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Summary 

In this report, we introduce the Spatial Processes in Hydrology (SPHY) model that we have used to 

assess upstream runoff composition in the Bhagirathi river basin. We use two model setups to evaluate 

the hydrological components of the whole Bhagirathi river basin (with the large scale model) as well as 

a more detailed analysis of a small catchment, the Din Gad catchment (the small scale model) in the 

Bhagirathi river basin. After calibrating and validating the model results for the baseline period (1991-

2020), we assess the future hydrological changes of the selected basins. We selected a subset (4 GCM 

and two SSPs) of the full ensemble of climate change scenarios provided by General Circulation Models 

(GCMs) in the CMIP6 multi-model ensemble. The downscaled and bias-corrected GCM outputs are then 

used to force the SPHY model. This modeling study demonstrates how runoff composition and total 

runoff volume are expected to change by the end of the 21st century. Our results show that the total water 

availability for the whole Bhagirathi catchment will be relatively stable for ssp245 and slightly increases 

for ssp370 by the end of the century. However, there are considerable changes in the timing and 

magnitude of peak water availability and seasonality. This may impose a threat on the livelihood of the 

local communities if no adaptation measures are taken. 
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1 Introduction 

 

The Swiss Agency for Development and Cooperation’s (SDCs) Global Programme Climate Change and 

Environment (GP CCE) India is supporting the operationalization of climate change adaptation actions 

in the mountain states of Uttarakhand, Sikkim and Himachal Pradesh through the phase two of the 

“Strengthening State Strategies for Climate Action” (3SCA) project that was launched in 2020. The 

second phase of 3SCA (2020-23), known as the Strengthening Climate Change Adaptation in the 

Himalayas (SCA-Himalayas), while building on the experience and achievements of Phase 1, aims to 

showcase mountain ecosystem appropriate scalable approaches for climate resilience in water and 

disaster risk management sectors; using these efforts to enhance the capacities of the institutions across 

the Indian Himalayan Region (IHR) to plan, implement and mainstream adaptation actions into their 

programmes and policy frameworks; and disseminating the experiences and lessons at the regional and 

global level. The project aims to develop and validate integrated approaches for climate resilient 

management of water resources and disaster risk (outcome 1), enhancing technical and institutional 

capacities to promote mainstreaming of climate resilient planning in water and disaster risk reduction 

(DRR) (outcome 2), and embedding integrated climate resilience approaches in water and DRR in the 

policy framework and to be replicated in other mountain regions (outcome 3). 

 

This project presents a framework for Integrated Water Resources Management (IWRM) and Decision 

Support System (DSS) for the Himalayan subbasins consisting of three integrated platforms. (i) A 

modelling and decision support platform built around a multi-scale modelling framework for glacier-and 

snow-fed subbasins, based on state-of-the-art and “easy to use” modelling technology. (ii) A stakeholder 

engagement platform to consult key stakeholders, identify key IWRM issues and co-design a new IWRM 

plan for the Bhagirathi river basin. (iii) A capacity-building platform with on-site training and e-learning 

modules for the key project components: glacio-hydrological modelling, IWRM and DSS, to ensure the 

sustainability of the approach and pave the way for upscaling to other subbasins in the IHR. 

 

To achieve the deliverables, the key tasks are structured in 4 work packages (Figure 1): 

 

WP1: Glacio-hydrological modelling and climate change impact analysis for the Dokriani glacier 

catchment. 

WP2: Integrated Water System Modelling platform and IWRM plan in the Bhagirathi river basin. 

WP3: Guidelines for glacio-hydrological modelling, IWRM and DSS for IWRM in the Indian Himalayan 

Region context, and capacity building. 

WP4: Project management and meetings. 
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Figure 1. Project framework and subdivision of the key components. 

 

To this end, this report presents the historical and future climate change impacts on the hydrological 

regime and water balance components of the water cycle in the Bhagirathi river basin and Din Gad 

catchment. The results of this report refer to the ‘Outcome1’ of the WP1 and WP2. Therefore, the 

objectives of this report are: 

1. Understand the historical climate trends (precipitation and temperature), flow contributors and 

the key water balance components of the water cycle for the Bhagirathi river basin and Din 

Gad catchment. 

2. Develop future climate change scenarios for the Bhagirathi river basin and Din Gad catchment. 

3. Assess the future changes in water balance components at seasonal and decadal time scales 

in response to climate change for the Bhagirathi river basin and Din Gad catchment. 

 

In this project, a large-scale Bhagirathi and a small-scale Din Gad glacio-hydrological models are set up 

to understand the impact of climate change on the water cycle at different temporal and spatial scales. 

The Bhagirathi model, which covers the entire upstream region just before its confluence with Alaknanda 

River at Devprayag, will focus on the changes in total water availability of the entire upstream region. 

Whereas the Din Gad model will focus on improving the understanding of the runoff contributors.  

 

This report contributes to disentangling the aforementioned issues and helps to better understand the 

21st-century climate change impacts on the water cycle of the region. The first chapter of this report 

describes the key component and the research objectives of the project. The second chapter describes 

the key features of two different study areas. The third chapter explains the model, data, and 

methodologies used for setting up the glacio-hydrological models. The fourth chapter presents the key 

results of this study. The fifth chapter discusses the limitations and key results of this study. Finally, the 

last chapter paves the way for upscaling the modelling approach used in this study to other subbasins in 

the IHR.  
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2 Study area 

 Bhagirathi river basin 

The Bhagirathi1 is a turbulent Himalayan river in the Indian state of Uttarakhand, and one of the two 

headstreams of the Ganges, the major river of Northern India and the holy river in Hinduism. The 

headwaters of the Bhagirathi are formed at Gaumukh (snout elevation 4000m), at the foot of the Gangotri 

and Khatling in the Garhwal Himalaya. The Bhagirathi and Alaknanda join at Devprayag in Garhwal and 

are thereafter known as the Ganges. The Bhagirathi basin, just before its confluence with Alaknanda at 

Devprayag, covers about an area of ~7642 Km2. 

 

The area has snow and glacier reserves that cover roughly 10% of its total area. A study by Raina et al. 

(2008) identified 238 glaciers of various shapes and sizes in the area. The distribution of these glaciers 

is uneven, with the highest number of glaciers located in the Bhagirathi river basin (78), followed by 

Jalandhar gad (64), Jahnvi/Jadh Ganga (60), Pilang (23), and Bhilangna (13). The Gangotri Glacier, 

which spans 144 square kilometers, is the largest glacier in the basin and the primary source of River 

Bhagirathi. The glacier alone contains an estimated 60% of the total ice volume of the glaciers in the 

valley (Raina et al., 2008). These glaciers are critical sources of freshwater and contribute significantly 

to the overall river runoff of Bhagirathi (Table A1). However, like other parts of the Himalayas, glaciers 

in the area are also retreating. 

 

The Bhagirathi river basin is endowed with heterogeneous climatic conditions. The region, being situated 

centrally in the long sweep of the Himalayas, forms a transitional zone between the per-humid eastern 

and the dry to sub-humid western Himalayas. The northern part constitutes hilly topography, while the 

middle and southern parts are plain areas (Orr et al., 2019). The climate of the western Himalayas is 

influenced by two major climatic systems, the southwest Indian monsoon, and the northern hemispheric 

mid-latitude westerlies (Rai et al., 2014; Rehman et al., 2022). Most of the annual precipitation (1000-

2500 mm per annum) in Garhwal occurs between July and September; during this time, the humid air 

masses of the Indian monsoon penetrate the high-altitude ranges of the Greater Himalayas. Rainfall 

magnitudes vary significantly both seasonally and across short distances (101to 102km) throughout the 

region, creating localized microclimates that are affected by the variability in terrain and geomorphic 

regime (Orr et al., 2019). 

 

 Din Gad catchment 

The Din Gad valley is in the headwater region of the Bhagirathi rivre basin in the central Himalayas 

(Garhwal region, Uttarakhand, India). The catchment extends from 30° 48’ to 32° 26 N and 76° 58 to 78° 

51’ E. It covers an area of 77.8 km2, extends from 2360 to 6632 m a.s.l. and about 9.6% of it is covered 

by glaciers (Thayyen and Gergan, 2010). Din Gad river emerges from Dokriani Glacier at an altitude of 

3900 m a.s.l. and joins the Bhagirathi River near Bhukki village ( 

Figure 2). The Dokriani Glacier is a valley glacier, 5 km long, ranging from 4050 (snout) to 6000 

(Bergschrund) m a.s.l., with an area of 7.03 km2 (Figure A1). 

 

The climate of the Din Gad catchment is humid-temperate in summer and humid cold in winter (Figure 

A2). The Din Gad catchment receives moisture from two sources: (i) by the Indian Summer Monsoon 

(ISM) that occurs during June–September and (ii) the western disturbances (WD) generally between 

December and March. Maximum solid precipitation (snow) also occurs from December to March due to 

WD (Thayyen et al., 2005; Yadav et al., 2018).  

 
1 Based on Wikipedia 
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Figure 2. Bhagirathi river basin and the outlet points in the SPHY model. The observed discharge time series 

are available at Harshil, Maneri, Joshiyara and Dharasu. The inset shows Din Gad catchment and Dokriani 

Glacier.   
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3 Methodology 

 SPHY model 

SPHY is a spatially distributed leaky bucket type of model and is applied on a cell-by-cell basis. The main 

terrestrial hydrological processes are described in a conceptual way so that changes in storages and 

fluxes can be assessed adequately over time and space. SPHY is written in the Python programming 

language using the PCRaster (Karssenberg et al., 2010) dynamic modeling framework. 

 

SPHY is grid-based and cell values represent averages over a cell (Figure 3). For glaciers, sub-grid 

variability is considered: a cell can be glacier free, partially glacierized, or completely covered by glaciers. 

The cell fraction not covered by glaciers consists of either land covered with snow or land that is free of 

snow. Land that is free of snow can consist of vegetation, bare soil, or open water. The dynamic 

vegetation module accounts for a time-varying fractional vegetation coverage, which affects processes 

such as interception, effective precipitation, and potential evapotranspiration. Figure 4 provides a 

schematic overview of the SPHY modeling concepts. 

 

 

 
Figure 3.  Illustration of SPHY sub-grid variability. A grid cell in SPHY can be (a) partially covered with 

glaciers, or (b) completely covered with glaciers, or (c1) free of snow, or (c2) completely covered with snow. 

In the case of (c1), the free land surface can consist of bare soil, vegetation, or open water. 

  

The soil column structure is similar to VIC (Liang et al., 1994), with two upper soil storages and a third 

groundwater storage. Their corresponding drainage components are surface runoff, lateral flow and 

baseflow. SPHY simulates for each cell precipitation in the form of rain or snow, depending on the 

temperature. Precipitation that falls on land surfaces can be intercepted by vegetation and evaporated 

in part or whole. The snow storage is updated with snow accumulation and/or snowmelt. A part of the 

liquid precipitation is transformed in surface runoff, whereas the remainder infiltrates into the soil. The 

reference evapotranspiration is calculated using the Modified Hargreaves reference evapotranspiration 

method (Hargreaves and Samani, 1985). The resulting soil moisture is subject to evapotranspiration, 

depending on the soil properties and fractional vegetation cover, while the remainder contributes to river 

discharge by means of lateral flow from the first soil layer, and baseflow from the groundwater layer. The 

lateral flow, ground water storage, baseflow and their interaction are calculated as described in Terink 

et al., (2015). 
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Melting of glacier ice contributes to the river discharge by means of a slow and fast component, being 

(i) percolation to the groundwater layer that eventually becomes baseflow, and (ii) direct runoff. The cell-

specific runoff, which becomes available for routing, is the sum of surface runoff, lateral flow, baseflow, 

snowmelt and glacier melt. 

 

If no lakes are present, then the user can choose a simple flow accumulation routing scheme: for each 

cell, the accumulated amount of water that flows out of the cell into its neighboring downstream cell is 

calculated. This accumulated amount is the amount of water in the cell itself plus the amount of water in 

upstream neighboring cells of the cell and is calculated using the flow direction network. If lakes are 

present, then the fractional accumulation flux routing scheme is used; depending on the actual lake 

storage, a fraction of that storage becomes available for routing and is extracted from the lake, while the 

remaining part becomes the updated actual lake storage. The flux available for routing is routed in the 

same way as in the simple flow accumulation routing scheme.  

 
Figure 4. SPHY modeling concepts. The fluxes in grey are only incorporated when the  

groundwater module is not used.  
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The model source code is in the public domain (free access) and can be obtained from the SPHY model 

website free of charge (http://www.sphy-model.org). The two peer-reviewed open-access publications of 

the SPHY model can be found at https://doi.org/10.5194/gmd-8-2009-2015 (Terink et al., 2015) and 

https://doi.org/10.5194/esurf-6-687-2018 (Eekhout et al., 2018). 

 Dynamic Glacier Module  

The model takes sub-grid variability into account to calculate the snow and glacier melt runoff from 

glaciers. By intersecting the glacier outlines, which each have a separate glacier ID, with the model grid 

the glaciers or parts thereof that lie within each model grid cell are identified (Kargel et al., 2014). Each 

(part of) glacier is assigned a unique ID. The glacier mass balance of each individual glacier, which can 

lie in multiple model grid cells is simulated to understand the future changes in glaciers. For each glacier, 

debris-covered and debris-free parts based is classified based on Kraaijenbrink et al., (2017). The initial 

ice thickness and volume for each glacier parts using data from Farinotti et al., (2019) are assigned in 

the next step. For each (part of) glacier the mean elevation from a 30x30 m digital elevation model is 

calculated (Farr et al., 2007). This is required to lapse daily air temperature from the model grid cell mean 

elevation to the glacier’s mean elevation. Daily precipitation and temperature serve as input for the 

glacier module to calculate accumulation and melt. The module uses a degree-day approach to calculate 

the glacier ice melt with a degree-day approach (Hock, 2003). Different calibrated melt rates are applied 

to debris covered and debris free glaciers (Bolch et al., 2012; Gardelle et al., 2013; Scherler et al., 2011). 

Future changes in glacier fraction in response to the precipitation and temperature are considered by 

using a mass conserving ice distribution approach. The accumulated snow in the accumulation zone is 

transformed into ice and distributed downwards to the ablation area, at the end of each melting season 

(1st of October). The net imbalance (𝐼), i.e., the difference in the volume of total snow accumulated 

(SnowS) and total volume of melt generated from the glaciers (𝐺𝑀), forms the basis of ice redistribution. 

 𝐼𝑛,𝑗 = SnowS𝑛,𝑗 − 𝐺𝑀𝑛,𝑗 (1) 

   

Where the subscript 𝑛 is glacier id and 𝑗 is a unique id. If the net imbalance is negative, then the volume 

of ice is redistributed (𝑉𝑟𝑒𝑑) over the ablation zone. 

 

 

 

𝑉𝑟𝑒𝑑𝑛,𝑗 = {

0                                   , 𝑗𝜖𝐵𝑛,𝑗

∑ 𝐼𝑛,𝑗

𝑗𝜖𝐵𝑛,𝑗

×
𝑉𝑖𝑛𝑖𝑛,𝑗

∑ 𝑉𝑖𝑛𝑖𝑛,𝑗𝑗𝜖𝐴𝑛,𝑗

, 𝑗𝜖𝐴𝑛,𝑗
 

(2) 

 

Where Aj’s are the parts of the glacier with negative imbalance, Bj’s are the parts of the glacier with a 

positive imbalance in any glacier id 𝑛. The redistribution is proportional to the initial total volume of ice 

(𝑉𝑖𝑛𝑖). i.e., glacier parts with a larger initial ice volume will receive a large volume of accumulated ice 

from the accumulation zone to the ablation zone. The ice redistribution is done once a year (1st of 

October) at the end of the hydrological year (1st October to 30th September next year).  

 

Similarly, a degree-day approach, with calibrated melt rates, is used to calculate the snow melt. Again, 

the precipitation and temperature drive the melting conditions. The model also allows refreezing of 

meltwater back into the snowpack. If the liquid snow exceeds the storage threshold, snow melt is 

generated.  

https://doi.org/10.5194/gmd-8-2009-2015
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 Model Setup 

We set up a detailed glacio-hydrological model for the Din Gad catchment that includes the Dokriani 

Glacier and a large catchment upstream of the Devprayag before its confluence with the Alaknanda River 

(Figure 2). A small-scale model (50 meters resolution) for the Din Gad catchment and a large-scale 

model (500 meters) for the Bhagirathi river basin are used in this project. We use the same climate data 

for both model setups. While the large-scale model is used to cover the whole area and study the fluxes 

at various locations, the small-scale model allows us to investigate different hydrological processes in 

detail and gain more insight into the role of different components in controlling the future streamflow in a 

warmer climate. Most importantly, we want to integrate the local scale information (for instance landuse 

characterstics, weather and climate, glacier mass balance, discharge data etc) with the small scale 

model to improve the understanding of the processes in the SPHY model.   

 Datasets 

SPHY requires static data as well as dynamic data. For the static data, the most relevant are digital 

elevation model (DEM), land use type, glacier cover (including differentiation in debris-free and debris-

covered ice surfaces), lakes/reservoirs and soil characteristics. The main dynamic data consist of climate 

data, such as precipitation, temperature, and reference evapotranspiration. Since SPHY is grid based, 

optimal use of remote sensing data and global data sources can be made. For example, the Normalized 

Difference Vegetation Index (NDVI) (Tucker 1979; Carlson and Ripley 1997; Myneni and Williams 1994) 

can be used to determine the leaf-area index (LAI) in order to estimate the growth stage of land cover. 

 Digital elevation model 

The 1 arcsec (∼30 m) Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data 

are used (Farr et al., 2007). The DEM is resampled to 500m and 50m for the large-scale Bhagirathi and 

small scale Din Gad model.  

 Land use 

Land use data used in the model are derived from the European Space Agency Climate Change Initiative 

(ESA CCI) data set (Kirches et al., 2014). The land use map is available for 300m resolution which is 

resampled to 500m for the Bhagirathi model. For the small-scale Din Gad model, a land use map is 

created using the Sentinel-2 image acquired on the 16th of October 2020 (Figure 5). The NDVI and NDSI 

are calculated from the image and then it is used to categorize land use classes. The final land use map 

has 7 classes as seen in Table 1. More than 50% of the Din Gad catchment is mainly covered by forest 

(mixed and dense combined). The glaciers (clean ice and debris) cover about 13% of the total catchment 

area. 

 

Table 1. Landuse classes and its description for the Din Gad catchment 

 

Class Description Area (Km2) Total Area (%) 

1 Clean ice glacier 8.3 10.7 
2 Debris covered glacier 2.1 2.7 
3 Bare rock 1.7 2.1 
4 Grass 10.6 13.6 
5 Shrubs 14.6 18.8 
6 Mixed forest 15.6 20.0 
7 Dense forest 24.9 32.1 
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Figure 5. Landuse map generated for the Dingdad model.  

 

 Soil 

Hydraulic soil properties used in this study were derived from HiHydroSoil (250m) and resampled to 

Bhagirathi and Din Gad model resolution (Simons et al., 2020). 

 Glacier mass balance 

For the large-scale model, geodetic mass balance data from Shean et al., (2020) is used (Figure 6). This 

data base provides geodetic mass balance estimates for 99% of High Mountain Asia (HMA) glaciers 

between 2000 and 2018. For small scale Din Gad model, simulated data from Azam & Srivastava, (2020) 

and Dobhal et al., (2021) are used to calibrate the simulated glacier mass balance on Dokriani Glacier.      
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Figure 6. Geodetic glacier mass balance data from Shean et al (2020).  

 

 Snow cover 

The MODIS MOD10CM006 (500m) snow cover data (2001–2017) is used to calculate the monthly snow 

persistence (Hall and Riggs, 2015) for the large-scale Bhagirathi model.  
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Figure 7. MODIS snow persistence map for the Bhagirathi river basin for the period 2001–2017. 

 

 Meteorological data 

The meteorological forcing for SPHY has been provided by the topography-based downscaling scheme 

TopoSCALE (Fiddes and Gruber, 2014). TopoSCALE downscales atmospheric fields available on 

pressure levels to a high-resolution digital elevation model. In this case, the atmospheric model data is 

provided by the latest generation of ECMWFs reanalysis product, ERA5 (Hersbach et al., 2020).  

 

TopoSCALE performs a 3D interpolation of atmospheric fields available on pressure levels, to account 

for time-varying lapse rates, and a topographic correction of radiative fluxes. The latter includes a cosine 

correction of incident direct shortwave radiation on a slope, adjustment of diffuse shortwave and 

longwave radiation by the sky view factor, and elevation correction of both longwave and direct 

shortwave. It has been extensively tested in various geographical regions and applications, e.g., 

permafrost in the European Alps (Fiddes et al., 2015), permafrost in the North Atlantic region 

(Westermann et al., 2015), Northern hemisphere permafrost (Obu et al., 2019), Antarctic permafrost 

(Obu et al., 2020), Arctic snow cover (Aalstad et al., 2018), Arctic climate change (Vikhamar Schuler and 

Østby, 2020) and Alpine snow cover (Fiddes et al., 2019). TopoSCALE can therefore provide hillslope 

scale model forcings without any requirement for ground data by accounting for the main topographic 

effects on atmospheric forcing. In this project, we developed a plugin for the SPHY model which produces 

gridded forcing fields, accounts for projection differences between the target grid and native ERA5 

(WGS84) and produces forcing files in SPHY required format. We generated SPHY forcings for the 

period 1991-2020 and these data have been further used as a baseline dataset with which to downscale 

CMIP6 climate data. 
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 Streamflow 

Table 2. Observed discharge stations in the study area 

 

Station Resolution Start End Years Missing data (%) 

Harshil Hourly 2017 2020 4 32 

Maneri daily 2016 2021 6 0 

Joshiyara daily 2008 2019 12 0 

Dharasu daily 2016 2021 6 311 

  

  

There are 4 discharge stations in the Bhagirathi river basin as shown in Figure 2. Since the discharge 

stations at Harshil and Dharasu have more than 30% missing data, we use the station data at Maneri 

and Joshiyara to calibrate the Bhagirathi model. The other two stations, i.e., Harshil and Dharasu, will 

be used for the independent validation. Moreover, there are some abstractions from the main Bhagirathi 

rivers as the discharge measured at Dharasu is less compared to that measured in Joshiyara Barrage. 

We do not include this water abstraction in the SPHY model and will be explicitly modeled in the Water 

Evaluation and Planning (WEAP) model. Since there are no observed stations available in the upstream 

part of the Bhagirathi river basin, the Din Gad model is calibrated based on the modeled outputs from 

Azam and Srivastava, (2020). The modeled output from Azam and Srivastava, (2020) (here after 

‘observed’ only for the Din Gad model) is available for the period 2000–2020. 

 

 Model calibration and validation 

Glacio-hydrological model calibration can suffer from equifinality (Azam et al., 2021). Equifinality is the 

phenomenon that different parameter combinations can lead to the same simulated discharge pattern. 

For example, a shortage in snow melt can be compensated by excess glacier melt. To avoid the pitfalls 

of model equifinality, we use a three-step modeling strategy to calibrate the snow, glaciers, and rainfall-

runoff processes in the model (Khanal et al., 2021; Pellicciotti et al., 2012). First, parameters related to 

glacier processes are calibrated to observed glacier mass balance data. Second, parameters related to 

snow are calibrated to MODIS snow persistence. Finally, rainfall-runoff and routing parameters are 

calibrated to observed streamflow. Reliable calibration to multiple observed variables ensures that the 

processes are accurately represented in the model and helps to build confidence and trust with the end-

users that the tools are robust in the Indian Himalayan context. 

 

 Future climate change scenarios 

Future climate forcings for this study are based on new Coupled Model Intercomparison Projects phase 

6 (CMIP6) ensembles. CMIP6 consists of the “runs” from around 100 distinct climate models being 

produced across 49 different modeling groups. The number of climate models is large and computational 

and human resources are limited; therefore, it is necessary to compromise the number of climate models 

that can be included in our future climate study. 
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 Model selection 

The selection of climate models is not straightforward and can be done by following different methods. 

Here we use an approach explained by Lutz et al., (2016) to select climate models combining the 

envelope approach and the past-performance approach. The goal is to select an ensemble consisting of 

a manageable number of climate model runs, which still represents all potential future scenarios in terms 

of future mean air temperature and annual precipitation sums, and only includes models with acceptable 

performance in simulating the historical climate.  

 

We have used two scenarios, (SSP2-RCP4.5) and a more extreme one (SSP3-RCP7.0). For each, we 

select 4 GCMs representing 4 corners of the envelope (cold, wet / cold, dry / warm, wet / warm, dry). 

EC-Earth3 and EC-Earth-CC are included. Other EC-Earth variants are excluded. We have selected only 

GCM runs that have daily mean air temperature, daily maximum air temperature, daily minimum air 

temperature, and daily precipitation. Only models that have data available at a daily time step are 

selected because this is a requirement for an empirical – statistical downscaling method to be applied to 

the GCM runs at a later stage. 

 

Changes in climatic means of the initial selection is based on the range of projections of changes in 

mean air temperature (ΔT) and annual precipitation sum (ΔP) between 1985 – 2014 and 2071 – 2100, 

averaged over the GCM grid cells covering the basin, in native spatial resolution of each GCM. For the 

model runs included in RCP4.5 and RCP7.0 separately, the 10th and 90th percentile values for ΔT and 

ΔP are determined after resampling all GCM data to the same grid. These values represent the four 

corners (wet/warm, dry/warm, wet/cold, dry/cold) of the spectrum of projections for temperature and 

precipitation change. The 10th and 90th percentiles are chosen rather than the minimum and maximum 

projections to avoid selecting outliers, cf. other studies (e.g., Immerzeel et al., 2013; Sorg et al., 2014). 

The proximity of the model runs to the 10th and 90th percentiles are derived from the model runs’ 

percentile rank scores corresponding to their projections for ΔT and ΔP with respect to the entire range 

of projections in the entire ensemble:  

 

𝐷𝑃𝑖
𝑇,𝑃𝑖

𝑃 = √((|𝑃𝑖
𝑇 − 𝑃𝑗

𝑇|)2 + (|𝑃𝑖
𝑃 − 𝑃𝑗

𝑃|)2) 

 

where 𝐷𝑃𝑖
𝑇,𝑃𝑖

𝑃 is the distance of a model (j)’s ΔT and ΔP (𝑃𝑗
𝑇 , 𝑃𝑗

𝑃, respectively) to the corner (i)’s 10th 

and/or 90th percentile score of ΔT and ΔP for the entire ensemble (𝑃𝑗
𝑇 , 𝑃𝑗

𝑃, respectively).  

 Downscaling 

To bias correct the future CMIP6 GCM temperature and precipitation forcing and downscale it to the 

model domain grid, we applied a monthly delta change approach. Climatological monthly mean 

differences (i.e., deltas) over 1991–2020 between the baseline data and each GCM were applied to the 

entire daily future GCM series (2021–2100) by, for each individual day, using the delta corresponding to 

the same month of the year. 
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4 Results 

 Present-day climatology 

 Bhagirathi domain  

The climate of the Bhagirathi is influenced by two major climatic systems, the southwest Indian monsoon, 

and the northern hemispheric mid-latitude westerlies. Precipitation amounts vary significantly along the 

North-South transect in the Bhagirathi Basin (Figure 8a). The northern and northeastern regions are drier 

compared to the wetter southern part. The differences in precipitation patterns are attributed to the steep 

topography of the region. The latitudinal stretch of the Himalayas obstructs the orographic influence of 

precipitation in the south and southeastern part thus making the northern and northeastern regions drier. 

As a result, the precipitation within the Bhagirathi Basin shows a high annual variability of the precipitation 

ranging from 1900 mm yr-1 in the southern and western parts to 500 mm yr-1 in the northern parts (Figure 

8a; 8c). The years 2010 and 2009 received the maximum and minimum annual precipitation of about 

1780 mm and 1070 mm, respectively. There are no visible significant trends for the basin aggregated 

annual precipitation in the Bhagirathi Basin (shown by the red dashed line). The basin also shows high 

monthly variability of the precipitation (Figure 8e). The months of July and November receive the 

maximum and minimum precipitation of about 320 mm and 22 mm, respectively.  The monsoon period 

(June through September) dominates the seasonal precipitation distribution and comprises 64% of the 

annual precipitation.  

 

The northern region is colder compared to the southern parts (Figure 8b). The basin shows a high annual 

variability of the annual average temperature ranging from -15.7 to 20.6 °C (Figure 8d). 2016 and 1997 

are the hot (6.1 °C) and the cold (3.7 °C) years, respectively. In contrast to precipitation, the annual 

average temperature shows a visible significant increasing trend of 0.017 °C yr-1. This cumulates to a 

0.52 °C temperature rise in the basin over the past 30 years. The monthly temperature shows a distinct 

seasonal cycle where the temperature is higher for the monsoon months compared to the winter months 

(Figure 8f). The average temperature is highest for July (11.3 °C) and lowest for January (-2.6 °C). The 

largest variability in the basin aggregated monthly average temperature is found in the winter months 

(December, January, and February). 
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Figure 8. The historical downscaled climate (ERA5 with TopoSCALE) of the Bhagirathi model domain for the 

baseline period (1991–2020). (a) mean annual precipitation, (b) average temperature, (c) mean annual average 

precipitation aggregated over the domain, (d) mean annual average temperature aggregated over the domain, 

(e) climatology of the precipitation, and (f) climatology of the average temperature.  

 Din Gad domain  

 

Similar to the Bhagirathi domain the precipitation over the northern part is less compared to the 

precipitation in the southern part of the Din Gad domain (Figure 9a). The precipitation within the Din Gad 

catchment ranges from 1667 mm yr-1 in the northern parts to 1808 mm yr-1 in the southern and western 

parts (Figure 9a). The basin shows a higher annual variability of the precipitation compared to the 

Bahagirathi basin (Figure 9c). The years 2013 and 2009 received the maximum and minimum annual 

precipitation of about 2300 mm and 1328 mm respectively. In contrast to the Bhagirathi domain, the 

precipitation shows an increasing trend of 6.8 mm yr-1. The seasonal patterns of precipitation are similar 

to the Bhagirathi domain and monsoon comprises 60% of the annual precipitation (Figure 9e). 

 

The average annual temperature within the basin ranges from -12.5 to 13.6 °C (Figure 9b). 2016 and 

1997 are the hot (2.54 °C) and the cold (-0.13 °C) years respectively (Figure 9d). The annual average 

temperature for the Din Gad domain shows a higher warming trend of 0.024 °C yr-1 compared to the 
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Bhagirathi domain. This cumulates to a 0.73 °C temperature rise in the basin over the past 30 years. The 

largest variability in the monthly average temperature is found in the winter months (Figure 9f). The basin 

average temperature is highest for July (8.3 °C) and lowest for January (-6.5 °C). 

 
Figure 9. The historical climate (ERA5 with TopoSCALE) of the Din Gad model domain for the baseline period 

(1991–2020). (a) mean annual precipitation, (b) average temperature, (c) mean annual average precipitation 

aggregated over the domain, (d) mean annual average temperature aggregated over the domain, (e) 

climatology of the precipitation, and (f) climatology of the average temperature. 

 Model calibration 

 Glacier mass balance 

To calibrate the SPHY model for the Bhagirathi river basin, the geodetic mass balance data from Shean 

et al (2020) is used (referred to as geodetic mass balance data through out the study). This dataset 

provides consistent geodetic mass balance estimates for 99% of HMA glaciers between 2000 and 2018. 

Since, there were no spatially consistent observed large scale glacier mass balance database available 

for the entire Bhagirathi river basin, we chose to use geodetic mass balance data to ensure spatial 

consistency in the model. The Bhagirathi SPHY model is simulated for the same period (2000–2018) to 

calculate the glacier mass balance. The parameters related to glacier mass balance, i.e., DDFS (degree 

day factor for snow), DDFG (degree day factor for clean glaciers), DDFDG (degree day factor for debris 
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covered glaciers), SnowSC (water that can be stored in the snow pack), and temperature and 

precipitation are fine-tuned. Some parameters, for instance DDFG and Trcit (critical temperature for the 

melt), are adapted from Azam and Srivastava, (2020). A spatial precipitation correction factor, based on 

model simulation, is also calibrated for all the galciers over the region. A precipiation correction alone 

was not sufficient to calibrate the glacier module in the model. Moreover, several studies have found a 

cold bias in ERA5 temperature in mid-latitudes and on the Tibetan Plateau (Cao et al., 2020; Ji and 

Yuan, 2020; Orsolini et al., 2019; Yan et al., 2019). Therefore, we adjusted the temperature based on 

the simulated glacier mass balance from SPHY and geodetic mass balance data from Shean et al (2020). 

A temperature correction of +1°C (for entire Bhagirathi river basin), based on model simulations, is found 

for the large-scale Bhagirathi domain. Figure 10 shows the glacier mass balance of all the glaciers within 

the Bhagirathi river basin compared to the geodetic mass balance. The parameters used in the glacier 

module of the Bhagirathi SPHY model are calibrated for all the individual glaciers in the region. It is 

ensured that the mass balance of Dokriani, Gangotri, and any glacier larger than 2 km2 is in line with the 

available geodetic dataset (Shean et al., 2020). The final simulated glacier mass balance for 2000–2018 

for Dorkrani glacier (computed from the Bhagirathi SPHY model) is -0.009 m.w.e yr-1 which is in good 

agreement with -0.049 m.w.e yr-1 as found in the geodetic mass balance data. However some studies 

suggested a larger mass loss of -0.27 m w.e. yr-1 over 2000–2018 (based on model simulations) (Azam 

and Srivastava, 2020), -0.23 ± 0.1 m w.e. yr-1 for 1999–2014 (based on geodetic mass balance calculated 

from Cartosat-1) (Garg et al., 2022) and -0.34 ± 0.2 m w.e. yr-1 (based on glaciological measurement) 

(Garg et al., 2022) for Dokriani glacier. However, such simulated, geodetic and observed mass balance 

datasets are not available consistently for the whole Bhagirathi river basin domain. Considering the lack 

of consistent data availability on the Bhagirathi river basin scale and the uncertanity associated with the 

mass balance, it is concluded that the glacier mass balance calibration of the Bhagirathi SPHY model is 

realistic and satisfactory for use in further analysis. 

 

 
Figure 10. Average annual glacier mass balance in m.w.e yr-1 for all the glaciers within the Bhagirathi river 

basin. The grey inclined dashed line shows the 1:1 line.  
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Figure 11. Annual glacier mass balance time series of the Dokriani glacier (from Bhagirathi SPHY model). The 

red line is simulated glacier mass balance from SPHY, the black line is simulated data from Azam & 

Srivastava, (2020) and the red dashed line from Dobhal et. al, 2021. 

 

To further calibrate the model for the Din Gad domain, the annual glacier mass balance time series of 

the Dokriani Glacier from the small-scale SPHY model is compared with the simulated mass balance 

data from Azam and Srivastava, (2020), Srivastava et al., (2021) and measured mass balance data from 

Dobhal et al., (2021). By fine-tuning the ERA5 temperature data, increase of 2.5° C based on model 

simulation, the model can simulate the annual mass balance in a comparable range with the mass 

balance data from the previous studies (Figure 12).  

 
Figure 12. Annual glacier mass balance time series of the Dokriani glacier. The red line is a simulated glacier 

mass balance from SPHY (the small scale model). Blue and yellow circles are simulated data from Srivastava 

et al. 2021 and measured data from Dobhal et al. 2021, respectively.  

 Snow validation 

The snow in the Bhagirathi SPHY model is validated with MODIS snow data (Hall et al., 2002). The snow 

persistence, i.e., % of the time a pixel is covered with snow, is calculated for the SPHY and MODIS for 
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2001–2017. The difference in snow persistence between SPHY and MODIS reveals that the snow is 

slightly overestimated at the higher altitudes in the modelled Bhagirathi river basin (Figure 13a). The 

Bhagirathi SPHY model snow persistence matches well below 4000m elevation (Figure 13b). The 

overestimation in the snow persistence from the Bhagirathi SPHY model comes from the winter and 

post-monsoon (October and November) months (Figure 13c). This overestimation in snow persistence 

can be attributed to the cold bias (maximum of +5 °C over the TP region) in the ERA5 data which has 

been reported in the past studies (Khanal et al., 2021; Yan et al., 2019). Overestimation of snow cover 

extent could potentially lead to an overestimation of snow runoff calculation. Given the scarcity of the 

snow-related data in the region (such as, snow redistribution and avalanching), a realistic modeling of 

sublimation is not possible. Moreover, the actual snowmelt calculation depends on the snow water 

equivalent (SWE), which depends on snowfall. Though, there are spatial differences between observed 

and modeled snow cover, at the basin scale this effect will be less pronounced. On the Bhagirathi river 

basin scale, the average aggregated annual changes in snow persistence from the Bhagirathi SPHY 

model and MODIS are well below 10% threshold (Figure 13d).  

 

 
Figure 13. Snow persistence validation for the Bhagirathi SPHY model. (a)  changes in snow persistence in 

SPHY and MODIS data, (b) snow persistence changes per elevation band in the basin, (c) basin aggregated 

monthly snow persistence and (d) annual time series of changes in snow persistence.   
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 Stream flow calibration 

To calibrate the rainfall-runoff parameter, the observed daily stream flow datasets are used. The 

parameters such as soil depth (root depth and sub-depth), groundwater (alphaGW and deltaGW), and 

routing (Kx) are fine-tuned to match simulated runoff with observed streamflow data (Table 3). Since the 

observed daily discharge time-series data were not sufficiently long enough (2016–2020 for the Maneri 

and 2016–2019 for Joshiyara station) for the split-sample test, the Maneri station is chosen for the 

calibration and Joshiyara as the independent validation station. To estimate the efficiency of the 

calibration to stream flow, the Nash-Sutcliffe efficiency criterion (NSE), percent bias (PBIAS), and 

coefficient of determination (R2) are used as performance indicators (Nash & Scliffe, 1970).  

 

At the daily scale in Maneri, the PBIAS, NSE, and R2 are found to be 15.3, 0.77, and 0.82 (Figure 14). 

The discharge calibration at the daily scale in the Bhagirathi river basin is found to be “Very good” 

(Moriasi et al., 2007). There is a slight overestimation of the flow at Maneri (15.3%) for the calibration 

period and even higher at the validation station Joshiyara (17.7%) (Figure 15). The overestimation in 

discharge can most likely be attributed to the overestimation in precipitation amounts in ERA5 in the 

HMA region (Khanal et al, 2021). Further, extremely large rainfall totals, to some extent, can be attributed 

to “rain bombs” in the numerical weather prediction model (NWP) used in ERA5 (Harrigan, 2020). The 

discharge calibration shows the hydrological regime at Maneri and Joshiyara is melt-dominated as 60.6% 

of the total runoff is contributed by snow and glaciers. The snow runoff is the dominant source of runoff 

at Maneri (50%) and Joshiyara (44%). Considering the close agreement of runoff totals, contributions 

compared to past studies, uncertainties in the ERA5 input data, and the large spatial model domain, it is 

concluded that the model performance is satisfactory for further analysis. 
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Figure 14. Observed and simulated discharge with the distinction of flow components (base, snow, glacier 

and rain-runoff flow at calibration location, Maneri, shown in Figure 2 for 2016–2020. Top left part of the figure 

shows values for model performance indicators; percent bias (PBIAS), Nash-Sutcliffe efficiency criterion 

(NSE) and coefficient of determination (R2) at the top left corner. The top right part of the figure shows the 

contribution of stream flow contributors to the total flow (expressed in %). 

 

 

 



 

29 

 
Figure 15. Observed and simulated discharge with the distinction of flow components (base, snow, glacier 

and rain-runoff flow at validation location, Joshiyara, shown in Figure 2 for 2016–2020. The top left part of the 

figure shows values for model performance indicators; percent bias (PBIAS), Nash-Sutcliffe efficiency 

criterion (NSE) and coefficient of determination (R2) at the top left corner. The top right part of the figure 

shows the contribution of stream flow contributors to the total flow (expressed in %). 

 

Table 3. Final calibrated SPHY model parameters  

Parameters Description Units Value 

DDFS Degree day factor for Snow mm °C-1 day-1 6.1 

DDFDG Degree day factor for debris cover glacier mm °C-1 day-1 4.8 

DDFG Degree day factor for Snow for glacier mm °C-1 day-1 7.7 

Tcrit Critical temperature °C-1 0.7 

SnowSC Water storage capacity of snow pack - 0.5 

Kx Routing recession coefficient - 0.9 

RootDepthFlat Thickness of root zone mm 300 

SubDepthFlat Thickness of subsoil  mm 150 

alphaGw Baseflow recession coefficient - 0.5 

YieldGw Specific aquifer yield - 0.05 

 

We further validated the results from the small-scale model, comparing our results with available 

simulated and measured data from the Dokriani catchment. Even though the outlet from this catchment 
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has been studied since 1992, continuous records are not available since the measurements have been 

affected by frequent floods in the valley. We have gathered measured data for summer months from 

previous studies by Thayyen et al., (2005) and Kumar et al., (2014), and further we compared our results 

with the simulated results from Azam and Srivastava, (2020). There is an underestimation in discharge 

of about 16,7% compared to the simulated results from Azam and Srivastava, (2020). This 

underestimation can most likely be attributed to the underestimation in precipitation amounts in ERA5 in 

high altitude in the HMA region. Note that our results here are compared to the modelled results from 

Azam and Srivastava (2020), which were tuned to reach the amount of flux from the limited observed 

data. Such an approach has been used in other studies (Khanal et al., 2021; Lutz et al., 2014; Wijngaard 

et al., 2017). Figure 16 shows that for the Dokriani catchment, glacier runoff contributes to 21% of the 

total flux. While snow and rain runoff contribute to about 68%, which agrees with the previous studies 

(Azam and Srivastava, 2020; Thayyen et al., 2007). 

 

 
Figure 16. Observed and simulated discharge for Dokriani catchment. Modelled data are shown with the 

distinction of flow components (base, snow, glacier and rain runoff). Observed 1,2 and three are simulated 

data from Azam and Srivastava 2020, observed data from Thayyen et al 2004 and Kumar et al 2014, 

respectively. The values for model performance indicators; percent bias (PBIAS), Nash-Sutcliffe efficiency 

criterion (NSE) and coefficient of determination (R2) at the top left corner is calculated using observed1. The 

top right part of the figure shows the contribution of stream flow contributors to the total flow (expressed in 

%). 
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 Present-day hydrology 

The parameters from fine-tuned Bhagirathi SPHY model are used to understand the changes in baseline 

hydrological fluxes between 1991–2020 period. At the outlet of the Bhagirathi River, just before the 

Alaknanda River, the rainfall-runoff is the dominant contributor to the the total runoff (Figure 17). Rainfall-

runoff contributes all-round the year and provides about 33.8% of water (the total flow) to the river system. 

The rainfall-runoff contribution starts to increase rapidly from June and peaks in the month of August, 

similar to the monsoon landfall timing in the region as discussed in the section 4.1.1. The contribution of 

rainfall ceases rapidly after the monsoon. The second-largest contributor is snow runoff and contributes 

about 31.3% of the total runoff. Although the snow contributes all-round the year, most of the snow melt 

starts from March/April and snow runoff peaks in July when most of the precipitation falls as snow over 

the high elevation of the Bhagirathi river basin. The snow contribution again ceases in the winter season 

when the temperature is low and solid form of precipitation is stored as snow over the higher elevation. 

The glacier contributes to about 5.7% to total runoff. The glacier melts when the temperature is above 

zero on the glacier surface. The glacier melt starts in May and peaks in August. Even though the annual 

contribution of glacier is smallest at the outlet its monthly contribution reaches 14.6% in September when 

there is less water in the river system. The baseflow drains water to the river channel all-round the year 

but its contribution increases in the dry and cold season (September, October, November, December, 

January, February) and overall contributes to about 29.2% to the total flow.  

 

 
Figure 17. Baseline averaged monthly runoff with the distinction of flow components (base, snow, glacier, 

and rain-runoff flow at the outlet of the Bhagirathi river basin (just before the confluence of the Alaknanda 

River) for 1991–2020. The top right part of the figure shows the contribution of stream flow contributors to 

the total flow (expressed in %). 
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The baseline hydrological fluxes for the Dokriani catchment are shown in Figure 18. Snow and glacier 

runoff are the main contributors to the total flux of Dokriani catchment since it is located at higher 

elevation and is more glacier and snow fed. Glacier runoff contributes to about 20% of the total flux. The 

main contributor is the snow runoff which contributes about 55% of the total flux. Snow runoff starts from 

March/April, and it peaks in the beginning of July. The snow runoff reduces in September and October 

as the temperatures get negative in higher elevations and snow melt does not occur. The third contributor 

is rain runoff, contributing to 13% of the total flux. Rain runoff starts to increase in June and peaks in 

August.  

 

 
Figure 18. Baseline averaged monthly runoff with the distinction of flow components (base, snow, glacier, 

and rain-runoff) at the Dokriani outlet for 1991–2020. The top right part of the figure shows the contribution 

of stream flow contributors to the total flow (expressed in %). 

 

The spatial runoff patterns reveal that the snow and glacier melt runoff contribution is high for the 

upstream river reaches of the basin (Figure 19). The glacier melt contribution is > 80% for the river reach 

originating from the Gangotri Glacier. Whereas the snow melt contribution is larger for the river reaches 

above Harshil and the Jadh Ganga. The Din Gad catchment is mainly dominated by the snowmelt runoff 

and rainfall-runoff components. Again, the upstream river reaches of the Bhilangana River, the other 

major tributary of the Bhagirathi River, are dominated by snow and glacier melt. For the lower part of the 

basin, the flow is dominated by the rainfall-runoff and the baseflow components.  
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Figure 19. Spatial patterns of the flow components (base, snow, glacier, and rain-runoff) at the outlet of the 

Bhagirathi river basin (just before the confluence of the Alaknanda river) for 1991–2020. The grey and red 

boundary represent the Bhagirathi river basin and Din Gad catchment. 

 

There is large annual variability in the flow hydrograph patterns for the Bhagirathi river basin (Figure 20). 

The variability is associated with the physiographic and climatic characteristics, such as variability in 

precipitation, temperature, changes in glacier ice reserves over the seasons and years. The maximum 

peak total flow in the baseline period is found to be 2163 cumecs in June 2013. The modelled peak 

discharge timing aligns with reported flooding in the Uttarakhand state. This is one of the worst natural 

disasters when widespread heavy rains resulted in floods across the Uttarakhand state, claiming 

thousands of lives and damage worth billions of rupees. This flash flood event was triggered by very 

heavy rainfall and cloudburst in the Uttarakhand region (Houze et al., 2017; Kumar, 2013). 
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Figure 20. Baseline daily runoff with the distinction of flow components (base, snow, glacier, and rain-runoff) 

at the outlet of the Bhagirathi river basin (just before the confluence of the Alaknanda River) for 1991–2020.  

 

 

The linear trends suggest that the total runoff has increased slightly in the past 30 years (Figure 21). This 

is due to an increase in the rainfall-runoff and baseflow contributions. However, the snow and glacier 

flow has decreased over the past. This is due to ever increasing temperature in the recent decades. The 

increase in temperature reduces the solid fraction of the precipitation and thus the snow runoff flow 

decreases in time. Higher temperature also has been melting away the glacier, and since the glacier 

area has reduced, the amount of glacier runoff has decreased. 
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Figure 21. Linear trends of average annual runoff components (base, snow, glacier, and rain-runoff flow) at 

the outlet of the Bhagirathi river basin (just before the confluence of the Alaknanda river) for 1991–2020.  

 

 

 Future climate 

 

A subset of the full ensemble of climate change scenarios provided by General Circulation Models 

(GCMs) in the CMIP6 multi-model ensemble is selected. For a medium and a high temperature increase 

scenario (i.e., RCP4.5 and RCP7.0), we selected 4 GCM runs each, to represent the full spectrum of 

projected changes in temperature and precipitation of the full ensemble. For each corner, the three 

models with the lowest values for D are selected from the ensemble. The initial selection results in three 

model runs × four corners = 12 model runs for each RCP (Figure 22). Size of dots in Figure 22 reflects 

the Mean Absolute Error (MAE) for T. Smaller dot means lower MAE and higher skill. The Colour of dots 

reflects MAE for P. Lighter colour illustrates, lower MAE and higher skill. The skill score was calculated 

following the below points:   

• For mean air temperature and precipitation, the GCM skill is calculated as MAE when comparing 

monthly climatology of the GCM and baseline forcing dataset. Units are °C for temperature and 

mm/month for precipitation. 

• The period over which the climatology is calculated is 1991-2014. It ends in 2014 because historical 

runs of the GCMs end after 2014. 
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• Basin-averaged values are compared and the GCM values are area-weighted for the grid cells in the 

GCM’s native resolution covering the basin. 

• For both mean air temperature and monthly precipitation sums the MAE values of the 12 months are 

averaged. 

• MAE values are then scaled between 0 and 1 over the range of MAE values in each ensemble and a 

combined skill score is calculated by averaging the scaled scores for T and P. Higher values (closer to 

1) indicate higher skill. 

 

 
Figure 22. Projected changes in mean air temperature (ΔT) and annual precipitation sum (ΔP) between 2071–

2100 and 1985–2014 for all included RCP4.5 (a) and RCP7.0(b) GCM runs. Black squares indicate the 10th and 

90th percentile values for ΔT and ΔP. MAE for T (dot size, °C). Smaller dot is lower MAE (higher skill)). MAE 

for P (colour scale, mm/month). Lower value is higher skill. 3 GCM runs closest to each corner (red circles). 

Selected GCM runs (blue circles)  

 

 

For the 3 selected at each corner, we select the GCM run with the highest combined skill score. In 

addition to representativeness of the projected climate change we make sure to only include GCM runs 

that have sufficient skill in simulating the historical climate (Table 4). 

 

Table 4. List of selected models. For each model one member is included, ‘r1i1p1f1’ if available.  

 

 

 

 

 

      Scenario GCM run       member        ∆T         ∆P            T_MAE  

        (°C) 

         P_MAE 

  (mm month-1) 

SSP245 EC-Earth3 r1i1p1f1 3.2 10.7 2.5 32.3 

GFDL-CM4 r1i1p1f1 3.4 7.1 3.0 52.5 

MPI-ESM1-2-HR r1i1p1f1 2.4 -1.3 2.9 44.8 

AWI-CM-1-1-MR r1i1p1f1 2.3 11.8 2.6 28.6 

SSP370 EC-Earth3 r1i1p1f1 4.5 12.2 2.5 32.3 

AWI-CM-1-1-MR r1i1p1f1 3.8 2.4 2.6 28.6 

MPI-ESM1-2-HR r1i1p1f1 3.1 9.9 2.9 44.8 

INM-CM5-0 r1i1p1f1 2.9 11.3 4.6 26.3 
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To bias correct the future CMIP6 GCM temperature and precipitation forcing and downscale it to the 

model domain grid, we applied a monthly delta change approach. Downscaling procedure for monthly 

deltas followed the following procedure: 

i. GCM data was resampled to the model grid using bilinear interpolation. 

ii. Monthly climatological means (temperature) and sums (precipitation) were calculated for 

both the GCM data and the baseline series over 1991–2020. 

iii. Monthly climatological differences, i.e., deltas, between the GCMs and the baseline data 

were determined using subtraction (temperature) and division (precipitation). 

iv. Future GCM series were downscaled by adding (temperature) or multiplying 

(precipitation) the resampled daily values with the offsets and scaling factors determined 

under (3) on a monthly basis. That is, all daily values that correspond to a specific 

calendar month are multiplied by the same bias correction factor. 

Note that the output of the monthly delta change bias correction includes leap days. For models that 

use 365_day calendar type ("GFDL-CM4_ssp245" and "INM-CM5-0_ssp370"), leap days were inserted 

by copying 28 February to 29 February. 

 

The downscaling and bias correction exercise reveals that the temperature is increasing at a higher rate 

compared to the precipitation for the Bhagirathi domain (Figure 23 and Figure 24). The temperature has 

increased at a rate of 0.03 °C yr-1 and 0.044 °C yr-1 for the ssp245 and ssp370 scenario, respectively. 

This translates to about 2.4 °C and 3.5 °C temperature rise by the end of the century (2100) for ssp245 

and ssp370 since 2020. The precipitation increases at a rate of 1.7 and 1.8mm yr-1 for the ssp245 and 

ssp370 scenarios. The variability in precipitation projection is higher compared to the temperature 

projection. The differences between the ssp scenarios are smaller for precipitation compared to the 

temperature. The ssp scenarios deviate notably after 2070.  

 

 

Figure 23. Annual domain-average temperature series of the selected GCMs after bias-correction and 

downscaling for the Bhagirathi domain. The thick lines show the SSP-RCP ensemble mean signal. 
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Figure 24. Annual domain-average precipitation series of the selected GCMs after bias-correction and 

downscaling for the Bhagirathi domain. The thick lines show the SSP-RCP ensemble mean signal. 

 

 

 Future hydrology 

 

To understand the hydrological changes in the future, different time scales i.e., seasonal and decadal 

and time slices i.e., mid-century (2036–2065) and end-of-century (2071-2100) are investigated. On a 

seasonal scale for the mid-century, the total flow increases in both scenarios, i.e., ssp245 and ssp370 

(Figure 25). The glacier-melt runoff increases by the mid-century for both ssp scenarios as compared to 

the baseline. The increase in glacier melt runoff is attributed to the increase in temperature in both ssp 

scenarios. The rising temperature results in a decreasing fraction of solid precipitation (i.e., snowfall), 

which consequently results in decreased snowmelt runoff by the mid-century. The rainfall-runoff 

contribution significantly increases by mid-century for both ssp scenarios. Interestingly, the timing of peak 

total runoff changes from July to August by the mid-century. The increasing contribution of rainfall-runoff 

and glacier-melt runoff and decreasing contribution of snow runoff are the prime reasons for the detected 

shift in peak total runoff from July to August for mid-century.  
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Figure 25. Seasonal changes in the hydrological regime for the mid-century (2036–2065) at the outlet of the 

Bhagirathi river basin (just before the confluence of the Alaknanda River). The shaded color represents 

variability (minimum and maximum) of the flow contributors. The dashed and solid colored line represents 

the median of the four climate models and baseline flow (1991-2020). 

 

 

 

 

 

 

For the end-of-century time slice, similar changes are observed (Figure 26). The rainfall-runoff 

contribution intensifies compared to the mid-century for both ssps. The snow runoff reduces significantly 

compared to the baseline for the end-of-century. The reduction in snow flow runoff is higher by the end-

of-century compared to the mid-century. The increase in glacier melt runoff seen in the mid-century 

recedes by the end-of-century. This signifies that the peak glacier melt runoff has already been attained 

by the mid-century and glacier-melt runoff will decline by the end-of-century in the Bhagirathi river basin. 

The shift in the peak total runoff becomes more evident by the end-of-century for both scenarios.  
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Figure 26. Seasonal changes in the hydrological regime for the end of the century (2071–2100) at the outlet 

of the Bhagirathi river basin (just before the confluence of the Alaknanda River). The shaded color represents 

the variability (minimum and maximum) of the flow contributors. The dashed and solid-colored line 

represents the median of the four climate models and baseline flow (1991-2020). 

 

For the annual scale, snow and glacier melt runoff show a clear declining trend by the end of the century 

(Figure 27). The rainfall-runoff and baseflow components increase in the future. This increase is 

attributed to the increased precipitation in the basin. The increase in rainfall-runoff and baseflow 

components is leveled off by the decline in the snow and glacier melt runoff. So, in the future, the total 

runoff stays relatively stable for ssp245 and slightly increases for ssp370.  

 

Even though the total flow remains relatively constant for ssp245 and slightly increases for ssp370 by 

the end of the century, the number of flood waves tends to increase for both ssp245 and ssp370 (Figure 

28). The flood wave is defined as the number of days (at least two consecutive days) when the flow is 

higher than the Q85 percentile flow. This increase in flood wave numbers will have severe implications on 

critical hydraulic (hydropower, irrigation, and water supply) and other infrastructures (road, tunnels, 

transmission lines, and buildings). 
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Figure 27. Annual changes in the hydrological fluxes at the outlet of the Bhagirathi river basin (just before 

the confluence of the Alaknanda River). The shaded color represents the variability (10-year running mean) 

of the median flow contributors from four climate models. The solid-colored line represents the median of 

four climate models.  
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Figure 28. The number of flood waves per year at the outlet of the Bhagirathi river basin (just before the 

confluence of the Alaknanda river). The shaded color represents the variability (10-year running mean) of the 

median flow contributors from four climate models. The solid-colored line represents the median of four 

climate models. 

 

Similar hydrological behavior is observed for the Din Gad catchment (Figure 29). The glacier melt runoff 

decreases effectively. A smaller decreasing rate is shown for snow runoff, with a visible accelerated 

decrease after 2070 for ssp370. The rainfall-runoff increases because of higher precipitation and 

compensates for the reduction in flow due to lower snow and glacier runoff. Going further upstream to 

higher elevation at Dokriani catchment (Figure 30), since the catchment is more snow and glacier 

dominated, the modelled decrease in snow and glacier runoff is much larger than the increased rainfall 

runoff and therefore an apparent decrease of more than 20% in total river flow for the Dokriani catchment 

is expected.  
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Figure 29. Annual changes in the hydrological fluxes at the outlet of the Din Gad catchment. The shaded color 

represents the variability (10-year running mean) of the median flow contributors from four climate models. 

The solid-colored line represents the median of four climate models. 
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Figure 30. Annual changes in the hydrological fluxes at the outlet of the Dokriani catchment. The shaded 

color represents the variability (10-year running mean) of the median flow contributors from four climate 

models. The solid-colored line represents the median of four climate models. 

 

The glacier runoff declines at a faster rate compared to the snow runoff (Figure 30). In the Dokriani 

catchment, warming results in a higher melt rate per unit glacier area as well as a decline of glacier area. 

The decline in glacier area is so large (Figure 31) that the higher melt rate does not increase the glacier 

runoff (Figure 30). Glacier mass balance increases as the warmer climate melts away the ablation area 

of the Dokriani glacier and higher precipitation adds more snow to its accumulation area. For a warmer 

scenario as ssp370, after 2070 the temperature is noticeably higher, which decreases the amount of 

solid precipitation as well as increases the amount of melt, so the glacier accumulation area becomes 

so small that cannot compensate for the increased melt and therefore the glacier mass balance begins 

to decrease as the glacier melts away (Figure 31).  
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Figure 31.  Future Dokriani glacier mass balance and glacier volume. The ssp245 (red) and ssp370 (blue) 

results are based on the average of the four different downscaled GCM runs.  

 

Looking at the seasonal changes of flow components of the Din Gad and Dokriani catchments at the end 

of century (Figure 32 and Figure 33, respectively), it reveals that for the Din Gad catchment by the end 

of century, glacier and snow runoff reduces substantially and the catchment becomes more rainfall 

dominated. Therefore, the peak in the total flux follows the rainfall runoff pattern and is shifted from July 

to August.  
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Figure 32. Seasonal changes in the hydrological regime for the end of the century (2071–2100) at the outlet 

of the Din Gad catchment. The shaded color represents the variability (minimum and maximum) of the flow 

contributors. The dashed and solid-colored line represent the median of the four climate models and the 

baseline flow (1991-2020), respectively. 

 

For the Dokriani catchment, which is higher up and half covered by glaciers, even with a substantial 

decrease in its snow runoff component, the total flow is still dominated by snow runoff. Therefore, the 

peak flow is not shifted to August but stays high for the whole month of July and August. A decrease in 

glacier-melt and snow runoff affects the total flux, as the increase in rain is not enough to compensate 

for the decrease in snow and glacier melt runoff.  
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Figure 33. Seasonal changes in the hydrological regime for the end of the century (2071–2100) at the outlet 

of the Dokriani catchment. The shaded color represents the variability (minimum and maximum) of the flow 

contributors. The dashed and solid-colored line represent the median of the four climate models and the 

baseline flow (1991-2020), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 

5 Discussion  

The results of this study heavily rely on the ERA5 reanalysis data downscaled with TopoSCALE and are 

therefore subject to limitations in those. The downscaling scheme's main purpose is to correct bias 

between the large-scale reanalysis and fine-scale model grid, for example, the difference in air 

temperature due to difference in elevation. However, initial biases in the reanalysis will persist and are 

related to the density of observations that are assimilated and therefore available to correct the model. 

Mountains in general, and the Himalayas specifically, tend to be relatively data-poor leading to less well 

constrained reanalysis data in these regions. A lot of effort has been put into acquiring the local-scale 

observed data but a major part of those data could not be acquired, specifically for the glacier related 

data, and therefore, available open source data including satellite data were used for the modelling work, 

especially for the Din Gad glaciated catchment. Therefore, we used the information from either literature 

or freely accessible data in the public domain. We combined the data from different open-source 

platforms to model and validate our results in this project.  

 

It should be noted that the selected future climate models may not cover the full range of uncertainty in 

future projections of the final CMIP6 ensemble. But the chosen models provide a good indication of  

the potential range of future changes.  

 

The baseflow runoff depends on the capacity of aquifers, depth of saturated soil column, distribution of 

permafrost, units of rock, or an unconsolidated soil formation. There is no or little information on aquifers, 

bedrocks, and other parameters in this region. Thus, the baseflow results of this study may not fully 

represent the dynamic reality.  

 

 

 Guidelines 

The modeling approach used in this study can be upscaled to the data-scarce regions in the high 

mountains of Asia. It is a must to have sufficient long-term meteorological (2m air and skin temperature, 

precipitation, humidity, sub-soil temperature), detailed land use, soil and rock characteristics (both 

surface and subsurface), and discharge data available for high altitudes regions to perform a proper 

climate change-impact modeling.   

 

It is important to ensure that the physical processes are well represented in the glacio-hydrological model 

to be used for the modeling purpose. Thus, we suggest using a 3-step (or multistep) calibration process 

depending on the availability of the data. In the first step, the glacier mass balance should be 

parameterized in such a way that it represents the observed mass balance data and glacier dynamics 

fairly well. In the second step, it should be ensured that the snow processes such as snow depth, snow 

water equivalent, snow cover area, and snow persistence are fairly represented in the simulation model. 

Finally, the surface and sub-surface runoff processes should be adjusted in such a way that the simulated 

discharge is similar to the observed discharge (and other observed variables if available). This modeling 

approach could be easily adapted to other parts of the Indian Himalayas or elsewhere in the high 

mountains of Asia. There will be a workshop in November to show in a generic way how the SPHY model 

can be built and we will also provide online teaching. All the materials and manuals will be made online 

before the training. 

 Recommendations 

To lessen the uncertainties and the limitation mentioned above, we recommend to set-up a monitoring 

project focusing on meteorological observations plus discharge in particular at higher altitudes. This 



 

49 

would help to modify the ERA5 reanalysis data for higher elevation basins and have a more robust 

calibration of model parameters.  

 

Further improvement in the simulation of physical processes, such as snow avalanching, and snow 

redistribution is recommended. More research is needed to improve the simulation of the snow module. 

One of the potential improvements is the assimilation of observed snow information such as snow water 

equivalent, snow depth, and snow cover area in the modeling exercise for the small-scale Din Gad 

model.  

 

The glacio-hydrological modeling exercise with SPHY focused mainly on the water availability issues in 

the region. For the holistic integrated water resources management (IWRM), it is important to address 

the dynamic demand and supply management scenarios in the future. Allocation of limited water 

resources in the water-scarce region, issues related to environmental quality, planning under climate 

variability and uncertainty, and the need to develop and implement sustainable water use strategies are 

increasingly pressing concerns for water resource planners. Water Evaluation And Planning (WEAP) 

incorporates these values into a practical tool for water resources planning and policy analysis. The 

outputs of the detailed SPHY modeling will serve as inputs to the WEAP model to generate different 

demand-supply scenarios for the future. We recommend to couple outputs of SPHY to WEAP model for 

a more comprehensive overview of the factors and scenarios that must be considered in managing water 

resources for present and future use. 

 

 Data availability  

The SPHY model codes can be accessed through the GitHub repository 
(https://github.com/FutureWater/SPHY).  All the input files used in the model and results for the baseline 
period and future runs for both small-scale and large-scale model runs can be found here 
https://doi.org/10.5281/zenodo.6795100. The ERA5 climate data are acquired from Copernicus Climate 
Change Service (C3S) Climate Data Store (CDS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

https://github.com/FutureWater/SPHY
https://doi.org/10.5281/zenodo.6795100
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6 Conclusions 

Here we use the Spatial Processes in Hydrology (SPHY) model to assess upstream runoff composition 

in the Bhagirathi river basin and we demonstrate how runoff composition and total runoff volume are 

expected to change until 2100 by forcing the model with an ensemble of the latest GCM outputs. Results 

show that for both the Bhagirathi and Din Gad domain the total water availability will be relatively stable 

for ssp245 and slightly increases for ssp370 by the end of the century.  

 

We show that the climate change response of hydrological processes varies for different catchments 

(and sub-catchments) in Bhagirathi river basin. For the Dokriani catchment, runoff is generated at a 

higher altitude and depends mainly on snow and glacier melt runoff, while for the outlet which is at a 

lower altitude, rainfall-runoff and baseflow processes dominate runoff. For Din Gad which snow and 

glacier dominated, the decrease in snow and glacier runoff is much larger than the increased rainfall 

runoff and therefore they show a larger change in total water availability compared to the overall 

Bhagirathi river basin. This has been suggested for other regions in HMA, the changes in total water 

availability are larger at higher altitudes than at lower altitudes for the different future scenarios (Khanal 

et al., 2021).  

 

Even though the total water availability for the whole Bhagirathi river basin slightly increases by the end 

of the century, the changes in timing and magnitude of peak water availability and seasonality may 

impose a serious threat on the livelihood of people. It is the change in seasonality and changes in peak 

melt runoff that will pose the main challenge to be addressed in adapting to future changes in a region 

where food security, energy security as well as biodiversity, and the livelihoods of many depend on water 

from the mountains.  
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8 Annex 

 
Figure A1. Dokriani glacier and Din Gad catchment and key locations within the basin. 
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Figure A2. Monthly Average Air Temperature (a) and rainfall (b) records – Dokriani Glacier (4364 m a.s.l. 

Advance base Camp) 01 July 2011 – 30 April 2016. 

 

 

 

 

 

 

Table A1. Snow and glacier melt contribution of various rivers in the IHR. 

Rivers Location Average snow and 

glacier melt 

contribution 

References 

Chenab Akhnoor 49% Singh et al., 1997 

Ganga Devprayag 28% Singh et al., 1994 

Ganga Rishikesh 40% Mauraya et al., 2010 

Satluj (Indian Part) Bhakra Dam 68% Singh and Jain, 2002 

Beas Pandoh Dam 35% Kumar et al., 2007 

Dhauliganga Tapovan 77% Arora et al., 2010 

Din gad river 

(Dokriani) Glacier) 

Snout 57-86% Thayyen et al., 2007 

Bhagirathi Bhojwasa ~97% Singh et al., 2008 
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