
1 

220 
REPORT 

CLIENT 

 
AUTHORS 

 

 

DATE 

Terra Firma 

 

Jonna van Opstal 

Jack Beard 

 

February 2021 

 

Cadastre mapping with flying sensors 

and satellite imagery in Zambezia, 

Mozambique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 



2 

ADDRESS 

 

 

 

 

TELEPHONE 
 

WEBSITE 

 
WEBSITE 

FutureWater B.V. 

Costerweg 1V 

6702 AA Wageningen 

The Netherlands 

 

+31 317 460 050 

www.futurewater.eu 

Cadastre mapping with flying sensors and satellite 

imagery in Zambezia, Mozambique 
 

 

 

 

 

 

FutureWater Report 220 

 

 

 

 

Client 

Terra Firma 

 

 

Authors 

Jonna van Opstal – Senior Water Productivity Expert (j.vanopstal@futurewater.nl) 

Jack Beard – Hydrologist and Programming Expert (j.beard@futurewater.nl) 

 

 

Date 

February 2021 

 

 

http://www.futurewater.eu/


3 

Content 

1 Introduction 5 
 Background 5 
 Project description 5 
 Reading guide 5 

2 Study area and imagery acquisition 6 
 Location of flights 6 
 Flying sensor imagery 6 

 Flying Sensor Operators 6 
 Technical description 7 
 Overview flights 7 
 Imagery processing 8 

 Satellite imagery 8 
 Sentinel imagery 8 
 Planet imagery 9 
 Digital Globe imagery 10 
 Google Earth imagery 10 

3 Boundary delineation methodology 12 
 Image pre-processing 12 
 R Packages 15 
 ilastik 18 
 QGIS Segmentation (GRASS) 20 
 Manual boundary delineation 20 

4 Field boundary results 21 
 Flying Sensors 21 

 R packages 21 
 QGIS GRASS segmentation 23 

 Satellite imagery 24 
 Discussion 25 

 Segmentation methodologies 25 
 Satellite and flying sensor data 27 

5 Concluding remarks 28 
 

 

 

 

 

  



4 

Tables 

Table 2-1 Number of flights and total area in hectares for each flight location ....................................... 7 
Table 4-1 Overview of the pros and cons of the different methodologies as used for flying sensor 

imagery ................................................................................................................................................. 25 
Table 4-2 Overview of the pros and cons of using flying sensor and satellite imagery for boundary 

delineation ............................................................................................................................................ 27 
 

Figures 

Figure 2-1 Location of the three flight areas close to the city Quelimane in Mozambique ...................... 6 
Figure 2-2 ThirdEye flying sensor operators at location with Terra Firma representative ....................... 7 
Figure 2-3 Photo of the Mavic Pro in action ............................................................................................ 7 
Figure 2-4 Results ortho-mosaics of the flying sensor imagery .............................................................. 8 
Figure 2-5 Sentinel 2 image (false colour) for 26th December 2020 indicating (pinpoint) the study 

location ................................................................................................................................................... 9 
Figure 2-6 Planet data platform indicating the study area and data availability ...................................... 9 
Figure 2-7 Digital Globe data platform indicating data availability for Area 2 ........................................ 10 
Figure 2-8 Google Earth Satellite image for the study area .................................................................. 11 
Figure 2-9 Detailed zoomed in image of Google Earth image for Area 1 (left) and Area 2 (right) ......... 11 
Figure 3-1. Kmeans showing clear “tree” class (number 2 in this case) ............................................... 13 
Figure 3-2. Before and after removal of trees from image .................................................................... 13 
Figure 3-3. Green Leaf Index of image ................................................................................................. 14 
Figure 3-4. “Linear stretch” composite of image (right) compared with original image (left). ................ 14 
Figure 3-5. Optimised Kmeans: showing 4 classes used on the masked GLI image ........................... 15 
Figure 3-6. Optimised canny edge approach applied to linear stretch RGB image with trees masked. 16 
Figure 3-7. Best results from superpixels approach applied to linear stretch RGB image with trees 

masked. ................................................................................................................................................ 17 
Figure 3-8. Best results from contours approach applied to GLI image with trees masked. ................. 18 
Figure 3-9 Image segmentation workflow from previous FutureWater report ....................................... 18 
Figure 3-10 Training in ilastik indicating various labels for different classes ......................................... 19 
Figure 3-11 Pixel classification result of ilastik using four labels ........................................................... 19 
Figure 3-12 Results of the GRASS QGIS segmentation for two different threshold settings ................ 20 
Figure 4-1 Flying sensor image of selected block in Area 3 ................................................................. 21 
Figure 4-2 Results of kmeans step using the Green Leaf Index (GLI) .................................................. 22 
Figure 4-3 Results for the canny edges algorithm ................................................................................ 22 
Figure 4-4 Results for the super pixels algorithm ................................................................................. 23 
Figure 4-5 Results of GRASS segmentation algorithm ......................................................................... 24 
Figure 4-6 Detailed zoom of the segmentation results from GRASS (threshold = 0.1), converted to 

polygons ............................................................................................................................................... 24 
Figure 4-7 Results comparing the Flying Sensor (drone) imagery with satellite Sentinel and Google 

imagery ................................................................................................................................................. 25 
Figure 4-8 Example of classification for Bekaa Valley (Lebanon) using multi-date imagery. Top: layer 

stack of three NDVI images at three different dates during the growing season. Bottom: Google 

satellite image ....................................................................................................................................... 26 
Figure 4-9 Comparison of flying sensor image (resized to 0.4m pixel resolution) and Google Satellite 27 

  

file:///C:/Users/Jonna/Dropbox%20(FutureWater)/Team/Projects/Active/2020023_TerraFirma_CadasterMapping/Outputs/20210228_TerraFirma_FinalReport.docx%23_Toc65659502


5 

1 Introduction 

 Background 

Cadastre mapping is the practice of determining the field boundaries, which are then used for recording 

the land ownership of the parcel of land. Remote sensing is a powerful tool for supporting cadastre 

mapping, because it covers large areas and reduces the labour required for performing a land survey. 

High resolution satellite imagery and flying sensor (drone) imagery are suitable to be used for cadastre 

mapping. These are then used to manually determine the field boundaries. Alternatively, algorithms are 

rapidly developing and adopted for classification or segmentation of the imagery, which automatically 

determines field boundaries in varying degrees of accuracy.  

 

The practice of using remote sensing imagery is becoming more widespread. However, the suitability of 

satellite or flying sensor imagery needs to be evaluated by location. Satellite imagery is available at 

different price ranges and is fixed in terms of spatial and temporal resolution. Flying sensor imagery is 

adaptable and can be deployed at any requested time. The suitability of these remote sensing 

approaches is piloted in this study for a small-scale agricultural area in Mozambique.  

 Project description 

Terra Firma is an organization in Mozambique with the task to map and document land rights. In this 

project, they hired FutureWater1 (Wageningen, The Netherlands) and ThirdEye Limitada2 (Chimoio, 

Mozambique) to acquire flying sensor imagery over a pilot area near Quelimane, Mozambique. The 

objective of this pilot is to determine the suitability of using flying sensor imagery for cadastre mapping 

in an area of small-scale agriculture in Mozambique. The flying sensor imagery was acquired over the 

period of a few days in December 2020, for a total area of 1,120 hectares.  

 

This imagery was used as input for various algorithms that can be suitable for classification and 

segmentation. This study shows some initial results of using flying sensor imagery in combination with 

these algorithms. In addition, comparison is made with satellite imagery to indicate the differences in 

results.  

 Reading guide 

In chapter two a description is provided of the study area of this project. In addition, a technical 

description is provided of the flying sensor technology used and the flights acquired for this study area. 

Chapter three provides an overview of the various algorithms that are applicable for field boundary 

mapping. These are organized into R packages and readily available software programs such as ilastik 

and GRASS (in QGIS). Chapter four discusses the suitability of these algorithms over a selected block 

in the study area to indicate the applicability of these algorithms for small-scale agriculture. In addition, 

satellite imagery is added to this analysis to indicate the differences that exist in results between flying 

sensor and satellite imagery. The last chapter provides some conclusions and recommendations 

following the findings from this pilot study.  

  

 
1 https://www.futurewater.eu/  
2 http://www.thirdeyewater.com/  

https://www.futurewater.eu/
http://www.thirdeyewater.com/
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2 Study area and imagery acquisition 

 Location of flights 

A study area was selected by TerraFirma in the vicinity of the city Quelimane located at the Eastern 

coast of Mozambique in Zambezia province, see Figure 2-1. The study area was divided in three 

locations for performing the flying sensor flights. The three locations together have a total area of 1,120 

ha. The study area was flown during the rainfed season; therefore, the main crop being cultivated is 

maize. The flights were performed early in the growing season, so the vegetation cover varied between 

fields. Small villages and settlements are also part of the study area and a few roads and tree rows. 

Overall, the study area is a suitable pilot location for studying cadastre mapping over small-scale 

agriculture.  

 

 
Figure 2-1 Location of the three flight areas close to the city Quelimane in Mozambique 

 Flying sensor imagery 

 Flying Sensor Operators  

ThirdEye Limitada located in Chimoio, Mozambique performed the flying sensor flights at the location 

with supervision from experts of HiView1 and FutureWater. Due to the Covid-19 travel restrictions, the 

supervision of the experts was provided by online meetings in preparation of the flights and on location. 

The operators team performed the flights in December 2020, see Figure 2-2 for a photo of the activities. 

 
1 https://www.hiview.nl/  

https://www.hiview.nl/
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Figure 2-2 ThirdEye flying sensor operators at location with Terra Firma representative 

 Technical description 

The Flying Sensor equipment used for this 

project is a Mavic Pro drone with a DJI camera. 

Figure 2-3 shows a photo of the Flying Sensor. 

The camera makes RGB (red-green-blue) 

images, similar to visual images as seen with 

the human eye.  

Advantages of using Flying Sensors are the 

flexibility for imagery capture and the high-

spatial resolution of the acquired imagery. The 

flying sensors can make flights when required 

at the desired intervals. The spatial resolution of 

the imagery is 4-8 cm, providing sufficient detail 

to capture the spatial variation of small holder 

agriculture that is typical in several regions of 

Mozambique 

 Overview flights 

The flying sensor flights were performed early December 2020, which is the start of the rainfed growing 

season. The conditions were generally suitable for flying on most dates, except the first day when rain 

showers delayed the flights somewhat. An overview of the flights performed for the three different areas 

(as indicated in Figure 2-1) is presented in Table 2-1. The number of flights per location and per date are 

listed. At the end of each day of performing flights, a quality check was performed on the images acquired 

to assess if a second flight is required. On the last day, 11th December 2020, extra flights were performed, 

for the locations that needed an extra flight.  

 

Table 2-1 Number of flights and total area in hectares for each flight location 

 Area 1 Area 2 Area 3 

7th December 2020 8 flights   

8th December 2020 2 flights 11 flights  

9th December 2020  5 flights 7 flights 

10th December 2020   15 flights 

11th December 2020 

(extra flights) 

 (3 flights) (1 flight) 

Total flights taken 10 flights 16 flights 22 flights 

Total area covered 225 ha 346 ha 549 ha 

Photo of the Flying Sensor in action Figure 2-3 Photo of the Mavic Pro in action 
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Flights were performed at 120m height which gave 4 cm pixel resolution. Flights were not performed 

very early or late in the day to reduce the occurrence of shadow in the images with the low sun elevation. 

The software for the flight plans were done with Pix4D with settings at 60% speed and 80% overlap.  

 Imagery processing 

The single images acquired by the flying sensors during the flights, were stitched to create georeferenced 

ortho-mosaics. This processing step was performed using the Agisoft Metashape software and the 

computing power of a ‘supercomputer’ at the office in The Netherlands. A stitch was created for all the 

three areas individually, thus creating one image that stitched all flights together for that location. For 

example, Area 1 consisted of 10 flights, where the images of all flights were given as input for providing 

one full ortho-mosaic for Area 1.  

 

The results of the imagery processing were delivered by SD card to TerraFirma to conserve the high 

resolution quality. Figure 2-4 displays the results of the ortho-mosaics of the three locations. Some 

contrast is noticeable because several flights are stitched into one raster image. The detailed zoom in 

Figure 2-4 demonstrates the amount of detail that is achieved with flying sensor imagery. The individual 

fields and even furrows within fields are noticeable.  

 

 
Figure 2-4 Results ortho-mosaics of the flying sensor imagery 

 

 Satellite imagery 

 Sentinel imagery 

High resolution satellite imagery is available at different prices for this location. The imagery available by 

Sentinel 21 is for free and has a pixel resolution of 10m. The challenge for the rainfed season is the issue 

 
1 https://apps.sentinel-hub.com/eo-browser/  

https://apps.sentinel-hub.com/eo-browser/
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with cloud cover. An image was selected with the least amount of cloud cover for the study area, which 

also coincides reasonably well with the dates of the flying sensor flights: 26th December 2020. 

Postprocessing of the Sentinel imagery was performed with the SCP tool (Semi-Automatic Classification 

Plug-in) of QGIS1, which translates the digital numbers of the imagery to reflectance values.  

 

 
Figure 2-5 Sentinel 2 image (false colour) for 26th December 2020 indicating (pinpoint) the study location 

 

 Planet imagery 

Planet2 provides imagery at high pixel resolution, namely from 3-5 m (PlanetScope and RapidEye) or 

0.5m (SkySat). These images are available for purchase through their data platform and are not used in 

this study. An example of the data available for the study location is shown in Figure 2-6. 

 

 
Figure 2-6 Planet data platform indicating the study area and data availability  

 
1 https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/  
2 https://www.planet.com/products/planet-imagery/  

https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/
https://www.planet.com/products/planet-imagery/
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 Digital Globe imagery 

Digtal Globe1 is another commercial platform for providing satellite data at high resolution. The highest 

resolution they offer is 30-60 cm. pixel resolution. An example image for the study area is shown in Figure 

2-7. This imagery is available for purchasing and is not used in the further analysis of this pilot study. 

 

 
Figure 2-7 Digital Globe data platform indicating data availability for Area 2 

 

 Google Earth imagery 

Google Earth imagery2 is freely available through Google Earth platform or as basemap layer in QGIS. 

The imagery provided is at high pixel resolution and usually presents a certain date that is representative 

for that year or period. The Google Earth image is not downloadable as GeoTiff multi-band raster image, 

therefore cannot be used for further analysis in algorithms. An example of the Google Earth image for 

the study location is presented in Figure 2-8 and two detailed zoomed in images in Figure 2-9. 

 

 
1 https://discover.digitalglobe.com/  
2 https://www.google.com/earth/  

https://discover.digitalglobe.com/
https://www.google.com/earth/


11 

 
Figure 2-8 Google Earth Satellite image for the study area 

  

   
Figure 2-9 Detailed zoomed in image of Google Earth image for Area 1 (left) and Area 2 (right) 
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3 Boundary delineation methodology 

Various algorithms can be used to delineate the field boundaries, which assists the cadastre mapping 

process. In the following sections, the various methods piloted in this study are presented. These are 

tested for a small excerpt of the full study area to demonstrate the effectiveness of the various methods. 

This “test” image or excerpt included the various land covers that are typical for the study area: small 

farm fields both with vegetation and bare soil, roads, trees, and settlements. The RGB image of this test 

image is shown in Figure 3-2 on the right.  

 Image pre-processing 

Some pre-processing steps were deemed necessary to prevent the following:  

• Smaller features or details were adding extra “noise” to images which complicates segmentation 

• Inclusion of extraneous objects (e.g. trees, houses) which could be misclassified by 

segmentation algorithms 

 

Additionally, the fact that RGB images are by nature split into 3 bands (red-green-blue) means that for 

some image processing algorithms, this needed to be simplified into one raster image for input. The 

following pre-processing steps were used to assist the segmentation or boundary delineation algorithms. 

Resolution 

The effects of resolution on the effectiveness of different methodologies was found to be substantial. 

Keeping the images at higher resolutions tended to pick up furrows in fields which was then isolated by 

the segmentation algorithms, hence, reducing the accuracy with which field boundaries were delineated. 

When aggregated to a lower resolution, this averaged out the smaller details in images and gave a 

clearer differentiation between fields. Images were finally aggregated from 4cm to 40cm resolution.  

Removing Trees 

It was found that trees have a disruptive effect on all the segmentation algorithms as they added clear 

features to be segmented and therefore took away from some of the variation between fields. Areas of 

the imagery that were found to contain trees were therefore masked (values set to NA) to eliminate this 

effect. Masking was done using a preliminary kmeans1 approach (described below) to identify areas of 

trees, which were then buffered to a wider area to create the mask. This process and its results are 

shown in Figure 3-1 and Figure 3-2. Adding this extra step is usually referred to as a two-step 

classification method, thereby first distinguishing major classes and then continuing with a selected class 

for detailed classification.  

 
1 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans  

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans
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Figure 3-1. Kmeans showing clear “tree” class (number 2 in this case) 

 

 
Figure 3-2. Before and after removal of trees from image 

Combining bands 

The kmeans algorithm described below only takes as input single band images. It was therefore 

necessary to either a) combine the 3 bands which make up each RGB image to a single raster image or 

b) take one of the three bands. After some trial and error, Green Leaf Index (GLI), as defined by Louhaichi 

et al (2001)1, was decided to be the most effective way to combine bands, prioritizing the green band as 

the most important to conserve information within the image.  

 

The Green Leaf Index (shown in Figure 3-3) was calculated as such: 

 

𝐺𝐿𝐼 =  
2𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

2𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

 

 
1 Louhaichi, Mounir & Borman, Michael & Johnson, Douglas. (2001). Spatially Located Platform and Aerial Photography for 
Documentation of Grazing Impacts on Wheat. Geocarto International. 16. 10.1080/10106040108542184.  
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Figure 3-3. Green Leaf Index of image 

 

Other R packages (Magick, ImageR) can take as input a 3-band image. The original image was therefore 

tested as input, but it was found that the contrast between fields could be increased in the image by 

reading it into R and using the “plotRGB” function from the raster package1 with linear stretching applied 

to each band. This was recommended on a technical note on image segmentation in R, with the 

differences between the original image and the outputted “linear stretch” RGB shown in Figure 3-4.  

 

 
Figure 3-4. “Linear stretch” composite of image (right) compared with original image (left). 

 
1 https://www.rdocumentation.org/packages/raster/versions/3.4-5/topics/plotRGB 
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 R Packages 

A variety of R packages were piloted to delineate field boundaries. R1 is useful as a programming tool 

for this purpose as it has a variety of openly available, well documented packages for image processing 

and deals with spatial and raster data in a simple way.  

Kmeans 

The Kmeans methodology groups pixels of similar values to a given number of classes specified by the 

user. A kmeans algorithm from the “stats” package2 was applied to the imagery to differentiate fields 

from one another by grouping them in a number of classes. This was applied to both single band images 

and the compiled GLI image. For this algorithm the best results were found using the following: 

• Input image: GLI 

• Resolution: 20cm 

• Trees: Masked 

• Parameterisation: Classes = 4 

 

The results of this were fairly successful in terms of picking out some fields that contained significantly 

different values in terms of GLI (Figure 3-5). The weaknesses of this approach are likely that if similar 

crops are grown in adjacent fields, these will be grouped together rather than delineated as separate. In 

this way, the methodology relies more on different colours resulting from different crops or bare 

earth/panted distinctions. This approach could therefore be particularly useful to delineate fields growing 

a certain type of crop at a given stage in its growth cycle in which it appears quite distinct to other crop 

types. 

 

 
Figure 3-5. Optimised Kmeans: showing 4 classes used on the masked GLI image 

 
1 https://cran.r-project.org/  
2 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans 

https://cran.r-project.org/
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Canny edges 

Canny edge processing works via detecting sharp gradients in values in images. It is therefore highly 

useful in detecting clear edges or outlines in optical imagery. The algorithm implemented here comes 

from the “magick” package in R1, which also gives an interface to allow users to arrive at an optimal 

parameterisation of the algorithm through some trial and error. This was applied to both “linear stretch” 

RGB images and the compiled GLI image. For this algorithm the best results were found using the 

following: 

• Input image: Linear stretch RGB image 

• Resolution: 40cm 

• Trees: Masked 

• Parameterisation: Radius = 4, Sigma = 1, Lower % = 10, upper % = 30 

 

The results of this were clearly successful in picking out some field boundaries, especially between very 

different coloured fields (Figure 3-6). It also succeeds in picking out the path feature in one area of the 

image, suggesting it would also pick out linear features such as fencing or paths between fields well. The 

weaknesses of this approach are that it struggles to pick out fields which do not have clear boundaries 

or are of similar colour. It is therefore likely that if similar crops are grown in adjacent fields with no 

separating boundary, these will be grouped together rather than delineated as separate. This approach 

could therefore be particularly useful to delineate fields with clear boundary features between them or 

with very different crop types adjacent to each other. 

 

 
Figure 3-6. Optimised canny edge approach applied to linear stretch RGB image with trees masked. 

Superpixels 

The superpixels approach works via creating a mesh over the image of a given size (representing 

“superpixels”) then deforming this mesh to fit features within the image within the grid of this mesh. The 

algorithm implemented here comes from the “OpenImageR” package2, with lots of guidance coming in 

the form of a technical note on image segmentation3. This was applied to both “linear stretch” RGB 

images and the compiled GLI image. For this algorithm the best results were found using the following: 

• Input image: Linear stretch RGB image 

• Resolution: 40cm 

• Trees: Masked 

• Parameterisation: Method = “slico”, Superpixel = 220 

 
1 https://rdrr.io/cran/magickGUI/man/interactive_canny.html 
2 https://www.rdocumentation.org/packages/OpenImageR/versions/1.1.7/topics/superpixels 
3 https://www.r-bloggers.com/2020/03/analyzing-remote-sensing-data-using-image-segmentation/ 
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The results of implementing this algorithm were fairly successful when qualitatively compared with the 

original image (Figure 3-7). Some fields with clearer boundaries or a very different colour to surrounding 

fields were successfully picked out by the algorithm, but it is also clear that in other areas boundaries 

delineated did not correspond to those in the original image. The weaknesses of this approach are 

therefore that the mesh may create false field boundaries which, unless carefully reviewed, may be taken 

as accurate. This algorithm is likely to be most useful in areas with fairly homogenous field sizes and 

varied crop types or land covers. 

 

 
Figure 3-7. Best results from superpixels approach applied to linear stretch RGB image with trees masked. 

Contours 

The contours approach works via mapping contours around the values of an image, hence outlining 

areas of similar values. The algorithm implemented here comes from the “imager” package1. This was 

applied to both “linear stretch” RGB images and the compiled GLI image, after first converting them to 

grayscale using the same package. For this algorithm the best results were found using the following: 

• Input image: GLI image 

• Resolution: 40cm 

• Trees: Masked 

• Parameterisation: nlevels = 2 

 

The results of implementing this algorithm were fairly successful in picking out field boundaries, 

especially those which contained very different (higher) values in the grayscale image (Figure 3-8). The 

algorithm has less success, however, in picking out the fields represented by lower values in the 

grayscale image (lighter grey in Figure 3-8). The weaknesses of this approach are therefore likely to be 

that it seems accurate at picking out only some types of fields. An iterative process of masking out fields 

picked out and then applying contours to the remaining image may help with this. This approach is likely 

useful in picking out fields with higher crop cover after extracting a parameter such as GLI or NDVI. 

 

 
1 https://rdrr.io/cran/imager/man/contours.html 
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Figure 3-8. Best results from contours approach applied to GLI image with trees masked. 

 ilastik 

The delineation of field and farm boundaries can be performed using the ilastik software (Sommer et al., 

2011; Berg et al., 2019, https://www.ilastik.org/). ilastik is an easy-to-use interactive tool that brings 

machine-learning-based (bio)image analysis to end users without substantial computational expertise. 

Moreover, this approach has been successfully applied in a previous FutureWater project on the 

detection of on-site farm reservoirs1, an example of the workflow used in that project is shown in Figure 

3-9. 

 

 
Figure 3-9 Image segmentation workflow from previous FutureWater report 

 
1 https://www.futurewater.eu/projects/detection-of-on-farm-reservoirs-in-irrigated-areas/ 
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In Ilastik labelling or training was performed using the tools in the program. This requires some manual 

labour and insight to correctly label the image. A screenshot of this process is shown in Figure 3-10. The 

results of the pixel classification process in ilastik is shown in Figure 3-11. The result indicates that four 

labels is not sufficient for finding distinct segments of fields. In addition, a two step classification could 

benefit this process and remove the trees in the first step. This is likely available as the software offers 

an ‘Autocontext (2-stage) method. In addition, it also offers assistance with selecting features to label. 

These functionalities require more exploration to be able to get the best result from ilastik.  

 

 
Figure 3-10 Training in ilastik indicating various labels for different classes 

 

 
Figure 3-11 Pixel classification result of ilastik using four labels 
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 QGIS Segmentation (GRASS) 

QGIS provides a segmentation algorithm in the GRASS plugin1, which has been well-documented and 

is applicable for multi-band data. This algorithm was tested for two different threshold levels in the plugin: 

0.1 and 0.3 as shown in Figure 3-12. A higher threshold indicates that more pixels will be agglomerated 

to one class thus creating larger segments. The results show reasonably good results however the lines 

of the furrow are still prominent especially in the results with threshold 0.1. Further processing and 

piloting this tool could improve the results.  

 
Figure 3-12 Results of the GRASS QGIS segmentation for two different threshold settings 

 

 Manual boundary delineation 

The previous methods mentioned all indicate automatic algorithms for processing imagery to support 

boundary delineation. However, in practice these algorithms have varying levels of accuracy. Therefore, 

frequently boundary delineation is performed manually, thus by mapping the boundaries by hand. The 

flying sensor imagery indicates that the parcels are clearly visible, which can assist this process. It can 

also be selected to perform a hybrid approach, thereby first running an automatic algorithm and then 

making final corrections by hand. This can lead to best accuracy but will require more time and effort. As 

an estimate this “test” area of 6 hectares can cost likely around one hour of labour to draw polygons 

around each individual field, which are on average 0.05 hectares each. By adopting the pre-processing 

steps of removing trees and creating more contrast with the plotRGB tool, this manual boundary 

delineation can be assisted. If additionally, one of the algorithms is used to create preliminary segments, 

it can be estimated that the manual labour required for the process can be halved.  

  

 
1 https://grass.osgeo.org/grass76/manuals/i.segment.html  

https://grass.osgeo.org/grass76/manuals/i.segment.html
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4 Field boundary results 

 Flying Sensors 

To get a better idea of how the algorithms described in chapter 3 perform on a larger scale, a large area 

was considered. This area represents around 80 ha and is made up of a large number of stitched drone 

images from flights in the same day for Area 3. The image, shown in Figure 4-1, is made up of a number 

of field types and also contains roads, trees and buildings. As mentioned in chapter 3, some pre-

processing steps were conducted such has removing trees, reducing the pixel resolution, and translating 

the image to single band image. 

 

 
Figure 4-1 Flying sensor image of selected block in Area 3  

 R packages 

The results of applying the kmeans, canny edges, superpixels and contours algorithms are found in 

Figures 4-2, 4-3, and 4-4. These are interesting as they show that for the larger area, different 

approaches are more successful. The following observations can be made: 

• Kmeans still has a fair amount of success in resolving different fields, but may need some 

smoothing and further postprocessing to get a clearer distinction 

• Canny edges approach has more success in picking out the edges of fields for a larger image, 

but still does not show field boundaries clearly 

• Superpixels approach in this case fails to pick out almost all fields 

• Contours approach was unsuccessful in resolving field boundaries for the larger area 
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Figure 4-2 Results of kmeans step using the Green Leaf Index (GLI) 

 

 
Figure 4-3 Results for the canny edges algorithm 
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Figure 4-4 Results for the super pixels algorithm 

 

Overall, the algorithms were less successful in resolving field boundaries when a larger image was taken 

as input. This therefore shows a need to either split larger images to more specific areas of interest when 

applying these procedures, or to apply a moving window approach to processing. This pilot study 

suggests a moving window approach with a window of size 10x10 average field size would be more 

successful in general. 

 

The image hereby selected is also limited as it shows crops in similar growth stages. It is therefore also 

likely that the ability of these algorithms to detect field boundaries would increase if multitemporal images 

that showed fields at differing growth stages were used. This would likely help differentiate between crop 

types and also perhaps show dividing features between fields better at bare earth stages. 

 QGIS GRASS segmentation 

The QGIS GRASS algorithm was also piloted over this large scale area, with the results presented in 

Figure 4-5. The results show that the 0.1 or 0.3 thresholds gave reasonable results in distinguishing 

fields. Classes were segmented indicating the fields, although the field boundaries are not aligned 

perfectly with the visual image. However, the roads are indicated well in the segments and trees are 

separately correctly in different classes. The parcels of the fields are similar therefore some fields are 

agglomerated in one class. At large scale the effects of the furrows are less pronounced which was an 

issue in the “test” image of Chapter 3. A detailed zoom of the results in Figure 4-6 shows the varying 

results of the field boundaries with some fields having good alignment and others being mis-classified. 

In general, the result shows good potential as an automated approach for defining field boundaries with 

flying sensor imagery.  
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Figure 4-5 Results of GRASS segmentation algorithm 

 

 
Figure 4-6 Detailed zoom of the segmentation results from GRASS (threshold = 0.1), converted to polygons 

 Satellite imagery 

The algorithms as presented in chapter 3 could also be performed on satellite imagery. However, the 

available satellite imagery did not permit this. The imagery available through Digital Globe and Planet 

are available against a price. The Google Image provides high resolution data but is not downloadable 

as a Geotiff multi-band dataset, therefore cannot be used for further processing in algorithms. Lastly, the 

Sentinel image can be used in the algorithms, but the resolution was insufficient for distinguishing fields.  

 

A comparison is made visually of the satellite imagery available and the drone image, which is presented 

in Figure 4-7. This comparison shows an area in the study location including two smaller details. The red 

box indicates a field with bare soil which is large enough to be detected also by the Sentinel image. As 

shown the surrounding fields are all green in the Sentinel image, whilst the drone image indicates the 

variety of vegetation cover in the surrounding fields thus providing more detailed information. The blue 

box indicates an area of the tree row, which is detected by the Sentinel image as dark green. The details 

of this tree row are only visible in the drone image and the Google satellite image. The Google image 

however is a fixed point in time, which is a disadvantage when land cover is continuously changing.  
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Figure 4-7 Results comparing the Flying Sensor (drone) imagery with satellite Sentinel and Google imagery 

 Discussion 

 Segmentation methodologies 

In this chapter, the several methods for classification and segmentation are piloted. These performed in 

varying degrees and the pros and cons of these methods are demonstrated in the results of the flying 

sensor images. There does not seem to be a ‘one size fits all’ solution, with results that give the field 

boundaries accurately. However, this is a challenge especially in the situation of small-scale agriculture 

with parcels of land smaller than a hectare. The various pros and cons are summarized in Table 4-1. 

 

Table 4-1 Overview of the pros and cons of the different methodologies as used for flying sensor imagery 

 kmeans 
Canny 

edges 
Superpixels Contours ilastik GRASS 

Pros Effective in 

removing 

trees 

 

Performed 

well in distin-

guishing fields 

 

Easy to run if 

experienced 

in R  

Distinguishes 

contrasting 

edges well 

such as roads 

and trees 

 

Easy to run if 

experienced 

in R 

Creates 

polygons that 

can be 

adjusted 

manually 

 

Easy to run if 

experienced 

in R 

Ability to 

distinguish 

field 

boundaries 

with sufficient 

contrast 

 

Easy to run if 

experienced 

in R 

User friendly 

interface is 

provided 

 

 

User friendly 

interface is 

provided in 

QGIS 

 

Performs well 

in distinguish-

ing between 

fields 

 

Cons Requires 

further 

smoothing for 

better result 

Contrast 

between fields 

was insuffi-

cient to be 

detected 

Requires 

further 

improvement 

to distinguish 

between fields 

Less 

successful in 

distinguishing 

fields with 

similar cover 

Requires 

effort and 

expertise for 

adding labels 

Requires 

adjustments 

of parameters 

for best result 
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The various methods show good potential and this pilot indicated recommendations for improving this 

work further. Firstly, the input parameters for the algorithms can be optimized further to improve results. 

The results in this pilot are preliminary and with expert knowledge and optimization results are expected 

to improve.  

 

Secondly, additional processing steps can improve the results. The addition of the step for removing 

trees, thus a two-stage classification process, gave better results. Another processing step that can be 

added is the moving window for the analysis. This can smoothen the contrast within fields thus laying 

focus on the contrast between fields.  

 

Thirdly, a dataset of images for different (two or three) dates throughout the growing season is expected 

to improve the classification significantly. The flying sensor images show distinction between fields but 

several fields have similar vegetation cover thus the algorithms cannot detect the field boundaries. If 

data was also provided at the middle and end of the season, the different timing of planting and peak 

vegetation will give more contrast between fields. As an example, the work of a previous project in 

classification in the Bekaa Valley of Lebanon shows the result that is achievable by using multi-date 

images, shown in Figure 4-8. Both larger fields and the smaller agricultural fields are clearly 

distinguished.  

 

Lastly, a hybrid approach of using automated algorithms in combination with some manual corrections 

of the field boundaries is recommended. The algorithms, especially kmeans and the GRASS 

segmentation algorithm, show that it is able to distinguish several fields, thus saving time in the manual 

drawing of field boundaries.  

 

 
Figure 4-8 Example of classification for Bekaa Valley (Lebanon) using multi-date imagery. Top: layer stack of 

three NDVI images at three different dates during the growing season. Bottom: Google satellite image 
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 Satellite and flying sensor data 

Cadastre mapping can make use of either flying sensor data or satellite data. The suggested methods 

for segmentation and classification were not successfully applied on the available satellite data due to 

inavailability of suitable images for the methods. However, some general comparisons can be made 

between the different types of imagery available. Table 4-2 presents an overview of some key pros and 

cons typical for the different data products.  

 

Table 4-2 Overview of the pros and cons of using flying sensor and satellite imagery for boundary delineation 

 Flying Sensors Google Earth Sentinel 2 
Planet or  

Digital Globe 

Pros High pixel resolution of 

4 cm achieved, which is 

suitable for indicating 

individual parcels in 

small-scale agriculture 

 

Imagery acquired on 

demand for desired 

time and date 

 

Cloud cover does not 

obstruct the image  

High resolution imagery 

available, suitable for 

indicating individual 

fields 

 

 

Imagery freely made 

available 

 

Coverage of large area 

Imagery freely made 

available 

 

Images available at 5-

day time steps 

 

Coverage of large area 

Imagery available at 

reasonably high 

resolution of 0.3 to 5m 

 

Imagery available at 

daily (or multi-day) time 

steps 

 

Coverage of large area 

Cons Requires post 

processing to create 

ortho-mosaic images 

Imagery is not suitable 

for further analysis in 

segmentation 

algorithms 

 

Timing of the satellite 

image is not flexible 

 

Pixel resolution is 10m 

which is not suitable for 

distinguishing individual 

fields in small-scale 

agriculture 

 

Cloud cover obstructs 

images and limits the 

availability of images  

 

Imagery available after 

purchase 

 

Cloud cover obstructs 

images 

 

Notably, flying sensor imagery presents the highest resolution dataset compared to the satellite data 

products. In the pre-processing sometimes the flying sensor imagery was down-scaled to a more coarse 

resolution to achieve better results. However, the amount of detail obtained by having original images of 

high resolution provides a better image quality than images with the same pixel resolution as the satellite 

data. As example the flying sensor “test” image which was processed to 0.4m pixel resolution is 

compared with the Google satellite image (of a different date) in Figure 4-9. 

 

 
Figure 4-9 Comparison of flying sensor image (resized to 0.4m pixel resolution) and Google Satellite 
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5 Concluding remarks 

This study provides the findings from piloting several classification and segmentation algorithms for 

delineating field boundaries using flying sensor imagery. The suitability of using flying sensor and satellite 

imagery for boundary delineation in small-scale agriculture is discussed. The study area used in this pilot 

study is in the vicinity of Quelimane, Mozambique located in the Zambezia province. The flying sensor 

imagery was for 1,120 ha total, which was acquired in December 2020. Satellite imagery from Google, 

Planet, DigitalGlobe, and Sentinel 2, was acquired for the same location and used as comparison.  

 

The methods piloted for segmentation and classification to support the field boundary delineation process 

was categorized into: 1) packages available in R; and 2) readily available software. The R packages that 

were used in this study are: kmeans, canny edges, contours, and superpixels. The readily available 

software used in this study are ilastik and GRASS (QGIS).  

These algorithms gave mixed levels of success on the flying sensor imagery. The R package kmeans 

was successful in classifying trees from other land surfaces. It also performed well with distinguishing 

vegetated fields from non-vegetated. However, the contrast between vegetated fields was not sufficient 

to be classified as separate classes. The other R packages performed reasonably well for the “test” 

image but was less successful for a larger image. Overall, it can be suggested that different algorithms 

are applicable for different cases. For example, canny edges can be successful if the fields have clear 

dividing features. The GRASS image segmentation tool provided in QGIS showed good results for 

distinguishing individual fields. 

 

Overall, some of the algorithms especially GRASS and kmeans show potential for being used for field 

boundary delineation, with several fields being delineated correctly. Issues occurred with small fields and 

fields with unclear dividing features. Piloting these algorithms shows that an automatic method will not 

be fully successful for defining fields in small-scale agriculture with perfect accuracy. However, a hybrid 

approach can be a good benefit to the field delineation work. Several processing steps using the piloted 

algorithms can be taken to provide a preliminary field boundary delineation. Thereafter, the boundaries 

can be manually corrected if necessary. It is estimated that the time required for field boundary 

delineation can be halved compared to drawing all field boundaries manually.  

Further recommendations for improving results are to adopt a moving window approach for running 

algorithms on larger images. Some algorithms had better success on a small image (6 ha) compared to 

the larger image (80ha). A multi-date image can also assist the classification process. By adding a 

second and third image to the dataset, more contrast between fields will become evident because crops 

will peak in vegetation at different times.  

 

The use of flying sensor or satellite imagery for field boundary delineation is compared. The flying sensor 

imagery provides the highest pixel resolution, which is necessary for identifying the individual parcels. In 

addition, flying sensor imagery is flexible in timing and does not have issues with cloud cover. Other 

satellite products, such as Planet, DigitalGlobe and Sentinel have images which are obstructed by cloud 

cover. However, the frequency of imagery acquisition is high (daily up to 5-day). The high-resolution 

imagery of Planet and DigitalGlobe are sold at commercial prices. Sentinel 2 and Google Satellite provide 

imagery for free. However, the 10m pixel resolution of Sentinel 2 is not suitable for identifying fields. 

Google Satellite provides a high-resolution dataset but is not suitable for further use in algorithms.  

 

In conclusion, this pilot study demonstrates the benefits of using flying sensor imagery for field boundary 

delineation. In addition, preliminary analysis with various algorithms for segmentation and classification, 

show that an automatic approach can assist the field boundary delineation process but is not fully 

successful with defining fields with perfect accuracy. This will require additional manual corrections or 

adding imagery from multiple dates throughout the growing season.  


