, with comparison to
open-loop model forecasts, as displayed to farmers.
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In the scope of MAGDA, stakeholders from all demonstrator sites were informed
of new functionalities, and meetings were organized accordingly: France (Burgundy) in
March 2023 and May 2024, Italy (Piedmont) in January 2025, and Romania (Brăila region)
in March 2025. During these meetings, the functionalities of the dashboard and API were
presented, and questions were answered.

Feedback led to adjustments in the dashboard, including a more efficient display of
long time series and the possibility to define user-specific indicators, relatively simple cal-
culations based on available data, adaptable to various crops and user profiles (Figure 11).

Figure 11. Simple indicators based on MAGDA data can be customized and displayed by the farmer,
e.g., disease risk, crop maturity, or water stress.

4. Discussion
A number of recent studies have investigated the integration of weather forecasts

into irrigation scheduling models, highlighting both the benefits and limitations of such
approaches. For example, [27] demonstrated that coupling real-time optimization with
probabilistic forecasts, even when imperfect, can lead to significant gains in profitability
and reductions in water. Likewise, [70] emphasized how forecast confidence, lead time,
soil characteristics, and nitrogen availability interact to influence yield and environmen-
tal efficiency across different climatic zones. However, these studies are predominantly
based on simulation frameworks that may face challenges when applied in operational set-
tings, particularly under variable observational conditions or in areas with heterogeneous
agricultural practices.

The MAGDA approach builds upon and extends these efforts by developing and vali-
dating an integrated, operational framework that combines high-resolution meteorological
forecasting, data assimilation from multi-source sensor networks (GNSS, Meteodrones,
in situ, and satellite data), and agro-hydrological modeling tailored to site-specific con-
ditions. In doing so, MAGDA not only addresses the physical accuracy of short- and
medium-term forecasts but also enhances their usability through an open-access dashboard
and API, enabling direct integration with Farm Management Systems (FMS). This shift
toward user-oriented design is crucial for the operational uptake of decision-support tools
in agriculture.

Furthermore, while earlier studies such as [71] explored interactive systems where
farmers could respond to model recommendations in real-time, MAGDA takes a comple-
mentary approach by embedding user feedback into the system design and validation
process. This ensures that the forecasts and irrigation advisories are not only technically
sound but also aligned with the real needs of diverse stakeholders. The integration of
localized observational data and flexible assimilation cycles enables MAGDA to adapt
dynamically to different agronomic contexts, offering both robustness and scalability.
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Thus, MAGDA’s results offer a foundation for next-generation advisory systems that
combine robust modeling with adaptive learning from farmer behavior. Expanding the
observational network and further refining assimilation modules may enhance medium-
and long-term forecast performance, potentially overcoming some of the limitations of
short-term forecasting observed in prior work [27].

From the GNSS sensors’ point of view, PPP-based integrated water-vapor (IWV) re-
trievals within MAGDA, using both geodetic-grade and low-cost GNSS receivers, confirm
the robustness of this technique, in accordance with the work by [72–74]. In contrast,
deriving soil moisture from GNSS reflectometry proved more challenging: in the MAGDA
project, sensors relied solely on low-cost units, and agricultural deployment introduced
uneven terrain, seasonal snow cover, and dense, rapidly changing vegetation that limited
the usage of SNR-based reflections. Although controlled-environment studies have re-
cently reported encouraging accuracy [75–77], MAGDA’s field experience underscores the
practical limitations that still constrain large-scale operational use.

• Data assimilation impact: The DA framework showed consistent improvements
in model performance, especially for 2-meter temperature (2mT) forecasts. Radar
reflectivity and Zenith Total Delay (ZTD) assimilation also improved forecasts, though
their benefit was more constrained by observational noise.

• Vertical profiling via drones: The assimilation of eight Meteodrone-based vertical
profiles significantly refined thermodynamic fields in the planetary boundary layer
and lower troposphere. While improvements in temperature and humidity were
consistent, results for wind speed were more variable, underscoring the need for more
robust wind-related observational data.

• Convective storm prediction: DA improved key forecast skill metrics for convec-
tive storms, such as Probability of Detection (PODY) and False Alarm Ratio (FAR),
highlighting better storm localization and reduced false positives.

• Demonstrator-specific outcomes: In the French demonstrator (nowcasting of con-
vective storms), DA notably enhanced spatial accuracy and reduced false alarms.
In contrast, in the Romanian and Italian demonstrators focused on irrigation, DA
improved model initialization but had a subtler effect on precipitation forecasts due
to already moderate rainfall events and longer forecasts losing the assimilation effect
that typically influences the first 6–12 h.

• Irrigation strategy refinement: Even when rainfall forecasts were similar between
DA and OL runs, DA contributed to more consistent and realistic system states. This
led to better-informed irrigation strategies, with potential water savings compared
to traditional approaches based only on reference evapotranspiration. A comparison
with the ICITID method used operationally at the Romanian pilot site showed that
MAGDA’s long-term DA forecasts produced irrigation recommendations of the same
order of magnitude. However, the ICITID method provided quotas approximately 35%
lower than MAGDA. This discrepancy highlights the value of simulating soil moisture
dynamics and climate forcings in a coupled atmosphere–crop–soil framework, offering
a potential advantage over coarse, county-scale approaches.

• Sensor-driven initialization: The hydrological models benefited from initialization with in
situ soil moisture sensors. Although not formally compared to satellite-based initializations,
these site-specific measurements appear more suitable for field-scale applications.

• Update frequency: More frequent forecast updates (every 2 days vs. 5) led to bet-
ter irrigation efficiency, reinforcing the value of short-term updates in operational
advisory systems.

• User engagement and customization: The MAGDA dashboard demonstrated a high
degree of operational flexibility and user-centered design. Throughout the project,
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multiple stakeholder engagement activities—including field demonstrations, user
interviews, and national workshops—allowed for iterative refinement of the system.
Feedback from farmers, cooperatives, and technical advisors led to improvements
such as the display of long time series, the creation of customized indicators (e.g.,
crop-specific water stress or disease risk), and the simplification of data visualization
to enhance usability across different user profiles.

• Alignment with EU policy and strategic integration: MAGDA’s outcomes directly
contribute to the broader objectives of the European Green Deal and the Common
Agricultural Policy (CAP) by promoting sustainable water management, resilience
to climate variability, and resource efficiency. The system’s architecture, featuring
an open API and modular services, facilitates interoperability with existing Farm
Management Systems (FMS), enabling adoption by both public-sector platforms and
commercial agri-tech providers. Furthermore, the project’s clustering efforts and
alignment with other EU-funded initiatives have strengthened the strategic visibility
and replicability of MAGDA across European agricultural value chains.

• Economic sustainability and exploitation potential: The MAGDA system, as imple-
mented and tested, proved to be an economically sustainable solution for high-value
crop contexts, thanks to the scalability of its sensor infrastructure and the modularity
of its digital services. The project established the groundwork for both commer-
cial and non-commercial uptake pathways, including precision agriculture solution
providers, public authorities responsible for water and risk management, and envi-
ronmental research institutions. This multi-channel exploitation strategy, coupled
with the system’s demonstrated adaptability, increases the potential for long-term
operational deployment

5. Conclusions
Climate change and the growing pressure on water resources underscore the urgent

need for forecasting systems that are more localized, accurate, and actionable to support
decision-making in agriculture. In response to this challenge, the MAGDA project was
designed to develop and assess an integrated framework that combines high-resolution
numerical weather prediction, advanced data assimilation techniques, field-deployed
observational infrastructure (including drone-based atmospheric profiling and in situ soil
moisture monitoring), agro-hydrological modeling, and a user-centric digital platform. The
overarching goal was not only to enhance the physical accuracy of meteorological forecasts,
but also to ensure their direct applicability in operational contexts, such as irrigation
scheduling and convective weather risk management, across both farm and regional scales.

The integrated MAGDA system was tested at three pilot sites representing diverse
climatic and agricultural conditions across Europe. The results demonstrate that data
assimilation notably improves the representation of the atmospheric state, particularly for
near-surface thermodynamic variables, leading to more accurate and stable forecasts. The
French demonstrator clearly illustrated the added value of assimilation for convective storm
prediction, improving both spatial precision and detection capability. In the irrigation-
focused demonstrators in Romania and Italy, the assimilation of drone-based and ground-
based observations led to improved soil moisture initialization and forecast realism, even
under moderate rainfall scenarios where open-loop forecasts were already reasonably
accurate. Significantly, the integration of meteorological forecasts with a soil moisture-
sensitive crop irrigation model enabled more adaptive and efficient water use strategies
than those based on conventional crop reference evapotranspiration alone.

Local, high-resolution observational data proved particularly effective in increasing
the field-scale relevance of forecasts, where satellite-derived products often fall short in
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spatial and temporal specificity. Furthermore, the analysis highlighted the operational
advantage of frequent forecast updates (e.g., every two days), which resulted in reduced
irrigation requirements without compromising forecast accuracy.

Key contributions of the MAGDA project can be summarized as follows:

• Multi-source assimilation: Integration of GNSS, drone-based profiling, radar, and in
situ sensors into a high-resolution forecasting chain.

• Improved forecast accuracy: Enhanced short-term and very-short-term forecasts for
both convective events and agricultural variables, particularly near-surface tempera-
ture and moisture.

• Agro-hydrological coupling: Operational linkage of weather forecasts with soil-moisture
sensitive irrigation modeling (SPHY), enabling site-specific irrigation recommendations.

• Operational dashboards: Development of a user-oriented interface and open APIs for
integration with Farm Management Systems.

• Validated impact: Demonstrated improvements in forecast skill, irrigation efficiency, and
usability across three European pilot sites with diverse climatic and agricultural conditions.

These findings support the conclusion that co-designed, integrated forecasting systems,
combining assimilation, observation, modeling, and stakeholder-oriented interfaces, can
effectively bridge the gap between scientific forecasting capabilities and real-world agricultural
needs. While further refinement is still needed in background error characterization and
observation network optimization, the framework developed through MAGDA lays a solid
foundation for operational, climate-resilient agro-meteorological services, offering a cost-
effective solution suitable for real-world deployment in diverse agricultural contexts.
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Abbreviations
The following abbreviations are used in this manuscript:

2mT 2 m Temperature
BF Background Forecast
DA Data Assimilation
EPN European Permanent Network
FMS Farm Management System
GNSS Global Navigation Satellite System
NWP Numerical Weather Prediction
OL Open Loop
PPP Precise Point Positioning
ZTD Zenith Total Delay

Appendix A
Appendix A.1

Table A1. Features available in the Farm Management System Dashboard.

Type of Feature Description

User management Possibility to easily give access to a subset of data to a given set of users. (i.e., farmers can have access to data on the location of their
farm, local advisors on a demo site, MAGDA stakeholders and partners on all demo’s sites data)

Summary display Quick view of all in situ sensors status together with GNSS stations status and Meteodrone status. Last data & alerts for in situ,
Meteodrone, hydrological & numerical weather model in a block view.

In situ data display possibility to display in situ sensors data over various time windows.
Meteodrone data display Possibility to display last Meteodrone flight data (vertical profile)

Hydrological model results display Possibility to display useful irrigation advice information on a map based view on the different points of interest of a demo site.

Weather numerical model display Possibility to display different versions of a past forecast (i.e. with full assimilation of sensors or not), together with actual
measurements.

User indicators Possibility to define indicators of interest using data from MAGDA’s sensors and models. Indicators is a way to display synthetic
decision making data calculated using raw data. They usually are more simple than a model.

Data visualization fine tuning Possibility for the user to select the way data can be displayed, for example when selecting a period of X days between two dates,
should the data be displayed as hourly data or daily data.

Data download Possibility for the user to download short or extended periods of data that he wishes to use, in a readable, convenient format.
translation The dashboard should be easy to translate in any language using translation files.

Responsive interface The dashboard should be navigable and easily usable on personal computers, tablets, phones.

Appendix A.2

In this Appendix, an initial evaluation of the assimilation performance across the assim-
ilation cycles is presented, offering insights into how forecast errors propagate throughout
the assimilation process. Since the indices are calculated by comparing observations to the
background at each assimilation step, they allow for tracking the evolution of errors as the
forecast progresses. The behavior is similar with all variables, thus, only the 2mT will be
discussed here for the sake of brevity. The Romanian demonstrator is used because more
cases are available on that site, allowing for a wider boxplot statistics, but similar behavior
is shown also for the Italian site. The assimilation of 2mT data revealed fluctuations in
forecast bias across the assimilation cycles (Figure A1A,B). Initially, a positive bias (−1 °C
to −2 °C) in the second cycle, and then returned to positive values (1 °C) by the third
cycle. These fluctuations indicate that the assimilation process introduces short-term cor-
rections, which might be refined further to improve consistency. Despite these oscillations
in bias, the standard deviation (SD) of temperature remained relatively stable at around
2 °C throughout the assimilation cycles, with only a slight decrease observed at the final
cycle, indicating some stabilization. Looking to a specific case taken as an example, it is
possible to provide further information on assimilation behavior. Figure A1C illustrates the
evolution of 2mT residuals (observations minus background and analysis) over the first
6 h from the initial analysis time, highlighting the effect of the three assimilation cycles.
The thick dark line represents the mean residuals, while the thin blue lines indicate the
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standard deviation. A noticeable reduction in residuals and spread is observed after each
assimilation cycle, demonstrating an improvement in forecast accuracy and a decrease
in uncertainty. In particular, the distinct discontinuity around hour 3 reflects the direct
impact of the second assimilation cycle, which further corrects the forecast and reduces
the bias. Moreover, a reduced increase in forecast error is evident between the second and
third assimilation cycles compared to the period between the first and second cycles. This
behavior indicates not only the corrective effect of cyclic data assimilation on the model
state but also its positive role in limiting error propagation in subsequent forecast hours.

Figure A1. (A,B): Boxplots of BIAS (A) and Standard Deviation (B) of 2mT assimilation. The boxplots
represent the observation-background at each assimilation cycle (18-21-00 UTC). (C): example of
mean residuals of observations with respect to the background (yo-yb) and analysis (yo-ya) with
associated dispersion.

To assess the effectiveness of the cyclic data assimilation approach for the Meteodrones
observations, Figure A2 shows the vertical profiles of temperature (T), relative humidity
(RH), and wind vector orientation (expressed as cosine similarity) to evaluate the impact of
sequential data assimilation using a 3DVar scheme. The comparison is made between the
open loop (OL) simulation, which does not assimilate any observations (blue line), and the
assimilation runs, which include the assimilation of Meteodrone profiles (black line) with
different observation error settings. The left panels display the forecast at 00 UTC after
assimilating the first observation profile collected at 21 UTC (red and pink lines), while
the right panels show the analysis at 00 UTC after assimilating the second profile collected
at 00 UTC. The results highlight how the information from the first assimilation cycle is
effectively retained in the model forecast, improving alignment with observations compared
to the OL simulation. The subsequent assimilation at 00 UTC further refines the model
state, demonstrating a cumulative improvement, particularly visible in relative humidity
and wind orientation profiles. The sensitivity test, represented by the red (small error) and
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pink (large error) lines, indicates that even when assigning a smaller observation error,
the assimilation system successfully integrates the observational data without degrading
the solution, confirming the robustness of the setup. Overall, the figure demonstrates
how cyclic variational assimilation contributes not only to correcting the model state at
analysis time but also to reducing forecast errors and preserving improvements across
successive assimilation cycles. This evaluation was carried out on a set of cases during the
demonstrator phase to verify that such impacts are consistently observed across different
situations. Naturally, the degree to which the assimilation effect is retained from one
cycle to the next may vary slightly depending on the type of event and the prevailing
atmospheric dynamics.

Figure A2. (A,B): Example of vertical profiles comparing the Open Loop (OL) simulation with
forecasts after a first data assimilation (left column: A,C,E) and with the analysis (right column: B,D,F).
(A,B) Temperature profiles (T, in °C) as a function of pressure (p, in hPa). (C,D) Relative Humidity
profiles (RH, in %) versus pressure. (E,F) wind vector orientation expressed as cosine similarity. Lines
represent the Metedrone observations (black), the OL (blue), and different assimilation experiments
(red and pink lines show two different simulations performed with different observational errors).
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