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Preface 

The APSAN-Vale project aims to increase climate resilient agricultural productivity and food security, 

with a specific objective to increase the water productivity and profitability of smallholder farmers in 

Mozambique. The project prioritises small (family sector) farmers to increase food and nutritional security 

and will demonstrate the best combinations of adoption strategies and technological packages. The 

impact of the adopted strategies or technological packages is assessed on the farming plot level, sub-

basin, as well as basin level. The main role of FutureWater is monitoring water productivity in the target 

areas (both spatial and seasonal/annual variation) using remote sensing data from Flying Sensors 

(drones), satellite imagery, and WaPOR data portal in combination with a water productivity simulation 

model and field observations.  

 

This report shows the water productivity analysis for the 2022 irrigation season (April to September) in 

three different locations in Mozambique. This analysis is crucial to evaluate the impact of field 

interventions on water productivity. As this is the last season of the project, an evaluation of the progress 

of the water productivity for all irrigation seasons in this project is also added. 
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Summary 

Farmers are seeking best practices that can achieve higher crop yields, thus profits and food security. 

With limited resources such as water, the increase in production needs to be considered per unit of water 

consumed, which is expressed in the term ‘Water Productivity’. Water productivity can be used as a 

performance indicator to monitor changes in an agricultural area (at plot, farm, or irrigation system level). 

If interventions are implemented, water productivity can indicate if the intervention had a positive or 

negative impact on the use of water or if it remained unchanged. This report provides an assessment of 

the water productivity during the irrigation season of 2022 (April to September) for the APSAN-Vale 

project areas. The water productivity results as presented in this report provide insight into the impact of 

the project activities both at the field, sub-basin (community), and basin scale.  

 

Various methods were used to provide a reliable assessment of the water productivity, such as using the 

data available from the field, flying sensor imagery, and open-access remote sensing datasets from 

WaPOR and Sentinel 2. The satellite remote sensing data was used supplemental to flying sensor 

imagery to capture more frequently the crop development and fill in the gaps between the monthly 

intervals of the flying sensor imagery intervals. The supplemental data provided by Sentinel 2 imagery is 

useful for a better determination of the crop curve.  

 

At field scale the crop-specific water productivity is calculated using flying sensor (drone) and satellite 

imagery, and AquaCrop model simulations. The flying sensors used are equipped with a near-infrared 

camera for detection of the vegetation status. These images are processed and translated to canopy 

cover values. Ultimately, the images of the flying sensors were combined with the Sentinel 2 imagery, to 

determine the maximum canopy cover. In AquaCrop the field data and maximum canopy cover from 

flying sensors and Sentinel 2 are used to simulate the farming practices for each field, to determine yield 

and water productivity. At sub-basin and basin scale the biomass water productivity is calculated using 

data from FAO’s water productivity data portal WaPOR (http://wapor.apps.fao.org).  

 

During the 2022 irrigation season a total of 143 flying sensor flights were performed, covering a total of 

930 ha. In the end, for the water productivity analysis, data from 23 farmers was used: 9 in Báruè, 7 in 

Moatize, and 7 in Nhamatanda. The results of the flying sensor imagery acquired throughout the season 

are presented in printed field maps and shared through our online portal. Over the past year, substantial 

efforts were made to disseminate the maps made by ThirdEye’s AgPilots (or flying sensor operators) for 

a larger public online, through the APSAN-Vale Flying Sensor portal. The portal can be accessed through 

https://futurewater.eu/apsanvaleportal/.  

 

The field scale water productivity was calculated for the major irrigation season crops cabbage, tomato, 

and onion, and compared to baseline values. Additionally, water productivity was calculated for beans 

and maize but these were not compared to baseline values as they are unavailable. For the irrigation 

season crops improvements in water productivity were found of +55%, +29%, and +63% for Báruè, 

Moatize, and Nhamatanda respectively, resulting in an average improvement of +49%. This overall 

average achieves the set target for 2022 of +25% as stated in the project logframe however, is only 1% 

higher than the previous irrigation season (2021) as a result of an improved methodology and stricter 

judgment in modelling decisions.  

 

Furthermore, the water productivity was calculated at sub-basin scale, which is representative for the 

community of farmers adopting practices being demonstrated and promoted by the selected PPCs 

(Pequenos Produtores Comercial, small commercial farmers). An area of 300 ha around each selected 

PPC is determined to be representative for the area of the sub-basin (or community). At sub-basin scale 

the water productivity analysis makes use of the WaPOR data portal and calculates the biomass water 

productivity. The highest water productivity values were found in Báruè; here the highest values are 

http://wapor.apps.fao.org/
https://futurewater.eu/apsanvaleportal/
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observed in Báruè III of 3.11 kg/m3. The biomass water productivity was found to range from 2.84 to 

3.11 kg/m3 in Báruè, 2.16 to 2.95 kg/m3 in Moatize, and 2.15 to 2.23 kg/m3 in Nhamatanda. The relative 

change of water productivity compared to the baseline values is +11%, +4% and +17% for Báruè, 

Moatize, and Nhamatanda, respectively. The overall increase in water productivity estimated at the sub-

basin (community) level is +11%. 

 

At basin scale the catchment delineation from each district was used as the boundary of the basin. The 

water productivity was determined using the WaPOR data portal providing values on biomass water 

productivity. These values are compared with the baseline assessment and determined that an increase 

of water productivity was achieved of +27%, +44%, and +31% for Báruè, Moatize, and Nhamatanda 

respectively. The average increase in biomass water productivity was +34% for all districts together. 

 

Finally, it is noticed that the field scale water productivity increase was similar to last year’s irrigation 

season (49% vs 48%), while at sub-basin (11% vs 33%) and basin scale (34% vs 62%) the water 

productivity increase was less compared to last year. As APSAN-Vale farmers had a similar field scale 

water productivity increase but results including non-APSAN-Vale farmers (i.e. on the sub-basin and 

basin scale) were lower than last year, this might indicate that APSAN-Vale farmers are more resistant 

to climatic challenges influencing their harvests than non-APSAN-Vale farmers. 
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1 Introduction 

 APSAN-Vale project description 

The APSAN-Vale project started at the end of 2018 

and is a 4.5-year project with the objective to: ‘Pilot 

innovations to increase the water productivity (WP) 

and Food Security for Climate Resilient smallholder 

agriculture in the Zambezi valley of Mozambique’. 

Water productivity is used as an indicator to quantify 

the impact of innovations on smallholder agriculture. 

These innovations can be technical packages 

(interventions and training), and the adoption of 

lessons learned through farmer-to-farmer 

communication. Information on water productivity 

needs to incorporate both temporal and spatial 

aspects. The temporal changes in water productivity 

indicate if an intervention increased water productivity. 

The spatial patterns in water productivity indicate if the 

knowledge is being adopted in the region and 

increased the overall water productivity of the locality, 

and district. Project activities take place in three 

districts namely: Báruè, Moatize, and Nhamatanda. 

Within each district, various localities are selected for 

piloting innovations. The location of the districts and 

current project activities are shown in Figure 1. 

 Relevance of analysing water productivity  

In order to meet the future needs of food and fibre production, developing and developed countries need 

to focus more on efficient and sustainable use of land and water (Bastiaanssen and Steduto, 2017)1. 

Farmers have been able to gain profit by increasing agricultural production per unit of land. However, it 

is key to include the water consumption component in agricultural production. This would allow for 

improving agricultural production per unit of water consumed. 

 

Water productivity can be used as a performance indicator to monitor changes in an agricultural area (at 

plot, farm, or irrigation system level). If interventions are implemented, water productivity can indicate if 

the intervention had a positive or negative impact on the use of water or remained unchanged. In addition, 

spatial information on water productivity can indicate areas that have higher performance (early 

adopters) and whether practices are taken over by other farmers. 

 Logframe indicators 

Within the APSAN-Vale project, several logframe indicators were formulated. The indicators linked with 

the water productivity assessment are listed in Table 1. Some indicators require the calculation of crop-

specific water productivity (1.2 and 1.3), whilst other indicators use biomass water productivity (1.4). The 

water productivity is calculated at field, sub-basin, and basin scales, thus providing the required maps at 

different spatial scales. The annual targets for the water productivity outcomes are percentages of 

 
1 Bastiaanssen, W. G. M. and Steduto, P.: The water productivity score (WPS) at global and regional level: Methodology 
and first results from remote sensing measurements of wheat, rice and maize, Sci. Total Environ., 575, 595–611, 
doi:10.1016/j.scitotenv.2016.09.032, 2017. 

Figure 1. Location districts of APSAN-Vale project 

activities 
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increase compared to the baseline assessment (Van Opstal and Kaune, 2020)2 and are indicated in 

Table 1 as cumulative values, whereas the output maps are the annual total for each year.  

 

Table 1. Logframe indicators related to water productivity 

 # Indicator Baseline 
Target 

2019 2020 2021 2022 

Goal 0.3 Increased water productivity 0% 7.5% 15% 25% 25% 

Outcome 1.2 Water footprint for selected crops 0% 7.5% 15% 25% 25% 

1.3 Water productivity for maize 0% 7.5% 15% 25% 25% 

1.4 Biomass water productivity 0% 7.5% 15% 25% 25% 

Outputs 1.1.1 # of field-level maps 0 30 60 60 60 

1.1.2 # of sub-basin level maps 0 10 20 20 20 

1.1.3 # of basin level maps 0 6 12 12 12 

 Season overview 

The irrigation growing season started in April 2022, with the planting of various field crops. The crops 

planted (and analysed) this season were cabbage (couve and repolho), tomato, maize, beans, onion and 

potato. For most crops the season ended in September, but in Báruè some crops were harvested until 

November. Harvest occurs throughout the season at different times depending on the growing length of 

the crops, local climate conditions, and management strategies. The flying sensor activities occurred 

with flights taken once every 3-4 weeks with the total number of flights, flight area, and farmers monitored, 

presented in Table 2. Overview of the number of flights made and farmers monitored during the 2022 

irrigation season In the end, for the water productivity analysis, data from 23 farmers was used. 

 

Table 2. Overview of the number of flights made and farmers monitored during the 2022 irrigation season 

 Báruè Moatize Nhamatanda Total 

Flights taken 60 48 35 143 

Farmers monitored 10 8 7 25 

Area covered 309 ha 312 ha 228 ha 930 ha 

Farmers monitored for WP 9 7 7 23 
 

 Project locations 

 Fields 

For each district, several small commercial farmers (Pequenos Produtores Comercial or PPCs) were 

selected for the project to implement numerous innovative practices (boas practicas) for boosting water 

productivity. Most of the selected PPCs were monitored with flying sensor flights. In Báruè, Moatize, and 

Nhamatanda, nine, seven, and seven PPCs respectively were monitored for the water productivity 

analysis. The locations of the PPCs monitored during the irrigation season are visualised in Figure 2.  

 

 

 
2 Van Opstal, J.D., A. Kaune. 2020. Water Productivity Technical Report - Baseline assessment for APSAN-Vale project. 
FutureWater Report 195 
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Figure 2. Location of selected PPCs monitored with flying sensor flights during the 2022 irrigation season 

 Sub-basins  

The sub-basin scale is the spatial scale between the field scale of the PPCs and the basin scale as 

described in Section 2.1.3. For the analysis of the sub-basin level water productivity, a representative 

size is selected of local communities surrounding the PPCs. The objective of the APSAN-Vale project is 

to increase the water productivity of several communities through knowledge exchange of the 

interventions being implemented. It is expected that communities surrounding the PPCs will adopt certain 

best practices. Therefore, the increase in water productivity is best monitored at a scale that captures 

the change in the communities. The sub-basin or community area is selected using a buffer of 

approximately 300 ha radius surrounding the selected PPCs. The locations of these communities are 

presented in Figures 3, 4, and 5 for Báruè, Moatize, and Nhamatanda, respectively. Each has selected 

3 to 4 clusters at the location of the PPCs.  

 

 
Figure 3. Location and boundaries of sub-basin areas in Báruè 
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Figure 4. Location and boundaries of sub-basin areas in Moatize 

 

 
Figure 5. Location and boundaries of sub-basin areas in Nhamatanda  

 Basins 

The basin delineation was performed using a Digital Elevation Model (DEM) at 30m resolution provided 

by the Shuttle Radar Topography Mission (SRTM) of NASA, and QGIS tools. Details on the steps 

involved can be reviewed in the manual (Kwast and Menke, 2019)3. The outflow points for the basins are 

determined by evaluating the location of the project activities in the fields, as were determined at the 

start of the project4. The sub-basins are representative of the localities of the project, whereas the basins 

represent the larger picture of the upstream area. The delineations and locations of project activities are 

shown in the maps in Figure 6. Measurements of water flow were conducted by project partners at 

strategic locations in the streams to quantify water abstractions for irrigation. 

 

 
3 van der Kwast, H. & Menke, K., QGIS for Hydrological Applications - Recipes for Catchment Hydrology and Water 
Management, Locate Press, 2019. 
4 Van Opstal, J.D., A. Kaune. 2020. Water Productivity Technical Report - Baseline assessment for APSAN-Vale project. 
FutureWater Report 195. 
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Figure 6. Delineation of basins and streamlines for Báruè, Moatize, and Nhamatanda 

 Reading guide 

This technical report provides the results of the water productivity analysis at field, sub-basin, and basin 

scale using Flying Sensor Imagery, crop modelling, and FAO’s WaPOR database. The next chapter 

(chapter 2) elaborates on the methodology used for conducting the water productivity analysis. Chapter 

3 provides an analysis of the meteorological conditions during the irrigation season and compares it with 

past years. Chapters 4, 5, and 6 provide the results of the water productivity analysis at the field, sub-

basin, and basin scale respectively. Chapter 7 assesses the water productivity results and compares 

them with the baseline assessment values. Chapter 8 provides the summarizing and concluding remarks.  
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2 Methodology 

 Approach 

 Water productivity concept 

Water productivity consists of two components: production (either as crop yield or biomass) and water 

consumed. Water consumption occurs through evapotranspiration which is the sum of plant transpiration 

through the stomata in the leaves, and evaporation that occurs from the soil surface and intercepted 

water by the leaves (Squire, 2004)5. Within this project, the use of evapotranspiration (versus irrigation 

application) was selected, because it represents the component of the water balance that cannot be 

reused by downstream users in a river basin context. Return flows from agricultural areas (through runoff 

or subsurface flow) are available for re-use in the downstream areas if the quality of the water is sufficient. 

As such, water productivity can be expressed as: 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [𝑘𝑔/𝑚3]  =  
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [𝑘𝑔]

𝐸𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 [𝑚3]
 

 

𝐶𝑟𝑜𝑝 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [𝑘𝑔/𝑚3]  =  
𝐶𝑟𝑜𝑝 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑦𝑖𝑒𝑙𝑑 [𝑘𝑔]

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 [𝑚3]
 

 

This water productivity assessment contains two approaches to measuring water productivity, at different 

scales:  

1. Field scale water productivity: At the field scale, the most detailed information is available 

regarding crop type, planting and harvesting dates, and management strategies. At this scale, 

crop-specific water productivity was calculated for the selected crops at the three different 

districts using crop simulation modelling in combination with flying sensors and satellite imagery 

(Section 2.1.2).  

2. Sub-basin and basin scale water productivity: At sub-basin and basin scales limited information 

is available on the spatial distribution of the crop types. At this scale biomass water productivity 

was calculated using data from WaPOR, FAO’s Open Access Portal with water productivity 

data (Section 2.1.3). 

 Field scale water productivity 

The crop-specific water productivity at field scale is determined by crop modelling using field 

observations and data retrieved from flying sensors and satellite imagery. Figure 7 displays the workflow 

for performing the crop-specific water productivity analysis. The water productivity is calculated with 

FAO’s AquaCrop model. Field data for setting up the AquaCrop simulations are taken from the weather 

station and field notebooks. Flying sensors capture images at regular intervals to calculate the canopy 

cover. This dataset is supplemented with satellite (Sentinel 2) imagery for a higher frequency of data (at 

lower spatial resolution). This information is integrated with the AquaCrop model to calibrate the model 

and calculate water productivity. The advantage of combining remote sensing observations from flying 

sensors, satellite data, and simulation modelling, is that spatial insight is gained in the diversity of farm 

management practices. Thus, for each field, the most fitting AquaCrop simulation run is selected to be 

representative of that field. In the next sections, the various steps are elaborated on. 

 

 

 
5 Squire, G. L.: Water Productivity in Agriculture: Limits and Opportunities for Improvement. Edited by J. W. Kijne, R. Barker, 
D. Molden. Wallingford, UK: CABI Publishing (2003), pp. 352, ISBN 0-85199-669-8, Exp. Agric., 40(3), 395–395, 
doi:10.1017/S0014479704372054, 2004. 
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Figure 7. Workflow for calculation of crop-specific water productivity analysis 

 Sub-basin and basin scale water productivity 

WaPOR is FAO’s water productivity data portal (https://wapor.apps.fao.org) containing information on 

evapotranspiration, biomass production, land cover, and many other layers. Information at the basin 

scale was extracted by deriving a catchment delineation for the selected districts. This was performed 

using a DEM (digital elevation model). The catchment delineation is shown in Figure 6 for the selected 

areas.  

 

The land cover layer in WaPOR was used to determine the location of croplands in the basins. The 

procedure for this analysis follows the guidance provided by the WaterPIP project (Water Productivity in 

Practice) and the workflow is schematically presented in Figure 8. In Section 2.7 the WaPOR datasets 

used for this analysis are described in more detail. At the sub-basin scale, similar layers are used for 

extracting information regarding water productivity. 

 

 
Figure 8. Workflow for biomass water productivity analysis 

https://wapor.apps.fao.org/
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 Overview of methodology 

The flowchart provides an overview of the different steps that were taken during this project (Figure 9). 

The following sub-sections will be dedicated to explaining each step.  

 

 
Figure 9. Flowchart representing the project methodology 

 Step 1: Acquiring flying sensor imagery 

 Flying sensor equipment 

The flying sensor equipment used in APSAN-Vale is a 

Mavic Pro drone and an additional camera to detect 

vegetation status. Figure 10 shows a photo of the Flying 

Sensor used including both cameras. One camera makes 

RGB (red-green-blue) images, similar to visual images 

seen with the human eye. The second camera measures 

the near-infrared (NIR) wavelength, which is not visible to 

the human eye. The near-infrared wavelength has a good 

response to the conditions of the vegetation. Figure 11 

gives an illustration of the response to stressed 

conditions of a leaf. If the leaf is in optimal health the NIR 

wavelength has a high response. If the leaf is under 

stressed or sick conditions the NIR wavelength has a 

lower response. This is already measured by the NIR 

wavelength before it is visible to the human eye.  

Figure 10. Our flying sensor in action 
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Another advantage of using the Flying Sensors in this project is the flexibility for imagery capture and the 

high spatial resolution of the acquired imagery. The flying sensors can make flights when required at the 

desired intervals. For this project, the frequency of imagery acquisition was aimed at once every 3 weeks, 

which best captures the crop development stages. This interval was sometimes longer due to weather 

conditions or logistics. The spatial resolution of the imagery is 4-8 cm, providing sufficient detail to 

capture the spatial variation of smallholder agriculture.  

 

 
Figure 11. Illustration explaining the response of near-infrared (NIR) wavelength to vegetation status 

 Flying sensor imagery acquisition 

Flying sensor images were acquired at regular intervals throughout the growing season. In Table 3 an 

overview is provided of the number of flights performed and on which date (sometimes spread over 2 or 

3 days). The total number of flights for Báruè, Moatize, and Nhamatanda, were 60, 48, and 35, 

respectively. The total area monitored with the flying sensors was 309 ha, 312 ha, and 228 ha for Báruè, 

Moatize, and Nhamatanda, respectively.  

 

Table 3. Overview of flights and area during the irrigation season of 2022 

 Báruè Moatize Nhamatanda 

May  16-05-2022 

17-05-2022 

18-05-2022 

19-05-2022 

 

June 06-06-2022 

10-06-2022 

11-06-2022 

12-06-2022 

13-06-2022 

14-06-2022 

15-06-2022 

 

July 04-07-2022 

06-07-2022 

12-07-2022 

13-07-2022 

15-07-2022 

04-07-2022 

05-07-2022 

06-07-2022 

August 16-08-2022 

17-08-2022 

18-08-2022 

23-08-2022 

24-08-2022 

27-08-2022 

15-08-2022 

17-08-2022 

18-08-2022 

September 05-09-2022 

06-09-2022 

07-09-2022 

27-09-2022 

28-09-2022 

29-09-2022 

13-09-2022 

14-09-2022 

15-09-2022 

16-09-2022 

05-09-2022 

06-09-2022 

07-09-2022 
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October  28-10-2022 

30-10-2022 

 

November 04-11-2022 

05-11-2022 

 01-11-2022 

02-11-2022 

Flights taken 60 48 35 

Area covered 309 ha 312 ha 228 ha 

 Step 2: Enriching data with Sentinel 2 imagery 

Sentinel 2 is an open-access satellite platform providing imagery every 3 to 5 days at a spatial resolution 

of 10x10m. This resolution is sufficient for capturing the crop development of agricultural fields but too 

coarse for determining detailed within-field spatial variations. These within-field spatial variations can be 

monitored with flying sensor imagery at a higher resolution. Sentinel 2 data is used supplemental to the 

flying sensor imagery to capture more frequently the crop development and fill in the gaps between the 

3-to-5-week intervals of the flying sensor imagery intervals (as indicated in Table 3).  

 

The Sentinel 2 imagery is first processed to cloud-free imagery through the quality bands provided with 

the imagery dataset. The NDVI is calculated and used to determine the fraction of vegetational cover by 

determining the NDVI for bare soil and fully vegetative cover fields. The fraction of vegetational cover is 

similar to the canopy cover derived from the flying sensor imagery. Processing of the Sentinel 2 imagery 

was conducted using the cloud computing of Google Earth Engine (https://earthengine.google.com/). 

 Step 3: Processing to canopy cover maps 

The imagery acquired by the Flying Sensors was post-processed. At first, the single images for each 

flight were stitched together to form an ortho mosaic. These were then georeferenced so they could be 

used in further geospatial analysis. These steps were performed using software packages: Agisoft 

Metashape, and QGIS (geospatial software).  

 

The next processing steps were required to achieve a time series of canopy cover maps. The flying 

sensor images were processed using R coding, also making the process more efficient. The NIR band 

of the image was used to determine the vegetation pixels of each image using the ‘kmeans’ R package 

for automatic imagery classification. Manually the user determines which class is appointed as 

vegetation. This information is then used to calculate the canopy cover, which is an indication of the 

vegetation cover over a surface in percentage and is in the same category as other vegetation indices 

commonly used in remote sensing e.g., Leaf Area Index (LAI) or Normalized Difference Vegetation Index 

(NDVI). Canopy cover ranges from 0 to 100%. Full vegetation cover will result in a canopy cover of 100%. 

A grid of 1x1 meter (=1 m2) is overlaid over a crop field. The number of vegetation pixels (of 0.05x0.05 

meter = 0.0025 m2) is counted to determine the percentage of the grid that is covered by vegetation, 

thus the canopy cover. This information is used in combination with crop modelling to determine the crop 

yield, and water productivity. 

 Step 4: Crop growth modelling 

 AquaCrop 

The AquaCrop model was selected for simulating crop growth and water consumption, which is based 

on FAO principles as reported in FAO Irrigation and Drainage Papers #56 and #66. It simulates both 

crop development and the water balance, resulting in crop water productivity results.  

 

Several crop growth models have been developed to simulate crop yield and water productivity. The 

model selection depends on the application scale and the ability to constrain model parameter 

uncertainty. AquaCrop is a widely used crop model developed by FAO, which simulates the yield 

https://earthengine.google.com/
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response to water using physically based parameters. It has been used in climate change impact studies 

in various parts of the world (Hunink et al., 20146; Hunink and Droogers, 20107, 20118). In addition, 

AquaCrop has been applied to predict water productivity and crop yield based on flying sensor 

information (den Besten et al., 20179, van Opstal, 201910) and to assess irrigation scheduling scenarios 

(Goosheh et al., 201811). It is especially recommended for small-scale farm-level applications. In 

addition, it is an open-source model which is freely available for application. Hence, the appropriate 

model for APSAN-Vale purposes. 

 

FAO has pre-established model parameters to simulate the canopy cover, actual crop transpiration and 

soil evaporation, biomass, and crop yield for a growth period from sowing to harvest (Figure 12). In this 

work, selected model parameters were tuned based on observations. Tuned model parameters included 

plant density, length of the growth period, increase in canopy cover, decrease in canopy cover, harvest 

index, fertility stress, and cover of weeds. 

 

 
Figure 12. Field data and output simulations of the AquaCrop model 

 Input data 

Weather 

Weather data was required as input for the AquaCrop model. This data was derived from a variety of 

sources. Weather stations from the Trans-African Hydro-Meteorological Observatory (TAHMO) were 

installed at each district office to represent the weather conditions in the area. These stations were 

installed in early 2019 and provide meteorological observations until the end of the irrigation season. 

Occasionally malfunctions occur in the TAHMO equipment. During these periods the weather data was 

 
6 Hunink, J. E., Droogers, P. and Tran-mai, K.: Past and Future Trends in Crop Production and Food Demand and Supply in 
the Lower Mekong Basin., 2014. 
7 Hunink, J. E. and Droogers, P.: Climate Change Impact Assessment on Crop Production in Albania. World Bank Study on 
Reducing Vulnerability to Climate Change in Europe and Central Asia (ECA) Agricultural Systems, FutureWater Report 
105., 2010. 
8 Hunink, J. E. and Droogers, P.: Climate Change Impact Assessment on Crop Production in Uzbekistan. World Bank Study 
on Reducing Vulnerability to Climate Change in Europe and Central Asia (ECA) Agricultural Systems, FutureWater Report 
106., 2011 
9 den Besten, N., Simons, G. and Hunink, J.: Water Productivity assessment using Flying Sensors and Crop Modeling. Pilot 
study for Maize in Mozambique, 2017. 
10 Van Opstal, J.D.. 2019. APSAN-Vale Water Productivity Rainfed season 2018/2019. FutureWater Report. 
11 Goosheh, M., Pazira, E., Gholami, A., Andarzian, B. and Panahpour, E.: Improving Irrigation Scheduling of Wheat to 
Increase Water Productivity in Shallow Groundwater Conditions Using Aquacrop, Irrig. Drain., 0(0), doi:10.1002/ird.2288, 
2018. 
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supplemented with open-access remote sensing weather data available such as precipitation data from 

the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) database or the WaPOR 

database for reference evapotranspiration. Additionally, long-term average weather data was acquired 

from the Global Land Data Assimilation System (GLDAS) data products. This is explained in the baseline 

assessment report (FutureWater Report 195)12. 

Field data 

The next step for the AquaCrop simulations was to collect basic crop information from the selected sites 

(Báruè, Moatize, and Nhamatanda). Basic information about planting dates, plant density, total growth 

length (length of the crop cycle), and crop yield is key to obtaining reliable AquaCrop simulations. Several 

of these parameters are specific to each field. Therefore, the notes taken in the fieldbook of the PPCs 

were copied and linked to specific fields (indicated with polygons or shape files) to make the simulation 

tailored to the situation of the PPC. In Annex 1 the input data on management decisions can be found. 

In the AquaCrop model, several crop parameters must be calibrated to simulate crop-specific canopy 

cover, transpiration, biomass, and yield during the growing season to finally determine water productivity. 

Crop-specific parameters were obtained from the original crop files available in the AquaCrop model. For 

Cabbage and Onion, we obtained the crop parameter information from other studies (Agbemabiese et 

al., 2017; Pawar et al., 2017; Pérez-Ortolá et al., 2015; Wellens et al., 2013). 

 

Table 4 presents the calibrated crop model parameters per crop. These parameters include the Harvest 

Index (HI) (%), Increase in Canopy Cover, CGC (-), Decrease in Canopy Cover, CDC (-), and the length 

of specific growing stages (e.g., sowing to emergence, sowing to maximum rooting depth, etc). HI is a 

known parameter to convert biomass into crop yield. CGC is a measure of the intrinsic ability of the 

canopy to expand. After the canopy begins to senesce, the canopy cover is reduced progressively by 

applying an empirical canopy decline coefficient (CDC). HI, CGS and CDC vary depending on the crop 

variety and seed quality. The method used to calculate the length of specific growing stages for maize, 

beans, tomato, and potato was the Growing Degree Days mode (°C days), which accounts for the effects 

of temperature regimes on crop phenology. For cabbage and onion the calendar days mode was used, 

which states that the different growth stages of the crops have fixed lengths in days. Eventually, the 

length of the growing stages was calibrated on the collected field information (Annex 1). This was done 

by multiplying crop-growth parameters by a common factor until the simulated crop development 

matched the crop development observed by the flying sensors and satellite imagery. 

 

Table 4. Calibrated crop parameters used in AquaCrop 

 Maize Beans Tomato Potato Cabbage* Onion* 

HI (%) 20 30 60 80 50 40 

CGC (-) 0.0050 0.0049 0.0075 0.0162 0.1190 0.1190 

CDC (-) 0.0040 0.0044 0.0040 0.0020 0.1000 0.1000 

From sowing to 

emergence (°C days) 
132 88 43 310 2 6 

From sowing to 

maximum rooting 

depth (°C days) 

2324 1332 891 1672 40 77 

From sowing to start 

senescence (°C 

days) 

2310 1354 1553 1525 86 45 

 
12 Van Opstal, J.D., A. Kaune. 2020. Water Productivity Technical Report - Baseline assessment for APSAN-Vale project. 
FutureWater Report 195. 



21 

From sowing to 

maturity (length of 

crop cycle) (°C days) 

2805 1947 1933 1977 100 85 

From sowing to 

flowering (°C days) 
1452 834 525 852 28 67 

Length of the 

flowering stage (°C 

days) 

297 349 750 1 40 18 

*Growing stages in calendar days. 

Soil and field management information 

According to the collected field information the soil texture of each site was determined. The hydraulic 

properties of the soil are correlated with the soil texture. The AquaCrop model includes pre-established 

hydraulic properties such as Field Capacity (FC) and Wilting Point (WP) for each soil texture. Field 

Capacity and Wilting Point values are key to determining the soil water storage capacity and determining 

the water stress thresholds. In Table 5 the soil textures obtained for each site are shown. The soil type 

for Báruè was updated in the past season, due to acquired new field data. In Figure 13, an example of 

FC and WP values (FC=22%, WP=10%) used in the AquaCrop model is shown for sandy loam. 

 

Table 5. Soil texture in each site 

Site Soil texture 

Báruè Sandy Clay Loam 

Moatize Sandy Clay 

Nhamatanda Sandy Clay 

 

 
Figure 13. Soil characteristics in Moatize as used in AquaCrop 

 Step 5: Calibrating crop development to obtain water productivity 

The AquaCrop model was calibrated using the flying sensor and Sentinel 2 data. This was done by 

determining the maximum canopy cover using a fitted curved trendline. The average canopy cover 

values were taken and plotted over the course of the growing season. The canopy cover follows a 

positive curvilinear trend representing the crop development until full cover. The flying sensors monitored 

the canopy cover throughout the growing season and thus captured parts of the canopy curve at frequent 

intervals. This data was supplemented with additional data points from Sentinel 2. A similar curvilinear 

trend of crop development was also simulated in AquaCrop. For the calibration process, the combined 

maximum canopy cover from the flying sensors and Sentinel 2 data were compared with the AquaCrop 

simulated canopy cover. The output of AquaCrop was iteratively calibrated until similar results were 

found between the measured and simulated maximum canopy cover. 

 

The AquaCrop model was set up using the modules and input data as listed in the previous sections. 

The calibrated parameters were mainly farm management variables that are sensitive in AquaCrop and 

could not be accurately measured in the field. The parameters selected for calibration were plant density, 

fertilizer stress, and maximum allowable soil water depletion (for irrigation events). After running the 
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simulations with various parameter combinations, the top simulations were selected displaying limited 

error with the canopy cover as observed from the flying sensor images. From the selected AquaCrop 

runs the calculated water productivity, evaporation, transpiration, and dry yield were averaged.  

 Step 6: Calculating sub-basin and basin water productivity 

The FAO WaPOR database contains several datasets derived from satellite remote sensing and is 

available through the open-access data portal: https://wapor.apps.fao.org. The layers used from WaPOR 

are actual evapotranspiration and interception (AETI), net primary production (NPP), and land cover 

(LCC). This paragraph describes the data layers used from the FAO WaPOR database and explains 

how they were used to calculate the water productivity values. The data layers were downloaded for the 

three basins in Mozambique (Figure 6) and aggregated to find seasonal values for the irrigation season 

of 2022: April 2022 to September 2022. Furthermore, the data layers were also downloaded for the sub-

basins (Figures 3, 4, and 5) for the irrigation season of 2022. 

 Actual evapotranspiration and interception 

The actual evapotranspiration from WaPOR is calculated using a surface energy balance algorithm 

based on the equations of the ETLook model13. It uses a satellite platform with both multi-spectral and 

thermal imagery acquisition. In addition, meteorological data from remote sensing data products were 

used as input. The energy balance components are calculated with the specified algorithm: net radiation, 

soil heat flux, and sensible heat flux. The latent heat flux is calculated as residual to the energy balance 

and represents the evapotranspiration (ET) component of the energy balance.  

 

The WaPOR actual ET dataset used in this report is from Level II (100 meters spatial resolution) and is 

available monthly. Every image between planting date and harvesting date is summed, which retrieves 

the seasonal sum for the actual evapotranspiration and interception. 

 Biomass production 

Biomass production was calculated using the monthly net primary production (NPP) data layer from 

WaPOR. The NPP data was calculated in WaPOR using a light-use efficiency model14. This model 

determines the amount of photosynthetic radiation that arrives at a surface and the amount that is 

absorbed by vegetation depending on the amount of vegetational cover and (non-)stress conditions. This 

indicates the result of the photosynthesis process in NPP or dry matter biomass production. The biomass 

production from WaPOR was summed for the irrigation season. From the seasonal summed biomass 

and seasonal summed actual evapotranspiration and interception, the water productivity for the 2022 

irrigation season was calculated. 

 Supplemental layers  

In addition, reference evapotranspiration (ET) is also provided by the WaPOR data portal at 20 km. 

resolution and at daily time steps. A time series of this dataset is used as the required weather input data 

for the crop modelling. Lastly, the land cover map in WaPOR is used to identify the pixels containing 

croplands. This is used to calculate the biomass water productivity for croplands, thus excluding the 

pixels of natural vegetation and urban areas.  

 
13 Bastiaanssen et al. (2012) 
14 Hilker et al. (2008) and several other publications 

https://wapor.apps.fao.org/
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 Step 7: Normalizing for annual weather conditions  

For the baseline assessment15 meteorological data from a period of 18 years was used for the field scale 

analysis (2001 – 2018). For the basin scale analysis, this was 10 years of data (2009 – 2018). The period 

for the basin scale analysis was shorter due to the data availability of WaPOR. Both periods are deemed 

sufficient for capturing the inter-annual variability in weather conditions with both dry and wet years 

existing within a time frame of 10 years. The statistical results from this baseline analysis will therefore 

be representative of the variety of weather conditions.  

 

In further analysis of this project, water productivity values are normalized for weather conditions to 

determine if changes in water productivity are a result of weather conditions or the impact of the project 

innovations. The normalization of water productivity values was calculated by using the equation below 

using 2022 as an example year and using reference evapotranspiration (ET0) as representative of the 

annual weather conditions. This equation and methodology were described by Bastiaanssen and 

Steduto (2016)16, as a method for comparing water productivity between years and regions with different 

climatic conditions.  

 

𝑊𝑃𝑛𝑜𝑟𝑚 [𝑘𝑔/𝑚3]  =  
𝑊𝑃2022  [

𝑘𝑔
𝑚3] × 𝐸𝑇0,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 2001− 2018  [𝑚𝑚]

𝐸𝑇0,2022 [𝑚𝑚]
 

 Step 8: Seasonal water productivity assessment 

The final step was the seasonal water productivity assessment. In this step the water productivity results 

of the field, sub-basin, and basin scale were combined and compared to the baseline assessment and 

previous seasons. Assessment of the water productivity was performed at three levels. At first, the 

change in water productivity due to specific interventions in the field of the PPCs was assessed. This 

level is considered the local scale of changing water productivity. Secondly, the change in water 

productivity of the surrounding communities was assessed. This will be influenced by neighbouring PPEs 

and communities adopting the interventions. This level is considered as the increase in the overall water 

productivity of the region or sub-basin scale. Lastly, the basin level analysis was used to monitor the 

water productivity on a larger scale as it is expected that the impact of the project is directly measured 

at the basin scale due to the expanse of the area. 

 

The average results of this season were compared to the 75th percentile17 values of the baseline as 

presented in FutureWater Report 19518. This provided the average water productivity between 2001 and 

2018. This assessment is the baseline of the water productivity for the project locations, without any 

interventions placed by APSAN-Vale activities. An assumption was made that the PPCs in the baseline 

had a commercial objective and achieved relatively higher productivity in comparison to the average of 

all farmers. Therefore, the baseline value used for the comparison is the 75th percentile, indicating that 

the baseline values were higher than the actual.  

 

 

 

  

 
15 Van Opstal, J.D., A. Kaune. 2020. Water Productivity Technical Report - Baseline assessment for APSAN-Vale project. 
FutureWater Report 195. 
16 Bastiaanssen, W. G. M., & Steduto, P. (2016). The water productivity score (WPS) at global and regional level: 
Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of The Total 
Environment, 575, 595–611. https://doi.org/10.1016/j.scitotenv.2016.09.032 
17 This is a measure used in statistics indicating the value below which a given percentage of observations in a group of 
observations falls. In this case, 25% of the observations are found above the 75th percentile. 
18 Van Opstal, J.D., A. Kaune. 2020. Water Productivity Technical Report - Baseline assessment for APSAN-Vale project. 
FutureWater Report 195. 

https://doi.org/10.1016/j.scitotenv.2016.09.032
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3 Seasonal weather conditions 

This chapter presents the seasonal weather conditions of the irrigation season of 2022. The chapter 

includes time series of reference evapotranspiration and precipitation from April to November 2022. 

Additionally, two bar plots are presented that show the difference in seasonal weather conditions to the 

baseline report. For these bar plots a different month range was used (April to October), similar to the 

baseline report. 

 Reference evapotranspiration 

Meteorological data were collected from weather stations of TAHMO. The observations were used to 

compute daily reference evapotranspiration (ET) for the different districts throughout the irrigation season 

of 2022. The time series of daily reference ET shows similar seasonal patterns for the three different 

districts (Figure 14). The daily reference ET for all districts varied between 2 and 7 mm/day. In the first 

few months, the fluctuations in daily reference ET are relatively large. The fluctuations decrease steadily 

throughout the irrigation period up until a rather homogenous reference ET was found at the end of the 

irrigation season. The calculated reference ET for Báruè was found to be overestimated in the first 15 

days. WaPOR data was used to fill the overestimated values. Similarly, gaps were filled with the WaPOR 

reference ET product for individual days where the TAHMO stations did not record wind speed 

observations.  

 
Figure 14. Five-day moving average reference evapotranspiration for Moatize and Nhamatanda during the 

2022 irrigation season from TAHMO stations. 

 

The weather conditions of the irrigation season of 2022 were compared to the historical dataset (2001-

2018) as used in the baseline assessment (April to September). The historical dataset contains a 

multitude of dry and wet years and therefore is a good representation of the general weather conditions 

in the designated districts. The monthly reference ET during the 2022 irrigation season was found to 

deviate a little from the average conditions (Figure 15). For almost all months, the monthly reference ET 

in all districts was lower than in the historical dataset. The differences were largest in the Báruè district, 

where a difference of 44 mm was recorded for the total irrigation season. The total seasonal reference 

ET is presented in Table 6. It shows the 2022 season and the long-term average for the irrigation season. 

The presented values are used in the normalization of the water productivity results as described in 

Section 2.8 of this document.  
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Figure 15. Comparison of 2022 monthly reference evapotranspiration with long-term average (2009-2018) 

used in the baseline analysis. 

 

Table 6. Seasonal total reference evapotranspiration for Báruè, Moatize, and Nhamatanda during the 2022 

irrigation season and long-term irrigation season average (2001-2018). 

Reference ET [mm] Báruè Moatize Nhamatanda 

2022 irrigation season 561 596 562 

2001-2018 long-term average 605 619 580 

 Precipitation 

During the irrigation season, the rainfall is typically low in this region. The rainfall is recorded at the 

TAHMO stations. During the season some malfunctions occurred at the stations of Báruè and Moatize, 

therefore satellite data from CHIRPS (as provided thought the WaPOR portal) is used. The data from 

the 2022 irrigation season is presented in Figure 16. Daily precipitation for the irrigation season of 2022 

from TAHMO. The figure displays heavy rainfall in January for Báruè and Moatize and in May for 

Nhamatanda. For the rest of the season, precipitation was low.  
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Figure 16. Daily precipitation for the irrigation season of 2022 from TAHMO 

 

The total monthly precipitation shows that April and May were wet months compared to the long-term 

average (Figure 17). April 2022 was wet for Báruè and Moatize but not for Nhamatanda, where may was 

the wetter month. The rest of the season was more average for all districts. The seasonal precipitation 

for the three districts shows that for the whole season Báruè was significantly wetter (494 mm) than the 

long-term average (Table 7). Moatize and Nhamatanda were 23 and 45 mm wetter respectively. 

 

 
Figure 17. Comparison of the monthly average precipitation during the irrigation season of 2022 with the 

long-term average (2001-2018) derived from the CHIRPS dataset.  

 

Table 7. Seasonal precipitation for Báruè, Moatize, and Nhamatanda during the 2022 irrigation season and 

long-term irrigation season average (2001-2018) 

Precipitation [mm] Báruè Moatize Nhamatanda 

Irrigation season 2022 494 59 160 

2001-2018 long-term average 103 36 115 
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4 Field scale water productivity results 

This chapter presents the results of the field scale water productivity assessment. AquaCrop model 

simulations were performed to present the crop development and farm management of each PPC 

monitored throughout the irrigation season of 2022. The management decisions and other input data are 

presented in Annex 1 for each farmer. For Báruè, Moatize, and Nhamatanda the results of the water 

productivity are presented in Tables 8, 9, and 10, respectively. In the result tables, the water productivity 

is normalized for the weather conditions using the reference evapotranspiration from Table 6 (Chapter 

3), and methodology as described in Section 2.8 of this document.  

 Báruè 

The canopy curve of PPC Arselio is visualised in Figure 18 and depicts the canopy cover development 

of a cabbage field. The blue dots indicate field averages of vegetation cover for different moments in the 

growing season and are measured by flying sensors and satellite imagery. The fitted curvilinear trendline 

between the blue dots indicates the canopy curve, which represents the growth cycle of the crop. The 

maximum value of the curve was found to be approximately 44%, reaching this value in the first half of 

August. The produced maximum canopy cover values were used to calibrate the AquaCrop model to 

simulate field-scale crop-specific water productivity. The canopy curves from the other PPCs of Báruè 

are included in Annex 2. 

 

 
Figure 18. Fitted canopy curve for PPC Arselio with a maximum canopy cover of approximately 44%. 

 

The results of the field scale water productivity analysis for the PPCs in Báruè are presented in Table 8. 

The water productivity values, normalized for the local climatic conditions (Section 2.8), were found to 

be improved in all fields for all crops compared to the irrigation season baseline values. The normalised 

water productivity values vary between 0.71 and 3.03 kg/m3. The average normalized water productivity 

is 1.66 kg/m3. The percentual increase in water productivity compared to the baseline varies between 

+1% and +189%. On average the improvement for all crops was +38%. The bean and maize fields show 

an improvement in dry yield, however, the exact change in water productivity cannot be determined due 

to the absence of a baseline value for this crop. The water productivity of cabbage production was found 

to be improved the least averaging at +11%. Large improvements were found for the onion and tomato 

fields with average improvements in water productivity by +123% and +64% respectively. Fields that 

showed no significant canopy development in the observed canopy curve were excluded from the 

analysis, as calibrating the model parameters to these often lower maximum canopy cover values 

resulted in erroneous model output.  
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Table 8. Results of AquaCrop water productivity, maximum Canopy Covers (CC), dry crop yield, and percent 

change of water productivity compared to baseline (75th percentile) for Báruè farmers 

PPC code Name 
Crop 

type 

 

Obs. 

max 

CC 

 

 

AQ 

max 

CC 

 

Water 

Productivity 

[kg/m3] 

Norm. 

Water Prod 

[kg/m3] 

% 

Change 

with 

baseline* 

Dry 

crop 

yield 

[ton/ha] 

BA-CN-01-01 Charles Beans 75 74 1.43 1.54 N/A 3.2 

BA-JR-01-03 Joelmo Beans 77 77 1.49 1.61 N/A 3.3 

BA-SE-01-04 Simon Beans 52 54 0.66 0.71 N/A 1.6 

BA-ZM-01-04 Zacarias Beans 74 74 1.42 1.53 N/A 3.2 

 
BA-ACI-01-01 Ananias Cabbage 70 69 1.61 1.74 +34% 4.55 

BA-ACI-01-02 Ananias Cabbage 69 68 1.54 1.66 +28% 4.29 

BA-CN-01-04 Charles Cabbage 68 68 1.30 1.40 +8% 4.01 

BA-JR-01-01 Joelmo Cabbage 66 67 1.27 1.37 +5% 3.94 

BA-JR-01-04 Joelmo Cabbage 62 62 1.21 1.31 +1% 3.57 

BA-RF-01-01 Reunor Cabbage 66 74 1.31 1.41 +9% 2.97 

BA-RF-01-03 Reunor Cabbage 56 60 1.23 1.33 +2% 2.82 

BA-SE-01-02 Simon Cabbage 75 75 1.32 1.42 +10% 3.56 

BA-TV-01-01 Tino Cabbage 65 68 1.52 1.41 +8% 4.35 

BA-ZM-01-03 Zacarias Cabbage 68 70 1.86 1.72 +33% 4.67 
 

BA-CN-01-02 Charles Maize 69 70 0.66 0.71 N/A 1.56 

BA-SE-01-01 Simon Maize 71 70 0.66 0.71 N/A 1.56 

BA-ZM-01-02 Zacarias Maize 85 87 2.81 3.03 N/A 9.91 
 

BA-AR-01-05 Arselio Onion 41 40 1.36 1.47 +81% 1.88 

BA-LJ-01-04 Lucas Onion 51 51 1.57 1.69 +99% 1.65 

BA-SE-01-03 Simon Onion 70 70 2.66 2.87 +189% 3.11 
 

BA-ACI-01-04 Ananias Tomato 82 81 2.35 2.53 +62% 8.57 

BA-RF-01-02 Reunor Tomato 65 69 2.44 2.63 +66% 8.24 

* Note: N/A indicates when irrigation season baseline values are not available for these crop types 

 

The water productivity results are presented in field maps in Figure 19. For each PPC the water 

productivity values are visualised for the different fields. The water productivity values range from 

medium (yellow) to high (light to dark green). 
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Figure 19. Field water productivity maps of farmers in Báruè for the 2022 irrigation season 

 Moatize 

The canopy curve of field 4 of PPC Girio is visualised in Figure 20. The maximum value of the curve was 

found to be approximately 51%. The maximum canopy covers produced were used to calibrate the 

AquaCrop model and determine the field-specific water productivity. The canopy curves from the other 

PPCs of Moatize are included in Annex 2. 
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Figure 20. Fitted canopy curve for PPC Girio with a maximum canopy cover of approximately 51%. 

 

The results of the field scale water productivity analysis for the PPCs in Moatize are presented in Table 

9. The water productivity values, normalized for the local climatic conditions (Section 2.8), saw 

improvements but also declined for some fields. The normalised water productivity values vary between 

0.64 kg/m3 for beans and 2.68 kg/m3 for maize. The average normalized water productivity is 1.39 kg/m3. 

The percentual increase in water productivity compared to the baseline varies between -17% for one 

tomato field and +246% for an onion farmer. On average the improvement for all crops was +19%. The 

bean fields show an improvement in dry yield, however, the exact change in water productivity cannot 

be determined due to the absence of a baseline value for this crop. The water productivity of cabbage 

production was found to be improved the least, averaging at +11%. Large improvements were found for 

the onion field of PPC Girio at +246%. The tomato fields were deviating the most where some fields 

showed a decline and others an improvement. Altogether, an average improvement of +11% was found 

for tomatoes. Fields that showed no significant canopy development in the observed canopy curve were 

excluded from the analysis, as calibrating the model parameters to these often lower maximum canopy 

cover values resulted in erroneous model output.  

 

Table 9. Results of AquaCrop water productivity, maximum Canopy Covers (CC), dry crop yield, and percent 

change of water productivity compared to baseline (75th percentile) for Moatize farmers 

PPC code Name 
Crop 

type 

 

Obs. 

max 

CC 

 

 

AQ 

max 

CC 

 

Water 

Productivity 

[kg/m3] 

Norm. 

Water Prod 

[kg/m3] 

% 

Change 

with 

baseline* 

Dry 

crop 

yield 

[ton/ha] 

SA-CA-01-01 Cezario Beans 72 73 0.75 0.78 N/A 1.56 

SA-CA-01-02 Cezario Beans 64 67 0.88 0.91 N/A 2.07 

SA-CA-01-03 Cezario Beans 66 67 0.88 0.91 N/A 2.07 

SA-ZM-01-01 Zeca Beans 72 72 0.73 0.76 N/A 1.49 

MA-GM-01-04 Girio Beans 50 53 0.62 0.64 N/A 1.3 
 

MA-JC-01-02 Joao Cabbage 50 56 1.36 1.41 +9% 3.92 

MA-GM-01-02 Girio Cabbage 51 56 1.51 1.57 +14% 4.06 
 
MA-GM-01-03 Girio Onion 40 40 1.32 1.37 +246% 1.88 
 
SA-MC-01-01 Manuel Tomato 48 44 1.51 1.57 -17% 2.94 

MA-JC-01-01 Joao Tomato 56 58 2.58 2.68 +41% 6.31 

MA-GM-01-01 Girio Tomato 54 51 1.71 1.78 -7% 5.28 

CA-AS-01-01 Antonio Tomato 60 60 2.34 2.43 +28% 5.97 

* Note: N/A indicates when irrigation season baseline values are not available for these crop types 
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The water productivity field maps are presented in Figure 21. For each PPC the water productivity values 

are visualised for the different fields. The water productivity values range from medium (yellow) to high 

(light to dark green). 

 

 
Figure 21. Field water productivity maps of farmers in Moatize for the 2022 irrigation season 

 Nhamatanda 

The canopy curve of the bean field of PPC Flora is visualised in Figure 22. The maximum value of the 

curve was found to be 80%. The maximum canopy covers produced were used to calibrate the AquaCrop 

model and determine the field-specific water productivity. The canopy curves from the other PPCs of 

Nhamatanda are included in Annex 2. 

 

 
Figure 22. Fitted canopy curve for PPC Flora with a maximum canopy cover of approximately 80%. 
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The results of the field scale water productivity analysis for the PPCs in Nhamatanda are presented in 

Table 10. The water productivity values, normalized for the local climatic conditions (Section 2.8), were 

found to be improved in all fields for all crops compared to the irrigation season baseline values. The 

normalised water productivity values vary between 0.82 kg/m3 for a beans field and 2.59 kg/m3 for a 

tomato farmer. The average normalized water productivity is 1.39 kg/m3. The percentual increase in 

water productivity compared to the baseline varies between +2% and +241%. On average the 

improvement for all crops was +83%. The bean and maize fields show an improvement in dry yield, 

however, the exact change in water productivity cannot be determined due to the absence of a baseline 

value for this crop. The water productivity of cabbage production was found to be improved the least 

averaging at +19%. Large improvements were found for both the onion field of PPC Manuel 1 and the 

tomato field of Jose 2, with improvements in water productivity of +241% and +99% respectively. Fields 

that showed no significant canopy development in the observed canopy curve were excluded from the 

analysis, as calibrating the model parameters to these often lower maximum canopy cover values 

resulted in erroneous model output. 

 

Table 10. Results of AquaCrop water productivity, maximum Canopy Covers (CC), dry crop yield, and percent 

change of water productivity compared to baseline (75th percentile) for Nhamatanda farmers 

PPC code Name 
Crop 

type 

 

Obs. 

max 

CC 

 

 

AQ 

max 

CC 

 

Water 

Productivity 

[kg/m3] 

Norm. 

Water Prod 

[kg/m3] 

% 

Change 

with 

baseline* 

Dry 

crop 

yield 

[ton/ha] 

NH-DP-01-01 Domingos Beans 61 61 0.93 0.96 N/A 1.47 

NH-MD-01-01 Manuel 2 Beans 49 50 0.79 0.82 N/A 1.41 
 

NH-LB-01-0 Lucas Cabbage 60 60 1.72 1.78 +30% 3.72 

NH-DP-01-02 Domingos Cabbage 40 58 1.35 1.39 +2% 3.85 

NH-MD-01-02 Manuel 2 Cabbage 55 55 1.41 1.46 +6% 3.62 

NH-JD-01-02 Jose 1 Cabbage 55 54 1.53 1.58 +15% 3.51 

NH-M-01-02 Manuel 1 Cabbage 50 52 1.51 1.56 +14% 2.98 
 

NH-LB-01-01 Lucas Maize 58 61 1.11 1.15 N/A 3.07 

NH-LB-01-02 Lucas Maize 66 66 1.16 1.20 N/A 3.32 

NH-JD-01-05 Jose 1 Maize 58 61 1.13 1.17 N/A 3.21 
 

NH-M-01-01 Manuel 1 Onion 33 32 1.37 1.41 +241% 1.54 
 

NH-JA-01-02 Jose 2 Tomato 62 64 2.51 2.59 +99% 5.81 

* Note: N/A indicates when irrigation season baseline values are not available for these crop types 

 

The water productivity field maps are presented in Figure 23. For each PPC the water productivity values 

are visualised for the different fields. The water productivity values range from medium (yellow) to high 

(light to dark green).  
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Figure 23. Field water productivity maps of farmers in Nhamatanda for 2022 irrigation season 
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5 Sub-basin scale water productivity results 

The sub-basin scale is described as the level between the field scale of the selected PPCs and the basin 

scale delineated for each district. The sub-basin scale was determined to be a 300 ha radius around 

each selected PPC as described in section 2.1.3 of this document and presented in Figures 3, 4, and 5.  

 

Data from the WaPOR portal was retrieved for the irrigation season for the months April to September 

2022. The data products downloaded from WaPOR were Actual Evapotranspiration (in mm) and Net 

Primary Production, which was converted to Above Ground Biomass Production (in ton/ha). These data 

products were used to calculate the biomass water productivity for each sub-basin location.  

 

Results are presented in Table 11 for each location. The highest water productivity values are 

consistently found in Báruè, due to the favourable climate in this region. Here the highest values are 

observed in Báruè III. The lowest values for water productivity are found in Moatize for the communities 

most downstream. The highest water productivity for Moatize is found in Moatize III, which is located 

upstream and closer to the mountains. For Nhamatanda the water productivity values are similar for both 

sub-basins.  

 

Table 11. Water productivity results of sub-basin analysis using WaPOR data portal 

District Sub-basin Actual Evapo-

transpiration 

[mm] 

Biomass 

Production 

[ton/ha] 

Biomass water 

productivity 

[kg/m3] 

Báruè 

Báruè I  349 10 2.84 

Báruè II 322 10 3.05 

Báruè III 336 10 3.11 

Average 336 10 3.00 

Moatize 

Moatize I 254 5 2.16 

Moatize II 287 7 2.41 

Moatize III 377 11 2.95 

Average 306 8 2.51 

Nhamatanda 

Nhamatanda I  411 9 2.15 

Nhamatanda II 393 9 2.23 

Average 402 9 2.19 

 

The maps of the sub-basin water productivity results are presented in Figures 24, 25, 26 for Báruè, 

Moatize, and Nhamatanda respectively. 
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Figure 24. Biomass water productivity (kg/m3) for sub-basins in Báruè for the 2022 irrigation season 

 
Figure 25. Biomass water productivity (kg/m3) for sub-basins in Moatize for the 2022 irrigation season 

 
Figure 26. Biomass water productivity (kg/m3) for sub-basins in Moatize for the 2022 irrigation season 
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6 Basin scale water productivity results 

The basins were delineated for each district as shown in Figure 6 based on hydrological streamlines. 

These delineations were used with the WaPOR data portal to determine the biomass water productivity 

for each location. Table 12 provides an overview of the statistics found for actual evapotranspiration, 

biomass production, and water productivity for each basin, after masking out only the cropland pixels 

using the landcover layer provided in WaPOR. Báruè displays the highest biomass production of the 

area, followed by Moatize and Nhamatanda. The water productivity was also highest for Báruè, followed 

by Moatize, and lastly Nhamatanda.  

 

Table 12. Overview of statistics of actual evapotranspiration, biomass production, and water productivity for 

the basins of Báruè, Moatize and Nhamatanda 

  Báruè Moatize Nhamatanda 

Actual evapotranspiration 

[mm] 

Average mean  394 379 416 

10th percentile 332 300 364 

90th percentile 455 460 470 

Biomass production 

[ton/ha] 

Average mean  7.5 6.9 6.4 

10th percentile 6.0 5.5 5.3 

90th percentile 9.0 8.5 7.7 

Water productivity 

[kg/m3] 

Average mean  1.90 1.83 1.54 

10th percentile 1.75 1.70 1.42 

90th percentile 2.05 1.98 1.66 

 

Figure 27 displays the water productivity maps of each basin. In Báruè, the water productivity 

downstream shows even distribution, but a higher water productivity is measured close to the mountain 

range, compared to the rest of Báruè. In Moatize the upstream area (north-east) displays higher water 

productivity values than downstream. These areas are also closer to the mountain range, which could 

influence the local weather conditions. The number of cropland pixels in Nhamatanda are limited, 

therefore less spatial variation can be observed, but is seems to be an even distribution.  
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Figure 27. Seasonal biomass water productivity (kg/m3) at basin scale for cropland pixels in Báruè, Moatize and Nhamatanda for the 2022 irrigation season 
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7 Seasonal water productivity assessment 

The following sections elaborate on the change in water productivity on the different scales in comparison 

with the baseline; and the change in overall water productivity using the WaPOR database to assess for 

a larger area. Assessments make use of normalizing the water productivity for the seasonal weather 

conditions as explained in Section 2.8 of this report. Thus, changes in water productivity linked to 

seasonal weather are minimised in the assessment. The water productivity assessment at the level of 

the PPC is presented followed by the overall water productivity assessment at the level of the sub-basins 

or communities and the basin level.  

 Field scale  

Chapter 4 of this report presents the results of the field scale water productivity. An overview of this 

analysis is provided in Table 13 for each district indicating the overall change in water productivity. The 

values represent the normalized crop water productivity values. The overall increase is calculated by 

comparing the average (mean) of the normalized water productivity, with the 75th percentile1 of the 

baseline. The assumption is that the PPCs are above-average farmers (in the top 25%) compared to the 

agricultural systems used in the baseline assessment, which is explained in Section 2.9. The overall 

average improvement in water productivity achieved at the field scale of the PPCs is +49%. The highest 

increase was observed in Nhamatanda and the lowest in Moatize. The crop-specific water productivity 

for onion, cabbage, and tomato was on average improved by respectively +142%, +14%, and +122% 

(Table 13, 14 and 15). On average the combined water productivity of all crops in the irrigation season 

of 2022 improved by +49% compared to the baseline.  

 

Table 13. Normalized onion water productivity (in kg/m3) for the irrigation season of 2022 compared to the 

baseline values 

 

 

Table 14. Normalized cabbage water productivity (in kg/m3) for the irrigation season of 2022 compared to the 

baseline values 

 

  

 
1 This is a measure used in statistics indicating the value below which a given percentage of observations in a group of 
observations falls. In this case, 25% of the observations are found above the 75th percentile. 

 Báruè Moatize Nhamatanda Overall 

Baseline water productivity 

Range     

75th Percentile 0.41 0.80 0.41  

Irrigation season 2022 water productivity 

Range 1.43 – 2.87    

Average (mean) 1.87 1.37 1.41  

Relative change with 
baseline (%) 

+112% +71% +245% +142% 

 Báruè Moatize Nhamatanda Overall 

Baseline water productivity 

Range 1.02 - 1.82 0.81 – 1.54 0.78 – 1.55  

75th Percentile 1.68 1.34 1.37  

Irrigation season 2022 water productivity 

Range 1.27 – 1.74  1.41 – 1.57 1.39 – 1.78  

Is Average (mean) 1.47 1.41 1.55  

Relative change with 
baseline (%) 

+14% +9% +19% +14% 
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Table 15. Normalized tomato water productivity (in kg/m3) for the irrigation season of 2022 compared to the 

baseline values 

 

 

 

Table 16. The overall change in field scale water productivity for the 2022 irrigation season compared to the 

baseline for onion, cabbage, and tomato weighted by the number of plots as indicated between brackets 

 Báruè Moatize Nhamatanda Overall 

Onion +112% (2) +71% (1) +245% (1)  

Cabbage +14% (10) +9% (2) +19% (5)  

Tomato +65% (2) +45% (4) +229 (1)  

Overall change +55% +29% +63% +49% 

 

As this is the final irrigation season included in the APSAN-Vale project, this report contains an overall 

assessment of the change in water productivity throughout the four years the project lasted. These 

results are depicted in Figure 28 where values in the table indicate the average water productivity of the 

production of key irrigation season crops (cabbage, tomato, and onion) within that district. The values 

located at the top of the bars indicate the percentual change from the baseline.  

 

 
Figure 28. Overview of water productivity results for the irrigation seasons of 2020, 2021, 2022 and the 

baseline assessment.  

 

Overall, the improvements in water productivity indicate a good achievement of the targets set in the 

logframe as presented in Section 1.3 of this report. All districts saw a positive change in water productivity 

throughout the years. The water productivity of Báruè, Moatize, and Nhamatanda increased by +55%, 

+29%, and +63% respectively., The positive improvements in water productivity were not linear and in 

some districts, the water productivity values were lower than in the growing season before. This was also 

 Báruè Moatize Nhamatanda Overall 

Baseline water productivity 

Range 0.65 – 1.19 1.50 – 2.25 1.02 – 1.35  

75th Percentile 1.07 1.95 1.27  

Irrigation season 2022 water productivity 

Range 2.53-2.63 1.57 – 2.68   

Average (mean) 2.58 2.11 2.53  

Relative change with 
baseline (%) 

+64% +45% +229% +122% 
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the case in the past irrigation season, as the average of the three different districts was only 1% higher 

compared to the previous irrigation season (2021). This deviation is likely a result of different farm 

management practices and a change in the water productivity analysis, as the methodology was further 

improved and the AquaCrop model runs were judged more strictly.  

 Sub-basin scale  

The sub-basin community-scale water productivity was calculated using the 300 ha areas surrounding 

PPCs and the water productivity values as provided on the WaPOR data portal. The baseline values 

were not included for this spatial level in the baseline assessment report. In this case, the basin baseline 

values were used to calculate normalized water productivity. 

 

Table 17 presents the results of the baseline and comparison with the 2022 irrigation season results. 

The overall increase in water productivity was observed to be +11% for Báruè, +4% for Moatize, and 

+17% for Nhamatanda. This indicates positive impact is achieved in the areas surrounding the PPCs 

and ultimately good practices are adopted to improve water productivity. The overall increase in water 

productivity is +11%, which is lower than the field scale water productivity due to the spatial scale being 

larger. It is assumed that the adoption of good agricultural practices is more dispersed at a large spatial 

scale.  

 

Table 17. Biomass water productivity (kg/m3) for the 2022 irrigation season at the sub-basin scale compared 

to the baseline of 2015-2020 as derived from the WaPOR data portal. 

 Báruè Moatize Nhamatanda Overall 

Baseline average 2015 – 2018 1.50 1.48 1.31  

Irrigation season 2022 1.95 1.63 1.42  

Irrigation season 2022 (normalized) 1.67 1.54 1.53  

Relative change with baseline (%) +11% +4% +17% +11% 

 

For the sub-basins, an overall assessment of the change in water productivity through the project years 

was done as well. As the 2019 irrigation season did not include a sub-basin analysis, only the last three 

years were included. These results are depicted in Figure 29 where values in the table indicate the water 

productivity of the corresponding irrigation season in that district. The values located at the top of the 

bars indicate the percentual change from the baseline.  

 

Báruè and Nhamatanda saw a positive change in water productivity throughout the years. In Moatize, 

the water productivity was lower than the baseline for most years, but there is an upward trend since 

2020. Looking at 2022, the water productivity increase was less than in 2021. Looking at all three years, 

the positive improvements in water productivity were not linear and in some cases the water productivity 

increase was lower than the growing season before, compared to the baseline. It requires further 

investigation to determine the magnitude of the increase compared to the baseline, but the decrease 

compared to the previous year is related to the field interventions and adoption by the community and/or 

slightly changing analysis methods. 
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Figure 29. Overview of the water productivity results for the sub-basin scale 

 Basin scale  

The assessment of water productivity at basin scale was performed using the WaPOR results from 

chapter 6. These indicate the water productivity values for cropland pixels at the selected basins of the 

project for the irrigation season. Table 18 presents the values of biomass water productivity after 

normalizing for the 2022 weather conditions and comparing with the baseline values. An average 

increase of biomass water productivity of +34% was perceived, ranging from +27% to +44% for the 

different districts.  

 

Table 18. Biomass water productivity (kg/m3) for the 2022 irrigation season at basin scale compared to the 

baseline  

  Báruè Moatize Nhamatanda Overall 

Baseline average 2001-2018 1.50 1.48 1.31  

Irrigation season 2022 1.90 1.83 1.54  

Irrigation season 2022 (normalized) 1.91 2.13 1.72  

Relative change with baseline (%) +27% +44% +31% +34% 

 

Lastly, an overall assessment for the change in water productivity was conducted for the basin analyses. 

The results are depicted in Figure 30 where values in the table indicate the water productivity of the 

corresponding irrigation season in that district. The values located at the top of the bars indicate the 

percentual change compared to the baseline.  

 

All districts saw a positive change in water productivity throughout the years. The water productivity of 

Báruè increased by +27%, Moatize improved by +44% and Nhamatanda increased by +31%. The 

previous irrigation season report (2021)1 indicated an overall biomass water productivity increase of 

+62%, indicating that the 2022 irrigation season had a lower increase in water productivity at basin scale 

compared to the previous year.  

 

 
1 Van Opstal, J.D., M. de Klerk, V. Hollander. 2021. Water Productivity Analysis: Irrigation Season 2021. FutureWater 
Report 236. 
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The positive improvements in water productivity were not linear and in some cases the water productivity 

values were lower than the growing season before. This deviation is likely a result of different farm 

management practices.  

 

 
Figure 30. Overview of the water productivity results for the basin scale 
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8 Concluding remarks 

For the major irrigation season crops improvements in field scale water productivity were found of +55%, 

+29%, and +63% for Báruè, Moatize, and Nhamatanda respectively, resulting in an average 

improvement of +49%. This overall average achieves the set target for 2022 of +25% as stated in the 

project logframe however, is only 1% higher than the previous irrigation season (2021) because of an 

improved methodology and stricter judgment in modelling decisions. The results of the field water 

productivity give a good indication of trends in high and low water productivity.  

 

Furthermore, the water productivity was calculated at the sub-basin scale, which is representative of the 

community of farmers adopting practices being demonstrated and promoted by the selected PPCs. An 

area of 300 ha around each selected PPC is determined to be representative of the area of the sub-

basin (or community). At the sub-basin scale, the water productivity analysis makes use of the WaPOR 

data portal and calculates biomass water productivity. The highest water productivity values were found 

in Báruè. Here the highest values are observed in Báruè III at 3.11 kg/m3. The biomass water productivity 

was found to range from 2.84 to 3.11 kg/m3 in Báruè, 2.16 to 2.95 kg/m3 in Moatize, and 2.15 to 2.23 

kg/m3 in Nhamatanda. The relative change of water productivity compared to the baseline values is 

+11%, +4% and +17% for Báruè, Moatize, and Nhamatanda, respectively. The overall increase in water 

productivity estimated at sub-basin (community) level is +11%. The overall increase in the 2021 irrigation 

season was 33%, indicating a change in the sharing of farm management practices amongst farmers in 

2022. The target for the 2022 irrigation season of +25% biomass water productivity increase set at the 

beginning of the project was not met. Over the course of the whole project an upward increase of water 

productivity at the basin scale was perceived, but the positive improvements were not linear. It requires 

further investigation to determine the magnitude of the increase compared to the baseline, but the 

decrease compared to the previous year is related to the field interventions and adoption by the 

community and/or slightly changing analysis methods. 

 

At basin scale the catchment delineation from each district was used as the boundary of the basin. The 

water productivity was determined using the WaPOR data portal providing values on biomass water 

productivity. These values are compared with the baseline assessment and determined that an increase 

of water productivity was achieved of +27%, +44%, and +31% for Báruè, Moatize, and Nhamatanda 

respectively. The average increase in biomass water productivity was +34% for all districts together. This 

overall average achieves the target set for 2022 of +25% increase in biomass water productivity for the 

basin scale as stated in the project logframe. However, in the 2021 irrigation season the overall increase 

in biomass water productivity was +62%. The 2022 irrigation season had a lower increase in water 

productivity at basin scale compared to the previous year, but when you look at all the irrigation seasons, 

there is an upward trend in biomass water productivity increase. The positive improvements in water 

productivity were not linear and in some cases the water productivity values were lower than the growing 

season before. This deviation is likely a result of different farm management practices. 

 

Finally, it is noticed that the field scale water productivity increase was similar to last year’s irrigation 

season (49% vs 48%), while at sub-basin (11% vs 33%) and basin scale (34% vs 62%) the water 

productivity increase was less compared to last year. As APSAN-Vale farmers had a similar field scale 

water productivity increase but results including non-APSAN-Vale farmers (i.e. on the sub-basin and 

basin scale) were lower than last year, this might indicate that APSAN-Vale farmers are more resistant 

to climatic challenges influencing their harvests than non-APSAN-Vale farmers. 

 

All results will be combined with the monitoring data from the APSAN-Vale consortium partners, 

indicating the adoption of practices of these farmers and the training sessions that were attended, in the 

final ‘APSAN-Vale Impact Report’.
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Annex 1 – Overview of input data 

Table 19. Field input data for Báruè 

 

 
 



45 

Table 20. Field input data for Moatize 

 
 

 

 

 

 

 

 

 

  



46 

Table 21. Input field data for Nhamatanda 
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Annex 2 – Canopy cover curves 
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