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3. Overview and summary 

Note: This report is based on G3P version 1.3. This version had not yet been fully gap-filled 
and error characterized. Accordingly, uncertainty estimates are missing in this report. Please 
refer to D4.1 – Product Report for further information on version history and uncertainty. 
 
This document is a deliverable in Work Package 5.6 of G3P as described in the Description of 
Action1: 
 
This task aims to evaluate a groundwater drought index based on the G3P product and 
integrate it into InfoSequia, an operational Drought Early Warning System developed by 
FutureWater. The development of this new groundwater index is being prototyped, calibrated 
and tested at the 0.5deg. pixel level in the continental Spain. Due to the low latency of current 
G3P-GWSA products, and in order to make the G3P-GDI product suitable for InfoSequia 
operational purposes, two methodological approaches based on Time Series Analysis 
(ARIMA/SARIMA) and ensamble gradient boosting (XGBR) were evaluated as potential 
candidates for being adopted as nowcasting tools for InfoSequia.  
 
  

                                                      
1 G3P Description of Action – Part A, p. 9 
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4. InfoSequia 

4.1 System overview 
InfoSequia is an operational Drought and Early Warning System developed by FutureWater 
able to provide seasonal outlooks of risk of critical failure on the productivity of croplands at 
the district level, or the availability of water resources at basin scale.  
 
Seasonal outlooks of crop and water supply failures are delivered monthly and are estimated 
by InfoSequia rest on machine learning techniques which are trained with a comprehensive 
set of predictors computed at different timescales which includes satellite-based drought 
indices, atmospheric oscillation indices and other indicators derived from hydrological 
modelling, reanalysis datasets, or ground measurements. The set of predictors generated by 
InfoSequia cover the main components of a drought and provide the most reliable and 
accurate picture of the drought status of a region including its magnitude, severity, spatial 
extent, and persistence.  
 
The system is characterized by its modularity, robustness, flexibility and the quality of its 
outcomes (e.g., data with high spatial and temporal resolution, short revisit times). The system 
is very suitable for being coupled with other monitoring or forecasting technologies, or for 
helping different market segments by addressing their needs, including: 
- more efficient and transparent management of droughts (triggering alerts and 
prioritizing of actions) time and costs saving by simplifying reporting commitments (useful for 
water management authorities, and disaster response and management agencies) 
- adjustment of irrigation quotas and restrictions at the district or province level 
(agricultural sector – irrigation boards and extension officers). 
- early detection of scheme failures (e.g., crop yield damages and water shortage events) 
which allows a more accurate planning of financial and insurance needs, and to optimize the 
allocation of human resources for field-based inspections (insurance/re-insurance). 
- triggering of ex-ante cash transfer and voucher programs (civil defense and 
humanitarian-aid agencies and response organizations) 
 
InfoSequia is provided at different service levels (light vs full versions) and deployment options 
(e.g., open-standard vs restricted-authenticated, web-mapping vs PaaS technologies), 
depending on user requirements. 
 

4.2 System architecture 
 
InfoSequia is composed of three main modules:  
1) The IS-MONITOR module, which includes the set of algorithms and subroutines that 
compute the drought indices and indicators from satellite and climate data collected from 
native and cloud-hub repositories  
2) The IS-4CAST, which includes the machine-learning routine which produces the 
seasonal outlooks of risk of failure of a particular system.  
3) The IS-VIEWER, which includes all the front-end functionalities and solutions 
specifically designed for accessing the data generated in IS-MONITOR and IS-4CAST modules. 
Data can be delivered via bulletins, a web-mapping interface, or via FTP. Also, other options 
like access through existing Platform-as-a-Service (PaaS) are available.  
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Figure 1. Functional block diagram of InfoSequia. 

 

5. Groundwater Drought 

 

5.1 Introduction and objectives 
Groundwaters plays a critical role for the water security of regions, and especially drylands 
where the access to these resources may be an important source of water for mitigating the 
impacts of water in the surface. Groundwater drought refers to a period of decreased 
groundwater levels that results in water-related problems2. The magnitude and severity of 
groundwater level changes will depend on local conditions and the interplay between 
groundwater and climate or human factors. To monitor groundwater drought is then crucial 
to evaluate the vulnerability of a region to surface water shortages. In addition to other 
drought and climate indices, a groundwater drought index may be considered as a potential 
predictor to support seasonal forecasting of drought impacts.  
 
Groundwater level observations are the basis for the quantification of the onset, magnitude, 
and severity of groundwater droughts. However, the suitability and reliability of groundwater 
level observations to support monitoring purposes will depend on several factors like: 
 
- Length of record, which is of high importance to set up the reference or “normal” needed to 
compute the relative anomalies   
- Frequency and latency at which observations are taken and delivered (e.g. near-real time 
monitoring systems vs large time-lag system) 
- Perturbance factors or non-control factors as intensive pumping or construction defects 
(Taylor and Alley, 2001) that may affect the right characterization of true groundwater 
drought conditions 
- Density or spatial coverage of the monitoring network across the aquifer or region of interest 
  

                                                      
2 https://water.usgs.gov/ogw/drought/ 
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Because of these limitations, in some regions the usage of water level observations is not fully 
recommended and need to be replaced by other methods like those ones which rest on 
satellite-based measurements. For those cases, estimates of groundwater level fluctuations 
derived from GRACE gravimetry anomaly measurements have been shown a very promising 
method to support drought monitoring efforts (Thomas et al., 2017).  
 
By using a residual water-balance approach, the G3P system is able to isolate the groundwater 
signal from the total water storage changes derived from the raw GRACE signal. The final G3P 
product refers to the G3P-GWSA, i.e. the GroundWater Storage Anomaly defined as absolute 
deviations of total groundwater storage changes in equivalent water height at a particular 
month relative to the long-term monthly average in a baseline time period. The GWSA in 
computed in G3P as, 
 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 = 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 − 𝐺𝐺𝐺𝐺𝑆𝑆𝐺𝐺𝑡𝑡 − 𝑅𝑅𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺𝑡𝑡 − 𝐺𝐺𝐺𝐺𝑆𝑆𝐺𝐺𝑡𝑡 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 

Equation 1 

 
being, TWSA the Total Water Storage Anomaly (mm), SWEA Snow Water Equivalent Anomaly 
(mm); RZSMA Root Zone Soil Moisture Anomaly (mm), GWEA the Glacier Water Equivalent 
Anomaly (mm), SWSA the Surface Water Storage Anomaly (mm), and t indicates the time. 
Detail explanations on auxiliary datasets and methodologies employed for estimating the 
isolate components in the right side of equation are provided in the technical reports of the 
G3P project.  
 
This work aims to bridge the lack of groundwater indicators in InfoSequia by ingesting the G3P 
product into its operational worklflow. This process requires to address two important tasks: 
- To establish a conceptual procedure to compute a groundwater drought index derived from 
the G3P product.  
- To explore and to find a suitable method able to provide up-to-date values of GP3 data in an 
attempt to meet the technical requirements of InfoSequia.  
 
To address both tasks, the G3P-GWSA product v1.3 resulting from the application of an 
optimal Gaussian filtering solution to the isolate components of the water balance was used. 
In this version, the groundwater storage anomalies refer to a baseline time period ranging 
from 2002-04 to 2020-03. 
 

5.2 Drought Index  
 
After a review of different options available in the scientific literature, the methodology  
suggested by (Thomas et al., 2014, 2017) was adopted to retrieve a groundwater drought 
index. This is computed as the normalized water storage residuals from a monthly climatology, 
in which negative residuals would describe deficits or relatively dry conditions, while positive 
values would do for surpluses or wet conditions.  
 
Monthly climatology is used to remove the influence of seasonality in groundwater storage 
changes. It is computed as:  
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𝐶𝐶𝑖𝑖 =
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖
𝑛𝑛𝑖𝑖
1
𝑛𝑛𝑖𝑖

, 𝑖𝑖 = 1, … ,12 

Equation 2 

 
After, the monthly climatology is subtracted from the GWSA to retrieve a groundwater storage 
deviation (GSD). Finally the groundwater drought index is computed by normalizing the GSD 
timeseries using the Z-score approach.  
 
𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 − 𝐶𝐶𝑖𝑖, 𝑖𝑖 = 1, … ,12 

Equation 3 

𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 =
𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺𝚤𝚤������
𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖)

 

Equation 4 

Being the 𝐺𝐺𝐺𝐺𝐺𝐺𝚤𝚤������ the average of the net groundwater storage deviation, and 𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖) the 
standard deviation along the timeseries.  
 

5.3 Operationalization 
 
At this stage, the nowcasting of G3P-GWSA product is a prerequisite of InfoSequia in order to 
sort out the high latency of the G3P-GSWA product which is generated once per year. In this 
study, two methods have been tested and evaluated to nowcast or extend forward the GRACE 
signature: the ARIMA/SARIMA method, and the eXtreme Gradient Boosting Regression 
(XGBR) algorithm. 
 
The overall performance of both methods was tested at the pixel level along the region of 
study (continental Spain) and using the G3P-GDI generated for continental Spain.  
 
5.3.1 ARIMA/SARIMA models 
The first method evaluated and tested as a nowcasting candidate tool of G3P-GDI values in 
based on the Time Series Analysis (TSA) approach. Models that adopt this approach rest on 
the basic assumption that autocorrelation plays a prominent role in forecasting the behaviour 
of a target variable. Among the TSA models, the ARIMA (AutoRegresive Integrated Moving 
Average) model is one the most widely used and recognized statistical methods for forecasting 
time series because their high accuracy and efficiency in representing various types of time 
series. The SARIMA model is a variant that includes the seasonality component in the 
formulation. Both type of models have been widely applied in a large number of hydrological 
applications (Valipour, 2015) and drought analysis (Mishra and Singh, 2011). ARIMA and 
SARIMA models are formally represented as: 
 
𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺 (𝑝𝑝,𝑑𝑑, 𝑞𝑞) 
𝐺𝐺𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺(𝑝𝑝,𝑑𝑑, 𝑞𝑞)(𝑃𝑃,𝐺𝐺,𝑄𝑄)[𝑠𝑠] 
 

where p is the order of the non-seasonal autoregressive model (number of autoregressive 
terms), q is the order of non-seasonal moving average model (number of lagged forecast 
errors in the prediction equation), and d is the number of non-seasonal differences needed 
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for stationarity. P, Q and D have similar meaning but for the seasonal component, and s is the 
periodic term. 
 
The AutoRegressive component (AR) indicates the correlation of the variable against itself 
according to the equation Equation 5. 
𝑚𝑚𝑡𝑡 = 𝑝𝑝0 + 𝑝𝑝1 𝑚𝑚𝑡𝑡−1 + 𝑝𝑝2 𝑚𝑚𝑡𝑡−2 + 𝑝𝑝3 𝑚𝑚𝑡𝑡−3 … 𝑝𝑝𝑛𝑛 𝑚𝑚𝑡𝑡−𝑛𝑛  

Equation 5 

where the vector [p0,…,pn] represents the regression coefficients for the different time lags. 
The optimal values of p are determined by analyzing the Autocorrelation function (ACF) and 
the Partial Autocorrelation function (PACF). The ACF shows the correlation between the 
current and the past values of the same variable. The PACF measures the direct correlations 
between past values and current values. 
 
The Integrated component (I) represents any differencing that has to be applied in order to 
make the data stationary. For example, a differencing factor (d=1) would mean a lag of i.e.mt-
mt-1. Usually, a dickey fuller test is done to check the stationarity of the data. 
 
Final the Moving Averarage (MA) term refers to how past forecast errors during the historical 
training period (or hindcast) are taken in the model to reduce the error of the forecast. A MA 
model follow the equation Equation 6 
𝑚𝑚𝑡𝑡 = 𝑞𝑞0 + 𝜀𝜀𝑡𝑡−1 + q2 𝜀𝜀𝑡𝑡−2 + 𝑞𝑞3 𝜀𝜀𝑡𝑡−2 …𝑞𝑞𝑛𝑛𝜀𝜀𝑡𝑡−1 

Equation 6 

In which the 𝜀𝜀 is call an error and represents the random residual deviations between the 
model and the target variable. Usually, the matrix of error are established using iterative 
techniques like Maximum Likelihood Estimation.  
 
SARIMA stands for Seasonal-ARIMA and it includes the contribution of seasonality to the 
forecast3. When the effect of seasonality is evident, ARIMA models usually fails making 
advisable to include the seasonal effect to increase the robustness of the forecast estimation. 
The Autoregressive (AR), Integrated (I), and Moving Average (MA) parts of the model (p,d,q) 
remain as that of ARIMA. The seasonal parts (P,D,Q) are also deduced from the ACF y PACF 
plots.  
 
The typical workflow applied for an ARIMA/SARIMA method involves three streps: 
 
- Exploratory analysis. It aims to check the stationarity of a timeseries4 by identifying the 
potential presence of consistent temporal patterns like long-term trends, cycles, or 
seasonality. The decomposition of a timeseries into its main components (trend-cycle 
component, seasonal component, and error component) is called the ETS decomposition. This 
analysis is performed in InfoSequia by applying the statsmodels library developed in Python.  
 
- Choosing and fitting models. The selection of a model depends on the strength of the 
correlation between the target variable and a set of potential predictors. In TSA, predictors 
refer to the target variable itself but lagged in time. Usually, several models with different 
configuration settings are fitted for a training period. To support the decision on which model 

                                                      
3 https://neptune.ai/blog/arima-sarima-real-world-time-series-forecasting-guide 
4 TSA models require  that data is stationary or independent to time influence . 
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best fit the variable, InfoSequia uses the Auto-ARIMA functionality in Python. This package is 
able to generate the optimal set of parameter (p,d,q, and P,D,Q) values which would provide 
the better forecasting. Auto-ARIMA works over a hyper-parameter space which is defined by 
the range of values suitable for p, d and q parameters. A grid search algorithm is then 
implemented over the space and the best combination is found as that one that minimize a 
performance indicator (e.g. Akaike Information Criterion). Here, we set a range of potential 
values from 0 to 3 for the p/P and q/Q values, and a maximum of 3 for d parameter. For the 
grid search algorithm, InfoSequia applies a stepwise algorithm which is usually faster and more 
effective than exhaustive or random algorithms. 
 
- Performance evaluation. Finally, and once a model is selected and its parameters estimated, 
the performance of the model to predict the target variable is quantified for a testing (blinded) 
period. 
 
 

 
Figure 2. Flowchart of methodological steps in ARIMA/SARIMA models 

 
 
5.3.2 XGBRegression model  
 
The eXtreme Gradient Boost Regression model (XGBR) is a type of Boosting algorithm. 
Boosting algorithms are sequential ensemble algorithms that that converts weak learners5 to 
strong learners which usually improves the prediction accuracy by decreasing bias (Zhang et 
al., 2020). Boosting algorithms pay most attention to the samples with highest prediction 
errors and increase their weights in the next iteration which makes that the algorithm learns 
from previous mistakes. The final prediction results a weighted combination of predictions 
across the sequence of learners (Figure 3).  
 

                                                      
5 A weak learner refers to a learning algorithm that only predicts slightly better than randomly. 
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Figure 3. Typical flowchart followed used in boosting algorithms. 

 
Extreme Gradient Boosting is an advanced implementation of the Gradient Boosting. It is a 
powerful and very scalable and accurate algorithm which improves greatly the overall 
performance and reduce the overfitting issues.  
 

5.4 Study region  
 
The study area covers continental Spain, which spans over an area of approximately 500,000 
km2. The region is characterized by its large climate diversity, where up to 5 climate Koppen-
Geiger zones exist. Hot-summer (Csa) and warm-summer (Csb) Mediterranean climates 
mostly dominate the entire country along the South and Eastern Mediterranean coastline as 
well as the central plains located in the inlands, whereas Oceanic climate (Cfb) prevails in the 
North and North-West coastline, and warm-summer Continental (Dfb) governs the North-
Eastern sectors. The mean annual precipitation is around 680 mm, but it varies strongly in 
time and space6. Meteorological drought periods are very frequent, while extreme floods 
usually happen during the autumn period along the Mediterranean coastline fringe as result 
of convective rainfall events.  
 
The retrieval of the G3P-GDI and the application of the nowcasting algorithms was applied at 
0.5deg. pixel level. The G3P’s 1deg and 0.5deg grid for the continental Spain are shown in 
Figure 4. Each 0.5deg quadrant was coded following a two capital letters which indicate the 
row and column position in the 1deg grid, and 2-number digits that indicates relative position 
inside the 1 deg. quadrant (11 for the upper-left, and 22 for the lower-right positions).  
 

                                                      
6 https://en.wikipedia.org/wiki/Climate_of_Spain 

https://en.wikipedia.org/wiki/Climate_of_Spain
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Figure 4. Division of the study area by GRACE quadrants of 1 deg and 0.5 deg. River Basins districts (from N-S): 14: Galicia-

Costa, 18: Cantábrico Occidental, 17: Cantábrico Oriental, 11: Miño-Sil, 21: Duero, 91: Duero, 101: Cuencas Internas de 
Cataluña, 31: Guadiana, 81: Júcar, 40: Guadiana, 64: Tinto, Odiel y Piedras, 51: Guadalquivir, 71: Segura, 63: Guadalete y 

Barbate, 61: Cuenca Mediterránea Andaluza. 

5.5 In-situ data collection 
Similarly, a GroundWater Drought Index was also derived at the 0.5deg. pixel level using water 
level measurements collected from the Spanish National Water Monitoring System. A detailed 
description of this dataset is provided in Deliverable D4.2. For this particular case, ground 
measurements were taken for verifying the patterns and magnitude of the relationships 
between the G3P-GDI, meteorological drought indices and the ground mearuments. The 
strength of these relationships were quantified through the Person correlation matrix 
measured between drought indices.  

 
Figure 5. Distribution of qualified wells from which goundwater level changes were extracted at the 05.deg pixel level. 0.5 

deg. quadrants selected for evaluating relationships between drought indices are in grey shadow. From North to South, 
CH12 and CH22 (Ebro valley); DF11, DF12, DF21 and DF22 (Headwater of Tajo river basin); EG21 (Headwater of Guadiana 

river basin); GC22 (Doñana National Park at the outlet of Guadalquivir river). 
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6. Results 

6.1 Temporal patterns of G3P-GDI and relationship with meteorological drought indices 
 
In general, patterns of Pearson correlation found between the ground-truth groundwater 
drought index and the G3P and meteorological drought indices are extremely weak, with 
values most of the time lower than 0.3 or a little higher for long timescale aggregations. The 
highest correlation were found at the Ebro valley and particularly in pixels CH12 and CH22 
(Figure 6). In those locations, correlation increased with timescale aggregation reaching the 
highest values at 6 and 12 months).  
 

 
Figure 6. Pearson correlation matrices between drought indices: gwi = groundwater drought index retrieved at the pixel level 

from water well observations; gdi = groundwater drought index retrieved from G3P-GWSA product; SPI = Standardized 
Precipitation Index computed by InfoSequia from CHIRPS dataset. 

 

6.2 ARIMA/SARIMA 
This section shows the results derived from the application of the typical TSA workflow for the 
generation of ARIMA/SARIMA models for the study region. 
 
Figure 7 shows the ETS components of four G3P-GDI timeseries extracted in the study region. 
Decomposition was applied over a subdataset extracted from the original one. The splitting 
strategy adopted resulted in: 
- Original dataset: Abr’2002 – Mar’2020 
- Period for training-testing: Jan’03 – Dec’2019 
- Training period: Jan’2003 – Dec’2016 (~80% of the training-testing period) 
- Testing period: Jan’2017 – Dec’2020 
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Figure 7. Error/Trend/Seasonal Decomposition of timeseries of the G3P-GDI for selected pixels. 

 
Results from the application of the Auto-ARIMA functionality are shown in Table 1 for the set 
of 0.5deg pixels selected to illustrate the process. Once selected the model, its performance 
to predict actual values was evaluated for the training (hindcast) and the testing periods. In 
Figure 8, the estimated values retrieved from the SARIMA models would indicate a clear 
problem of overfitting due to the large differences in the ability of the model to predict actual 
values in the train vs testing period. Root Mean Square Error values in the testing period were 
higher than in the training period by 50-80%.  
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Table 1. Best model configurations retrieved for the selected pixels. 

ID Stepwise 
CH12 ARIMA(1,0,0)(3,1,1)[12] 
CH22 ARIMA(1,0,0)(3,1,0)[12] 
DF11 ARIMA(1,0,1)(0,1,1)[12] 
DF12 ARIMA(1,0,1)(0,1,1)[12] 
DF21 ARIMA(1,0,1)(0,1,1)[12] 
DF22 ARIMA(1,0,1)(3,1,0)[12] 
EG21 ARIMA(2,0,1)(3,1,0)[12] 
GC22 ARIMA(3,0,0)(0,1,1)[12] 

 

6.3 XGBR model 
Figure 9 show the comparison between actual and predicted values from XGBR models for the 
training and testing periods. In this case SPI values at timescales of 1-, 3- and 6-months were 
used as potential predictors of the monthly G3P-GDI product. Additionally, monthly averages 
for the period of analysis were also added as auxiliary predictors. Results confirms the higher 
performance of the XGBR method against the SARIMA approach.  
 
Table 2. Statistical metrics (MSE = Mean Square Error, RMSE = Root Mean Square Error) retrieved from XGBR models applied 
to the G3P-GDI timeseries at 1-, 3- and 6-month timescales.  

GDI ID MSE_train MSE_test RMSE_train RMSE_test 
GDI01 CH12 0.052 1.446 0.228 1.202 

CH22 0.035 1.609 0.187 1.268 
DF11 0.052 1.092 0.228 1.045 
DF12 0.078 1.189 0.279 1.09 
DF21 0.054 1.113 0.232 1.055 
DF22 0.046 1.434 0.214 1.197 
EG21 0.053 1.5 0.23 1.225 
GC22 0.112 0.635 0.335 0.797 

GDI03 CH12 0.052 1.769 0.228 1.33 
CH22 0.039 1.763 0.197 1.328 
DF11 0.051 1.089 0.226 1.044 
DF12 0.055 1.21 0.235 1.1 
DF21 0.06 1.212 0.245 1.101 
DF22 0.072 1.389 0.268 1.179 
EG21 0.067 1.583 0.259 1.258 
GC22 0.085 0.845 0.292 0.919 

GDI06 CH12 0.096 2.232 0.31 1.494 
CH22 0.063 1.531 0.251 1.237 
DF11 0.065 1.39 0.255 1.179 
DF12 0.073 1.181 0.27 1.087 
DF21 0.066 1.035 0.257 1.017 
DF22 0.073 1.143 0.27 1.069 
EG21 0.052 1.372 0.228 1.171 
GC22 0.15 0.765 0.387 0.875 
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Figure 9

 
Figure 8. G3P-GDI01 original values (black for training period, blue for testing period) and predicted values from best 

SARIMA model (red) found for four selected pixels. 



Global Gravity-based Groundwater Product 

Page 17 of 18 G3P – D5.6 – G3P-GDI & InfoSequia – Revision 1 10.03.2023 

 
 

 
 

Figure 9. G3P-GDI01 actual values (black) and predicted values from the XGBR model (red). Vertical dashed line splits the 
period into training dataset (left side) and testing dataset (right side). 
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7. Conclusions 

In this report a methodology to compute a GroundWater Drougt Index (GDI) has been 
proposed and successfully implement to the G3P-GWSA product. Additionally, due to the low 
latency of the current G3P version products, here two methodological approaches resting on 
TSA (ARIMA/SARIMA models) and ensemble boosting algorithms (Extreme Gradient Boosting 
Regression) were evaluated for being used as nowcasting tools into the InfoSequia service. 
The XGBR method, using Standardized Precipitation Index at different timescale aggregations 
and mean monthly values of the target variable, showed much better performance than the 
best ARIMA/SARIMA models fitted. Additionally, XGBR method demonstrated to be much 
faster and computationally more efficient than TSA algorithms.  
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