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Preface 
 

Approximately 22 million tons of citrus crops, 20% of total world production, are produced in the 

Mediterranean region. Better quantitative knowledge on the environmental drivers that control 

water consumption, the productivity and the carbon footprint of these agrosystems are required 

to secure the sustainability of these cropping systems in the Mediterranean region.  

 

The general aim of this study is to evaluate several satellite-based methods in combination with 

field data on water and carbon fluxes obtained in three Citrus commercial farms located in the 

Campo de Cartagena (Murcia, Spain).  

 

FutureWater collaborated in this project and carried out the following tasks: 

1) analyze the daily dynamics of water, energy and carbon in the selected pilot sites, 

2) identify and quantify the influence of the main environmental drivers of water and 

carbon balance, 

3) calibrate empirical relationships and production models for estimating actual 

evapotranspiration, and gross and net primary productivity gross, from field-based 

weather inputs, and satellite-based variables. 

 

The authors would like to thank the Agroforestry department of the Universidad Politécnica de 

Cartagena, and especially Bernardo Martín-Gorriz, who has been the main responsible for the 

field data collection. 
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1 Introduction 

1.1 Background and objective 

Approximately 22 million tons of citrus crops, 20% of total world production, are produced in the 

Mediterranean region. Historically, Citrus-dominated agrosystems have been concentrated in 

the valleys where the most fertile soils are located and a higher and easier access to surface or 

groundwater is possible. However, over the last decades, the adoption of new technologies and 

irrigation strategies (pressurized irrigation and deficit irrigation techniques) has promoted the 

expansion of the cropped areas to less favorable locations. Currently there are more than 

300,000 hectares of citrus in Spain. 

 

Better quantitative knowledge on the actual water requirements and the environmental drivers 

that control the productivity and the carbon footprint of these agrosystems are required to 

secure the sustainability of these cropping systems in the Mediterranean region. For this 

reason, during 5 years, the Agroforestry Engineering department of the Polytechnic University 

of Cartagena (UPCT) measured using the Eddy-covariance technique the water and carbon 

fluxes in three Citrus commercial farms located in the Campo de Cartagena (Murcia, Spain). 

 

The main objective of this study is to quantify the water and carbon balance of Citrus orchards 

by combing satellite data and satellite-based methods with field and Eddy-covariance 

measurements. More specifically, the objectives are: 

1) analyze the daily dynamics of water, energy and carbon in the selected pilot sites, 

2) identify and quantify the influence of the main environmental drivers of water and 

carbon balance, 

3) calibrate empirical relationships and production models for estimating actual 

evapotranspiration, and gross and net primary productivity gross, from field-based 

weather inputs, and satellite-based variables 

Principle satellite variables studied are vegetation greenness and land surface water indices, 

albedo and land surface temperature. 

 

1.2 Satellite-based crop evapotranspiration 

Crop consumptive use, or actual evapotranspiration (ETa), has been traditionally computed in 

agronomic applications according the standardized FAO guidelines for crop-water requirements 

described by Allen et al (1998), in which ETa is estimated by an hypothetical potential flux, the 

“reference evapotranspiration (ETref)” that can be derived from local meteorological 

observations, and a crop coefficient (Kc), i.e. 

 

𝑬𝑻𝒂 = 𝑲𝒄 ∗ 𝑬𝑻𝒓𝒆𝒇    

Equation 1 

 

Traditionally, Kc values have been tabulated for a large number of crops based on experiments 

in which crops have been grown under optimum agronomic conditions. The direct application of 

tabulated Kc values over agricultural lands tends to overestimate crop consumptive use when 

growth limiting conditions are present (Glenn et al., 2011). To account for these limiting 

conditions, scalar functions are commonly adopted for to compute actual crop coefficients 

(Pereira et al., 2014). 
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Satellite-based methods are an alternative and sometimes more adequate mean for providing 

regional-scale estimates of ETa (Szilagyi, 2015) compared to the traditional FAO procedure or 

the relatively more expensive ‘Bowen ratio’ and ‘Eddy covariance’ ground-based techniques. 

They have the advantage that they can provide an indirect measure of the vegetative state of 

the crop and thus its evapotranspiration potential. Also these methods can be used for larger 

areas and can be relatively cost-efficient. 

 

Satellite-based methods fall in two categories (Courault et al., 2005; Li et al., 2009):  

a) ‘Surface Energy Balance’ (SEB) methods which derive ETa analytically as the residual 

among all the other energy fluxes accounted in the land (net radiation, sensible heat 

and ground heat) (Allen et al., 2011, 2007; Kalma et al., 2008), and  

b) ‘Vegetation Index-Crop coefficient’ (VI-Kc) methods which use VI as direct surrogates of 

the actual water consumption and growth dynamics of crops (Glenn et al., 2011; 

Kamble et al., 2013; Mateos et al., 2013; Nagler et al., 2013; Singh and Irmak, 2009).  

 

Most of the derived-SEB algorithms found in literature (e.g. SEBAL, METRIC, S-SEB and 

METRIC, see Kalma et al. (Kalma et al., 2008) for a more detailed review) requires high-

moderate resolution imagery (e.g. SPOT, ASTER, Landsat) in order to capture a sufficiently 

wide range of surface wetness conditions from which to parameterize the warm-cold edges 

along a bare-fully vegetated soil coverage gradient. Despite their generalized use, these 

methods are frequently difficult to calibrate and are also tied to high uncertainties and some 

degree of empiricism due to the assumptions adopted (Szilagyi, 2015). The low temporal and 

intermittent coverage of high-moderate spatial resolution satellites may additionally increase the 

difficulties in applying these methods and becoming them less attractive for operational 

applications (Glenn et al., 2010; Kalma et al., 2008).  

 

VI-based methods have been evaluated over a large number of crop systems and have proved 

to be consistent under many conditions. VI values have been proposed as actual surrogates of 

Kc values, representing the actual performance of crops but also in irrigation scheduling 

applications (Bausch (1995) and references cited by Glenn et al. (Glenn et al., 2011)). They 

have also been found useful for basin-scale hydrological modeling (Hunink et al., 2017). 

 

VI-based methods which use coarse-spatial resolution but high-temporal coverage imagery, as 

those provided by the MODIS sensors on Terra and Aqua satellite platforms have been found 

useful for operational applications to quantify crop ETa (Contreras et al., 2014; Glenn et al., 

2011; Hunink et al., 2015). VI-Kc methods have two main limitations:  

1) they do not account direct evaporation losses acounted after rainfall events, and  

2) they do not capture water stress of crops in the short-term (changes in the VI dynamics 

account at time windows of 1-2 weeks) (Nagler et al., 2013).  

However, in irrigated agrosystems at arid and semiarid regions, the total of rainfall water 

effectively lost by evaporation is commonly considered negligible in comparison with total 

transpiration (first limitation). The second limitation is less of an issue when it can be assumed 

that the irrigation practices do not change significantly over short time periods, or in case the 

methods is used for the analysis with timesteps of more than 1 week to 1 month – as vegetation 

generally responds in that timeframe to water stress which is then captured by the satellite.  

 

Due to favorable water availability conditions, irrigated agrosystems can be considered similar 

to riparian and groundwater dependent ecosystems in terms of water balance (Eamus et al., 

2015). From Bowen and eddy covariance measurements of actual evapotranspiration taken in 
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the semiarid San Pedro and Middle Rio Grande rivers, Nagler et al. (2005) suggested the 

generalized relationship for estimating actual evapotranspiration 

 

𝑬𝑻𝒂 = 𝑬𝑻𝟎 ∙ [𝒂(𝟏 − 𝒆(−𝒃𝑬𝑽𝑰)) − 𝒄]      

Equation 2 

 

in which (1 − 𝑒(−𝑏𝐸𝑉𝐼)) is a derived-function of the Beer-Lambert Law which assumes a linear 

relationship between EVI (Enhanced Vegetation Index) and LAI for values in the 0-4 m2/m2 -

range. Parameters a, b and c are coefficients that should be calibrated by regression analysis 

with local data. Values of 1.65, 2.25 and 0.169 were found by Nagler et al. (Nagler et al., 2013) 

for predicting ETa in phreatophytic and irrigated crop systems in the semiarid USA taken ET0 as 

the reference evapotranspiration computed following the FAO-Penman-Monteith formulation 

(Eref). According to Equation 2 and the Nagler’s parameterization, the ETa/ETref ratio (known as 

as the actual crop coefficient or Kc if crops are considered) would reach a maximum value of 

1.28. The maximum Kc observed by Nagler et al.’s in their study was close to 1.6. Despite 

Nagler’s approach is widely used, the empirical Kc threshold derived from its parameterization is 

lower than maximum daily values of crop coefficients reported in literature.  

 

Some authors have used other satellite data, besides VIs, as land surface temperature (LST) to 

increase the predictive power of the ET methods. LST, or the LST-Ta difference, is a key 

parameter in SEB methods. However the use of these variables as direct predictors of ETa is 

still limited: only few studies have used LST in empirical relationships for this purpose (Wang et 

al., 2006). Also, in arid and semiarid regions, LST has been found to be a good proxy of the 

radiative and advective forcings of evapotranspiration and, consequently, of potential 

evapotranspiration or ET0 (Cammalleri and Ciraolo, 2013; Maeda et al., 2011).  

  

The first part of this analysis aims to test the feasibility of developing an empirical relationship to 

compute daily evapotranspiration rates in Citrus orchards using satellite data. The key question 

is to which degree it is possible to get a generic functional relationship to quantify 

evapotranspiration from only satellite-based data, independent of local meteorological 

measurements. This could potentially open the way to an operational application to quantify 

water and energy balances in irrigated Citrus orchards.  

 

1.3 Primary production models 

The significant influence of land use and agriculture on the global carbon balance and thus the 

possible climate change has been recognized by many authors over the last decades. Net 

primary production (NPP) is a key component of the global carbon cycle. Nevertheless there are 

notable problems associated with field-measurement techniques for NPP. Destructive methods 

are required to directly estimate the NPP for a given period of accumulation, but even these 

have their limitations and rarely give a complete account of the net carbon flux. But most 

importantly, they only provide point-estimates and thus models need to be used to aggregate 

these numbers at the regional or global scale.  

 

Following Cramer et al. (Cramer et al., 1999) and Ruimy et al. (Ruimy et al., 1999), two major 

groups of models can be distinguised: 

 

A) Diagnostic models (also known as Production Efficiency Models -PEMs- or satellite-based 

models).  
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These models are based on the theory of light use efficiency (LUE) (Monteith and Moss, 1977) 

which states that a relatively constant relationship exists between photosynthetic carbon uptake 

and radiation receipt at the canopy level (McCallum et al., 2009). They are usually used for 

global scales, and take satellite-based data as main inputs. In general, the fraction of solar 

radiation absorbed by vegetation (FPAR) is estimated from indices of vegetation greenness 

(e.g. NDVI, EVI, SAVI) or chlorophyll content (e.g. PRI). The conversion of the absorbed PAR 

by vegetation into dry matter is computed using a maximum Light Use Efficiency parameter 

(LUEmax) which is scaled by one or several environmental stressors.  

 

Depending on the requirements of auxiliary meteorological data to compute the carbon balance, 

PEMs can be grouped into: 

 

A.1) LUEmax-constant models (e.g. CASA, SDBM, TURC, C-Fix). Because LUE changes 

depending on the plant functional type and the phenology, these type of models are not advised 

at all (McCallum et al., 2009) 

A.2.) LUEmax-derived models (e.g. GLO-PEM, MOD17, BEAMS, EC-LUE, VPM). These models 

adopt different LUE values depending on the vegetation type. 

A.3.) Empiral-based models (e.g. TG, GR, VI, MOD-PCM). These models assume simplified 

versions of Eq. (1) based on the relationships between remote sensing data and key factors 

affecting photosynthesis.  

 

Models integrated in A.1. and A.2. requires ground meteorological observations as input 

variables. Because these observations usually have insufficiently detailed temporal and spatial 

resolution, errors may emerge in simulating the carbon balance (Gao et al., 2014). Models in 

the A.3. category reduce or avoid their dependence on ground meteorological observations, but 

the ecological meaning of themodel parameters is not as clear as in A.1. and A.2. models (Yang 

et al., 2013). 

 

B) Mechanistic models (also known Canopy Photosynthesis Models, CPMs).  

 

Two sub-groups are distinguised (Bonan, 2008) 

B.1.) Models that simulate carbon fluxes using a prescribed vegetation structure (e.g. BIOME-

BGC, CARAIB, CENTURY, FBM, HRBM, KGBM, PLAI, SILVAN and TEM) 

B.2.) Models that simulate both the carbon fluxes and the temporal dynamics of community 

composition  and transitions between different plant functional types (BIOME3, DOLY, HYBRID, 

PnNet, 3-PG, MAPSS, FORSKA, LPJ). In these models carbon is typically represented as 

aggregate pools of leaf, stem, and root biomass or as an “average” plant type and density 

(Bonan, 2008) 

 

Different intercomparison exercises have been developed in the last years. Probably the most 

extensive effort was realized during the Postdam’95 intercomparison project (Cramer and Field, 

1999) in which 17 biogeochemical and biogeographical models, including PEMs, were 

considered (Error! Reference source not found.). A set of relevant papers derived from this p

roject were collected in a special issue (Volume 5, Issue S1) published in Global Change 

Biology in 1999. The key messages from this intercomparison were collected by (Cramer et al., 

1999), i.e.: 

- Broad global patterns of NPP and the relationship of annual NPP to the major climatic 

variables agreed in most areas. Observed differences could not be attributed to the 
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fundamental modelling strategies, with the exception that nutrient constraints generally 

produced lower NPP.  

- Regional and global NPP were sensitive to the simulation method for the water balance 

(Churkina et al., 1999).  

- Seasonal variation among models was high, both globally and locally, suggesting the 

existence of specific deficiencies in some of the models tested. 
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2 Data and methods 
 

 

2.1 Study area 

The study area is located at Campo de Cartagena basin at SE of Spain. In these area, three 

eddy-covariance systems were installed and measuring micrometeorological variables during 

the 2009-2014 period. Eddy towers were located at commercial farms located at Villa Antonia, 

Casa Mulero and Casa Galindo (Figure 1 and Table 1). For the purposes of this analysis only 

Villa Antonia and Casa Mulero were included as calibration stations. Casa Galindo was 

excluded. 

 

  
Figure 1. Study area. 

 

 

Table 1. EC systems at the study area 

EC Station 
LONG, LAT 

(WGS84) 

XUTM,YUTM 

(ETRS89) 

Measurement 

period 

Villa Antonia  
-0.986, 

37.701a 

677563, 

4174550 
Jul/2009 – Jan/2014 

Casa Mulero  
-0.979, 

37.709 

678099, 

4175450 
Aug/2009 – Jul/2011 

Casa Galindo  
-0.954, 

37.707 

680371, 

4175250 
Dec/2011 – Aug/2014 

a 0º 59’ 9.6’’, 37º 42’ 3.6’’ 

 

2.2 Satellite data products 

The vegetation index products from the MODIS sensors on Aqua (MYD13Q1) and Terra 

(MOD13Q1) satellite platforms were retrieved for both experimental stations from the USGS ftp 

server (Table 2). Terra  and Aqua overpass times are around 1030 and 1330 local solar time in 
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its ascending (daytime) mode and 2230 and 0130 in its descending (nighttime) mode 

respectively. Timeseries of VIs (NDVI and EVI) at day and night were generated through a 

python script specifically developed in the frame of this project. Both VI products consists of 16-

days Maximum Value Composite (MVC) maps at 250 m of spatial resolution (23 scenes per 

year), but with time-window centroids moved 8-days each other. Before their processing, values 

for both timeseries were filtered according the MODIS-quality flags which are included for each 

MODIS product.  

 

After excluding values with low reliability, MOD13Q1 and MYD13Q1 were composited to 

retrieved 8-day timeseries (Figure 2). The resulting timeseries were finally filtered using local 

polynomial functions based on an adaptive Savitzky-Golay filter. Filtering of satellite-based VIs 

is a critical and widely used practice to remove spike and spurious values, to fill gap values, and 

to extract the downward trend typically observed in the vegetation indices as consequence of 

atmospheric effects (Chen et al., 2004; Jönsson and Eklundh, 2002). The Savitzky-Golay post-

filtering of VI fields was done using the TIMESAT software (Jönsson and Eklundh, 2004). A 

time-window of 5 consecutive MVCs, a double iteration to the upper envelope, and an adaptive 

strength of 2 in a scale from 1-12 was used.  

 

Additionally to the 16-day composites VI timeseries, daily values of Land Surface Temperature 

(day and night values) (MYD11A1 and MOD11A1 products), and Black-sky albedo (MCD43B3) 

were also retrieved for both EC stations. Values with low reliability according the quality data 

layer within each product were rejected from the analysis. Daily values were also averaged at 

the 8-day level.   

 

Table 2. Satellite-based variables used in this study 

Variable 
MODIS product 

Spatial 

Res. 

Temporal 

Res. 

Vegetation Index (NDVI, 

EVI) 
MOD13Q1 (Terra) 250-m 16-d 

 MYD13Q1 (Aqua) 250-m 16-d 

Land Surface Temperature MOD11A1 (Terra) 1-km 1-d 

 MYD11A1 (Aqua)* 1-km 1-d 

Albedo MCD43B3 

(Terra+Aqua) 
1-km 1-d 

* All LST data analyzed and shown in this report refer to LST day from Aqua (LSTa_D) 

 

 

 
Figure 2. Retrieval of 8-day timeseries from 16-d composite values of vegetation indices. 
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2.3 Ground-based energy and water balance measurements 

VA and CM experimental sites were equipped with EC systems for measuring λE and H fluxes 

using a three-dimensional sonic anemometer of high-frequency (CSAT-3, Campbell Scientific, 

Logan, UT, USA) and an IRGA (open-path infrared gas analyzer, LICOR Li-7500, Campbell 

Scientific, USA). Both devices, the CSAT-3 and Li-7500, were installed at VA, CM at 1.5 m 

(Martin-Gorriz et al., 2011). All sensors sampled at 10 Hz and fluxes were estimated and stored 

half-hourly applying standard corrections for axis-rotation and density fluctuations.  

 

Incoming solar radiation at VA and CM was measured with a pyranometer (CMP3, Kipp & 

Zonnen, Delft, The Netherlands). Soil heat flux was measured by means of two heat flux plates 

(REBS, model HFT-3.1, Seattle, WA, USA) buried 5 mm below the surface, near a dripper (wet 

bulb) and in the middle of the row (dry soil), respectively. Ta and relative humidity (RH%) were 

measured with thermohygrometers. 

 

Energy closure in EC systems is usually not reached because of systematic bias in 

instrumentation, mismatch in source areas, neglected energy sinks, problems of scalar 

similarity, or landscape heterogeneity (Foken, 2008; Wilson et al., 2002). When available 

energy is known and error in its measurement is moderate, forcing the energy balance closure 

is widely justified. In this study, energy balance closure was forced at the daily scale using the 

Bowen-ratio method (Twine et al., 2000). Before the analysis, potential outliers (days with 

Bowen ratios (H/LE) less than -0.75 (Xing et al., 2008), and crop coefficients higher than 2.5) 

were identified and excluded (Figure 3). Daily values were finally averaged and scaled up to 8-

days temporal windows compatible with the satellite-based composite MODIS VI-LST products 

(see section 2.2). 

 

Daily crop-coefficients were computed as the ratio between measurements of actual 

evapotranspiration (LE) and potential evapotranspiration (ET0). Here, ET0 was computed 

through by three ways using the, the FAO56 Penman-Monteith equation (reference 

evapotranspiration, Eref) (Allen et al., 1998). Other methods to quantify ET0, i.e. the Priestley-

Taylor equation (Eeq, Equation 4) (Priestley and Taylor, 1972) and the Makking equation (Emak, 

Equation 5)  (Makkink, 1957), have been computed and delivered in the dataset but are not 

refereed in this report. At the 8-day level, the Hargreaves-Samani potential evapotranspiration 

(EHS,Equation 6) (Hargreaves and Samani, 1985) was additionally computed and analyzed as a 

potential predictor of the energy/water balance at the 8-day level. 

 

𝐸𝑟𝑒𝑓 =
𝑠 ∙ ( 𝑅𝑛 − 𝐺) + 𝛾 ∙

900
𝑇𝑎

∙ 𝑢2 ∙ 𝑉𝑃𝐷𝑎

s + γ(1 + 0.34 ∙ 𝑢2)
 

Equation 3 

𝐸𝑒𝑞 =
𝑠

𝑠 + 𝛾

𝑅𝑛 − 𝐺

λ
 

Equation 4 

𝐸𝑚𝑎𝑘 =
𝑠

𝑠 + 𝛾
(0.61

𝑅𝑠

λ
− 0.12) 

Equation 5 

𝐸𝐻𝑆 = 𝑎 ∙ 𝑅𝑎 ∙ (𝑇𝑎𝑣𝑔 + 𝑏) ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 

Equation 6 

 

where s is the slope of vapour pressure curve (kPa/ºC),  𝛾 is the psychometric constant 

(kPa/ºC), Ra , Rs and Rn are the extraterrestrial, incoming and net radiation respectively 
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(MJ/m2.day), VPD is the vapour pressure deficit of the air (kPa), u2 is the wind speed at 2 m 

(m/s),and λ the latent heat of vaporization (MJ/kg). Ta in Equation 3 is the temperature of the air 

(ºC), while Tavg, Tmax and Tmin in Equation 6 are the average, maximum and minimum air 

temperatures recorded during the period of interest. Parameters a and b in the HS equation are 

calibration parameters. The best overall local fitting, including VA and CM stations, with FAO-

Penman-Monteith recorded at the 8-day level was reached with a=0.1827 and b=-0.3911.  

 

 
Figure 3. Outliers (red circles) excluded from the analysis. 

 

Field-based Leaf Area Index (LAI) measurements were taken at plot scale at both sites. For this 

analysis, LAI was used as part of a first assessment to evaluate the confidence of satellite-

based vegetation indices and the coupling of LAI with energy/water measurements. This 

assessment was only realized at Villa Antonia and for one-year period ranging from February-

2010 to February-2011, when LAI was quarterly quantified at the field scale using ceptometer 

measurements (LAI-2200C, Campbell Scientific, USA). 

 

2.4 Net primary production 

As mentioned in the Introduction of this report, several reviews (e.g. McCallum et al. (2009)) 

and intercomparison exercises (e.g. Huntzinger et al. (2012)) have been provided over the last 

years on satellite-based terrestrial Production Efficiency Modeling (PEM). Many of these models 

use the Light Use Efficiency principle, so gross and net primary production are usually 

computed as follows: 

 

𝑮𝑷𝑷 = 𝑷𝑨𝑹 ∗ 𝑭𝑷𝑨𝑹 ∗ 𝑳𝑼𝑬𝒎𝒂𝒙 ∗ 𝒇 

[Eq. 1] 

and 

 

𝑵𝑷𝑷 = 𝑮𝑷𝑷 − (𝑴𝑹𝒂 + 𝑮𝑹𝒂) 

[Eq.2] 

 

in which GPP, NPP = Gross or Net Primary Production, respectively (gC/m2); PAR = 

Photosynthetically Active Radiation (MJ/m2); FPAR = Fraction of Absorbed PAR by 

vegetation/canopy(dimensionless); LUEmax = maximum (unstressed) Light Use Efficiency 

(gC/MJ); f = scalar value [0-1] which reduces the maximum LUE due to physiological or 
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environmental stress conditions (dimensionless) and MRa, GRa = maintenance and growth 

autotrophic respiration (gC/m2). 

 

In general, PAR is computed as 0.45*Rs, being Rs the shortwave incoming radiation (MJ/m2). 

FPAR is a parameter difficult to measure directly, so is usually inferred from models describing 

the transfer of solar radiation in plant canopies using remote sensing observations as 

constraints (McCallum et al., 2009).  

 

In general, there are two common ways to quantify FPAR, i.e. 

 

a) using a Beer-Lambert law relationship with LAI, and the following equation: 

 

𝑭𝑷𝑨𝑹 = 𝟎. 𝟗𝟓 ∗ [𝟏 − 𝐞𝐱𝐩(−𝒌 ∗ 𝑳𝑨𝑰)] 

[Eq. 3] 

 

being LAI the Leaf Area Index (leaf area per ground area, m2/m2), and k the light extinction 

coefficient (dimensionless) which takes values from 0.3 or less in canopies with linear, vertical 

leaves, to 1.0 or more in canopies with flat, horizontal leaves (Campbell, 1986). A constant 

value of 0.5 is commonly used in PEMs. 

 

b) using a linear relationship with a satellite-based vegetation index (Asrar et al., 1992; Gamon 

and Qiu, 1999; Hatfield et al., 1984; Wiegand et al., 1991). 

 

Recently, Ogutu and Dash (2013a) proposed an alternative way for deriving FPAR values from 

ground-based measurements of Net Ecosystem Exchange and PAR.  

 

 

According [Eq.2], NPP is computed as the difference between the GPP and the autotrophic 

respiration (Ra) which is diverted into the respiration invested for maintenance purposes (MRa) 

and for growth (GRa).  

 

An overview of 13 PEMs is provided in Appendix I. Most of these models have been widely 

used in research, being the most cited the CASA model followed by the GLO-PEM and the 

operational MOD17 model (Figure 4).  

 

 
Figure 4. Number of cites registered until 15-Feb-2016 in SCOPUS for each PEM-

Diagnostic model. 
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According a recent study developed by Chen et al. (Chen et al., 2011), LUEmax estimates vary 

by at least a factor 2. They used 12 agricultural eddy-flux measurement sites in North America 

and Europe to constrain LUE models in general and LUEmax in particular, and found that LUE 

models could explain on average about 70% of the variability in net ecosystem exchange (NEE) 

when LUEmax was increased from 0.5 to 0.65–2.0 gC/MJ. Chen et al.’s results imply that 

croplands are more important in the global carbon budget than often thought, suggesting that 

inverse modeling approaches that utilize LUE model outputs as a-priori input should be revisited 

in areas where croplands are an important contributor to regional carbon fluxes. These authors 

do not advice the use of constant LUEmax values, and highlight the importance of accurate land 

surface parameterizations to achieve reliable carbon monitoring capabilities from remote 

sensing information. 
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Table 3. PEM models reviewed. 

Grou

p 

Sub-

grou

p 

Acro

nym 

(n. of 

cites) 

Full name 
GPP/NPP 

estimated as 

LUEmax  

(gC·m-2·MJ-1) 
Scalars  

Time 

resoluti

on 

Key reference Others 

Diag

nosti

c 

mode

ls 

(also 

know

n as 

Prod

uctio

n 

Effici

ency 

Mode

ls, 

PEM) 

Satell

LUEm

ax-

const

ant 

CASA 
Carnegie Ames 

Standford Approach 
NPP (direct) 0.39 T, SM Monthly (Potter, 1993)   

SDB

M 

Simple Diagnostic 

Biosphere Model 

NPP = PAR * 

FPAR(NDVI) * 

LUEmax * Sc 

NEP = NPP - 

Rh(Tair,Alpha) 

1.00 ET/ETeq Monthly 
(Knorr and Heimann, 

1995) 
  

TURC 
Terrestrial Uptake and 

Realease of Carbon 
NPP=GPP-Ra 1.10     (Ruimy et al., 1996)   

C-Fix   NPP=GPP-Ra 1.10 T, SM, CO2 Daily 
(Veroustraete et al., 

2002) 

Pre-

Operati

onal  

3-

PGS 
  

GPP; 

NPP=0.45*GPP 
1.80 

Frost days, 

SM, VPD 
Monthly (Coops et al., 1998) Forests 

LUEm

ax-

GLO-

PEM 

Global Production 

Efficiency Model  
NPP=GPP-Ra 

C3: 55.2*Alpha 

C4: 2.76 
T, SM, VPD   

(Goetz et al., 1999; 

Prince, 1991; Prince and 

Goward, 1995) 

  

http://land.copernicus.eu/global/products/dmp
http://land.copernicus.eu/global/products/dmp
http://land.copernicus.eu/global/products/dmp
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Grou

p 

Sub-

grou

p 

Acro

nym 

(n. of 

cites) 

Full name 
GPP/NPP 

estimated as 

LUEmax  

(gC·m-2·MJ-1) 
Scalars  

Time 

resoluti

on 

Key reference Others 

ite-

base

d 

deriv

ed 

MOD

17 
  

NPP=GPP-

Ra=GPP-MR-

GR* 

0.997 - 1.382  

(based on MODIS 

biome) 

Tmin, VPD 

Daily: 

GPP, 

Leaf_M

R, 

Froot_M

R, 

PSNnet 

Yearly: 

Lwood_

MR, GR, 

NPP 

(Heinsch et al., 2006; 

Running and Zhao, 

2015) 

 

Operati

onal  

BEAM

S 
Biosphere   NPP=GPP-RA   

P/Pmax=f(T, 

RH, SM, CO2) 
Monthly (Sasai et al., 2005)   

EC-

LUE 

Eddy Covariance Light 

Use Efficiency Model 
  

2.14 (for forests, 

grasslands, 

savannas) 

    (Yuan et al., 2007)   

VPM 
Vegetation 

Photosynthesis Model 
GPP 

evergreen needle-

leaf forests: 2.208 

tropical evergreen 

forests: 2.484 

T, W, Leaf 

phenology 

(LSWI) 

 (Xiao et al., 2004)   

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a2h_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a2h_v006
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Grou

p 

Sub-

grou

p 

Acro

nym 

(n. of 

cites) 

Full name 
GPP/NPP 

estimated as 

LUEmax  

(gC·m-2·MJ-1) 
Scalars  

Time 

resoluti

on 

Key reference Others 

Empir

ical 

VI-

base

d 

mode

ls 

TG 
Temperature and 

Greenness Model 

GPP= m(LST) * 

(LSTsc * EVIsc) 
      (Sims et al., 2008)   

GR 
Greenness and 

Radiation Model 

GPP = VIChl(VI) * 

PAR  
      (Gitelson et al., 2006)   

VI Vegetation Index Model 
GPP=PAR*FPA

R(VI)*LUE(VI) 
      (Wu et al., 2010c)   

TGR 
Temperature and 

Greenness Rectangle 
    (Yang et al., 2013)  

MOD-

PCM 

MODIS-based 

Photosynthetic Capacity 

Model 

GPP = PCmax * 

EVI * W 
 W = f(LSWI) 8-day (Gao et al., 2014)  
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Table 4. Comparison and performance analyses found in literature for Production Efficiency Models. 

References 
(Cramer et 

al., 1999) 

(McCallum 

et al., 2009)* 

(Wu et al., 

2010a) 

(Wang et al., 

2011)** 

(Tan et al., 

2012)* 

(Kelley et al., 

2013)*** 

(Ogutu and 

Dash, 2013b) 

(Yang et al., 

2013) 

(Gao et 

al., 2014) 

(Liu et al., 

2014) 

(Dong et al., 

2015) 

Biomes Global -- 

USA 

 

DBF 

Global 

 

Benchmarking 

assessment 

CRP 

(tropical 

palm 

plantations) 

Global  

 

Benchmarking 

assessment 

USA 

 

ENF[2], DBF[2], 

SAV, GSS 

CRP[2] (corn, 

soybean/corn) 

USA 

ENF[7], EBF[2], 

DBF[7], MXF[3], 

SAV[2], SHR[2], 

GSS[4] 

CRP[3] 

(corn/soybean, 

maize, maize-

soybean) 

China 

 

MBF, 

tSTE, 

mSTE, 

aSHR, 

aMAR  

China 

 

EBF[2], ENF, 

MXF, GSS[3] 

CRP[1] 

(wheat/corn) 

USA 

 

GSS 

(tallgrass 

prairie) 

CRP[2] 

(soybean, 

maize) 

CASA x x  x x  x     

SDBM x     x      

TURC x x   x       

C-Fix  x   x  x     

3-PGS     x       

GLO-PEM x x   x       

MOD17  x x  x  x  x x  

BEAMS  x          

EC-LUE     x       

VPM   x  x    x x x 

TG   x  x   x  x x 

GR        x  x x 

VI   x  x     x x 

TGR        x    

MOD-PCM         x   

Biomes: ENF = Evergreen Needleleaf Forest, EBF = Evergreen Broadleaf Forest, DBF = Deciduous Broadleaf Forest, MBF = Mixed Broadleaf Forest, MXF = Mixed Forest, SAV = Savanna, SHR = Shrubland, STE = Steppe, GSS = 

Grassland, CRP = Crop. Prefixes: t = temperate, m = meadow, a = alpine 

* Not a intercomparison assessment s.s.  

** Models used: CASA, BIOME-BGC, LPJ, TOPS-BGC. 

*** Models used: SDBM, LPJ, LPX.
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3 Results and discussion 
 

3.1 Analysis of field data 

Field-based LAI values at Villa Antonia ranged between 3.0 and 4.0 m2/m2. From the end of 

April-2010 just before the pruning at the second week of October, LAI remained in the 3.6 and 

4.0 range. Because trees were pruned in the second week of October-2010, LAI dropped off by 

23% up to values of 3.0 and, since then increased slightly up to reach 3.4 at the beginning of 

March-2011.  

 

In general, LAI measurements tracked well actual evapotranspiration measurements (R2=0.70) 

(Figure 5). None of the satellite-based vegetation indices analyzed, EVI and NDVI, did track the 

LAI dynamics (Figure 7). EVI was better, but still very weakly, correlated with LAI 

measurements than NDVI which showed an opposite dynamics and a negative correlation.  

 

Because of the lack of coupling between LAI and vegetation indices, which may be associated 

with the low spatial resolution of MODIS-VI products (250 m) for highly heterogeneous 

landscapes, it is expected that none of the satellite-based variables can explain the energy 

fluxes accurately. Among the satellite-based variables, land surface temperature at midday 

(LSTd) was by far the best predictor in explaining actual evapotranspiration (R2=0.88, Figure 7) 

 

 
Figure 5. Standardized trajectories of field-based LAI measurements, and actual 

evapotranspiration (LE) and Gross Primary Production (GPP) observed at Villa Antonia 

from February-2010 to February-2011. 
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Figure 6. Standardized trajectories of field-based LAI measurements, and satellite-based 

vegetation indices (EVI and NDVI) observed at Villa Antonia from February-2010 to 

February-2011. 

 

 

 
Figure 7. Standardized trajectories of field-based LAI measurements, actual 

evapotranspiration (LE) and satellite-based Land Surface Temperature at midday (LSTd) 

observed at Villa Antonia from February-2010 to February-2011. 

 

 

3.2 Energy and crop-coefficient dynamics 

Daily and 8-day trajectories of turbulent energy fluxes (latent and sensible), evaporative 

fractions and crop coefficients for Villa Antonia and Casa Mulero sites are shown in Figure 8 

and Figure 9, respectively. 
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Figure 8. Daily turbulent fluxes (upper-left: latent heat, upper-right: sensible heat), and 

evaporative (lower-left) and crop coefficient (lower-right) values measured in 

experimental stations. Solid-black: Villa Antonia (VA); dashed-red: Casa Mulero (CM); 

blue line in lower-right panel defines the basal crop coefficient adopted for both systems. 

  

  
Figure 9. 8-day averaged turbulent fluxes (upper-left: latent heat, upper-right: sensible 

heat), and evaporative (lower-left) and crop coefficient (lower-right) values measured in 

experimental stations. Solid-black: Villa Antonia (VA); dashed-red: Casa Mulero (CM); 

blue line in lower-right panel defines the basal crop coefficient adopted for both systems. 
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During the common period with data in both VA and CM experimental stations, i.e from 

beginning of July-2009 to end of July-2011, significant statistical differences in turbulent fluxes, 

energy ratios and crop coefficient were observed (Table 5).  

 

Table 5. Average ± standard errors of turbulent fluxes (LE=latent; H=sensible), Bowen 

ratio (H/LE), evaporative fraction (LE/(H+LE)) and crop coefficient (LE/Eref). Statistics refer 

to the common measuring period. Statistical differences (***=p-level<0.01) was detected 

using a t-test for dependent samples.  

Variable VA CM Statistical difference 

LE 5.18 ± 2.33 4.70 ± 1.94 *** 

H 4.60 ± 3.46 3.53 ± 3.25 *** 

Bowen ratio (β) 0.85 ± 0.53 0.68 ± 0.53 *** 

Evaporative fraction 

(EF) 

0.62 ± 0.33 0.70 ± 0.38 *** 

Crop coeff. (kc) 0.83 ± 0.33 0.87 ± 0.36 *** 

 

 

For the combined pool of data from VA and CM, negative Bowen values were concentrated 

during the autumn and winter seasons (Figure 10) while the highest evapotranspiration rates 

with median values of 7 MJ/m2.day (81 W/m2 or 2.85 mm/day) were observed during the end of 

spring (May) to the end of summer (August) (Figure 11). On average, during these months the 

evaporative fraction accounted almost 50% of the total available energy, while 

evapotranspiration accounted between 45% (CM) and 50% (VA) of the total mean annual 

evapotranspiration.  

 

Crop coefficients values showed a higher seasonality and monthly dispersion, with median 

values higher than 1.0 during the October-December period when evapotranspiration usually 

exceeds the reference evapotranspiration. During the rest of the year which includes the most 

critical growing period, crop coefficient values ranged between 0.6 and 0.8, which is in 

agreement with the values reported for Citrus by FAO and other studies (Petillo and Castel, 

2007). A basal crop coefficient (Kcb) of 0.56 has been stated as a representative value for both 

sites (Figure 8 and Figure 9).  

 

 
Figure 10. Sensible vs Latent heat fluxes scatterplot observed at VA and CM 

experimental stations. 



 

25 

 

 

 

 

Figure 11. Monthly boxplots of daily actual evapotranspiration (LE, left) and crop 

coefficients (kc, right) measured in Villa Antonia and Casa Mulero experimental stations. 

Percentages represents the value of percentile taken.  

 

 

Slopes from the Eref-LE relationship between CM and VA, a parameter which is related with the 

average crop coefficient, were statistically different (p-value<0.01) between sites, being 16% 

higher in VA than in CM (Figure 12). This difference is also observed at the 8-day level. 

  

𝐿𝐸𝑉𝐴_1𝑑 = 1.5882(±0.0643) + 0.5257(±0.0082) ∗  𝐸𝑟𝑒𝑓                [𝑛 = 888, 𝑅2 = 0.82] 

𝐿𝐸𝐶𝑀_1𝑑 = 1.8275(±0.0811) + 0.4549(±0.0112) ∗  𝐸𝑟𝑒𝑓                   [𝑛 = 716, 𝑅2 = 0.70] 

 

𝐿𝐸𝑉𝐴_8𝑑 = 1.5733(±0.1593) + 0.5278(±0.0211) ∗  𝐸𝑟𝑒𝑓                [𝑛 = 114, 𝑅2 = 0.85] 

𝐿𝐸𝐶𝑀_8𝑑 = 1.9472(±0.1868) + 0.4372(±0.0265) ∗  𝐸𝑟𝑒𝑓                   [𝑛 = 94, 𝑅2 = 0.75] 

 

𝐿𝐸𝑉𝐴&𝐶𝑀_1𝑑 = 1.6714(±0.0513) + 0.4989(±0.0068) ∗  𝐸𝑟𝑒𝑓                [𝑛 = 1604, 𝑅2 = 0.77] 

𝐿𝐸𝑉𝐴&𝐶𝑀_8𝑑 = 1.7158(±0.1235) + 0.4924(±0.0168) ∗  𝐸𝑟𝑒𝑓                   [𝑛 = 208, 𝑅2 = 0.81] 

 

Standard errors of parameters are shown between parentheses. Eref is the reference evapotranspiration computed using 

the Penman-Monteith-FAO formulation. LE is the actual evapotranspiration. Both Eref and LE in MJ/m2.day 
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Figure 12. Slopes of the Eref-LE relationship (average crop coefficient) for VA (filled 

circles, solid line) and CM (open circles, dashed line). Dotted line shows the 95% 

prediction band for the overall pool of data. 

 

3.3 Calibration of empirical ET relationships  

Pearson correlation coefficients among turbulent fluxes and energy ratios, and meteorological 

and satellite-based variables are shown in Table 6. When both sites were treated together, 

incoming solar radiation -Rg- or reference evapotranspiration (Eref) were the best predictors for 

both latent and sensible heat fluxes. This finding is not surprising at all, as the available 

radiation at the surface level is the main driver of the evaporation and transpiration processes, 

especially in those environments in which water is not a limiting resource.  

 

The inclusion of the advective term in the Penman-Monteith equation barely increases the 

predictive power of the model in comparison with a model which includes the radiative forcing 

driver by alone. Daily average temperature of the air measured at each site or the satellite-

based land surface temperature were the second highest predictor of LE. As it occurs with Rg 

and Eref, correlation coefficients observed between LE vs Ta or LST were strongly similar 

proving that that satellite or ground-based measurements can be equally used in empirical 

relationships. Similar results have been observed by Wang et al.  (Wang et al., 2006).  

 

As it was stated from the preliminary assessment, vegetation indices were poorly or slightly 

correlated with turbulent fluxes. The apparent high negative correlation between latent and 

sensible heat with NDVI in VA and CM is thought to be artificial. Results from Table 6 confirm 

the energy-limited nature of our agrosystem, in which water is always provided to fulfill the water 

requirements of trees. 

 

When actual evapotranspiration is normalized regarding reference evapotranspiration (crop 

coefficients, kc), air vapor pressure deficit (VPD) is the first predictor followed by land surface 

temperature (LST). 
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Table 6. Pearson correlation coefficients (r) among energy balance traits and 

meteorological and satellite-based data computed daily. All correlations are significant, 

except those with the n.s. flag. 

Site Var. 
Meteorological Satellite Combined 

Rg Ta VPD Eref LSTa_D EVI NDVI LST - Ta 

VA 

Rn*-G 0.97 0.73 0.68 0.98 0.77 0.15 -0.77 0.66 

LE 0.90 0.83 0.70 0.91 0.86 0.16 -0.81 0.70 

H 0.91 0.57 0.58 0.90 0.60 0.12 -0.65 0.54 

Bowen 0.41 n.s. 0.16 0.37 n.s. -0.09 -0.16 n.s. 

EF -0.46 -0.10 -0.24 -0.44 n.s. 0.09 0.23 -0.12 

kc -0.46 -0.3 -0.5 -0.52 -0.19 n.s. 0.24 n.s. 

CM 

Rn*-G 0.97 0.75 0.69 0.97 0.81 -0.11 -0.75 0.70 

LE 0.87 0.71 0.65 0.86 0.72 -0.13 -0.73 0.60 

H 0.92 0.68 0.64 0.92 0.76 -0.08 -0.66 0.66 

Bowen 0.69 0.46 0.42 0.67 0.54 n.s. -0.47 0.51 

EF -0.67 -0.45 -0.43 -0.64 -0.54 n.s. 0.45 -0.50 

kc -0.56 -0.54 -0.63 -0.63 -0.48 n.s. 0.32 -0.3 

VA&CM 

Rn*-G 0.96 0.73 0.66 0.97 0.78 0.15 -0.41 0.68 

LE 0.87 0.77 0.65 0.89 0.79 0.15 -0.43 0.66 

H 0.90 0.61 0.58 0.91 0.67 0.14 -0.35 0.60 

Bowen 0.54 0.21 0.28 0.51 0.26 0.08 -0.14 0.28 

EF -0.56 -0.27 -0.33 -0.54 -0.32 -0.09 0.15 -0.32 

kc -0.51 -0.42 -0.56 -0.57 -0.33 n.s. 0.18 -0.17 

LE = latent heat flux (actual evapotranspiration); H = sensible heat flux; Bowen = H/LE; EF = evaporative fraction (LE/Rn*-G); Kc = crop 

coefficient (LE/Eref, being Eref the reference evapotranspiration computed according the FAO-Penman-Monteith equation) 
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Table 7. Pearson correlation coefficients (r) among energy balance traits and 

meteorological and satellite-based data computed at 8-day temporal windows. All 

correlations are significant, except those with the n.s. flag. 

Site Var. 
Meteorological Satellite 

Rg Ta Eref Ehs LSTa_D EVI NDVI 

VA 

Rn*-G 0.98 0.72 0.99 0.77 0.87 n.s. -0.84 

LE 0.93 0.85 0.92 0.75 0.94 n.s. -0.85 

H 0.92 0.55 0.93 0.70 0.74 n.s. -0.76 

Bowen 0.51 n.s. 0.55 0.35 0.28 n.s. -0.40 

EF -0.51 -0.20 -0.55 
-

0.38 
-0.33 n.s. 0.42 

kc -0.50 -0.28 -0.57 
-

0.37 
-0.35 n.s. 0.39 

CM 

Rn*-G 0.98 0.63 0.98 0.78 0.88 n.s. -0.79 

LE 0.90 0.71 0.87 0.76 0.86 n.s. -0.83 

H 0.94 0.53 0.96 0.72 0.81 n.s. -0.70 

Bowen 0.79 0.33 0.80 0.56 0.66 n.s. -0.55 

EF -0.73 -0.30 -0.74 
-

0.52 
-0.60 n.s. 0.48 

kc -0.59 -0.31 -0.67 
-

0.41 
-0.49 n.s. 0.32 

VA&CM 

Rn*-G 0.97 0.67 0.98 0.75 0.87 0.15 -0.48 

LE 0.91 0.78 0.90 0.73 0.90 n.s. -0.49 

H 0.92 0.53 0.94 0.69 0.77 n.s. -0.42 

Bowen 0.63 0.20 0.66 0.43 0.45 n.s. -0.25 

EF -0.60 -0.24 -0.63 
-

0.43 
-0.45 n.s. 0.25 

kc -0.53 -0.29 -0.61 
-

0.39 
-0.41 n.s. 0.27 

LE = latent heat flux (actual evapotranspiration); H = sensible heat flux; Bowen = H/LE; EF = evaporative fraction (LE/Rn*-G); Kc = crop 

coefficient (LE/Eref, being Eref the reference evapotranspiration computed according the FAO-Penman-Monteith equation) 

Ehs = Potential evapotranspiration according locally-calibrated Hargreaves-Samani equation. 

 

Reference evapotranspiration on itself explained 77% (RMSE=12 W/m2, relative error = 21%) of 

the variance observed in daily actual evapotranspiration, while land surface temperature 

explained 63% (RMSE=14 W/m2, relative error = 22%). When both variables were included into 

a MLR model, the predictive power of the model increased up to explain 78% of the total 

variance, and the relative error was reduced by 25% (Table 8). The relative error accounted 

was higher during the winter months and much lower during the end of spring and summer 

(Figure 13).  

 

At the 8-day level, errors were even reduced in comparison with those errors reported at the 

daily level. In general, the overall relative RMSE values reported in this study are in the same 

order of those reported in literature which indicate errors in the 10-20% range for actual 

evapotranspiration (Glenn et al., 2010; Wang et al., 2006). By opposite, satellite-based 

vegetation indices did not contribute significantly to explain actual evapotranspiration.  
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Table 8. Predictive error parameters reported for the LE, and Eref and LSTa_D 

relationships. 

LEVA&CM  
f(Eref) f(LSTa_D) f(Eref,LSTa_D) 

1-d 8-d 1-d 8-d 1-d 8-d 

R2 0.77 0.75 0.63 0.80 0.78  

MAE 
(MJ/m2.day) 

0.82 0.71 0.97 0.71 0.74  

RMSE 
(MJ/m2.day) 

1.02 0.88 1.22 0.88 0.94  

rRMSE (%) 20.58 17.91 21.60 17.93 16.25  

 

 
Figure 13. Monthly variation of the relative RMSE (left-axis) between observed (right-axis) 

and predicted values of actual evapotranspiration. 

 

As stated before, LSTa_D is highly correlated with LE at Villa Antonia and moderately at Casa 

Mulero. Linear relationships between actual evapotranspiration and land surface temperature in 

Villa-Antonia and Casa-Mulero are shown below and in Figure 14.  

 

𝐿𝐸𝑉𝐴_1𝑑 = −0.1372(±0.1722) + 0.1903(±0.0519) ∗  𝐿𝑆𝑇𝑎_𝐷               [𝑛 = 460, 𝑅2 = 0.75] 

𝐿𝐸𝐶𝑀_1𝑑 = 1.2904(±0.2182) + 0.1302(±0.0067) ∗  𝐿𝑆𝑇𝑎_𝐷                  [𝑛 = 374, 𝑅2 = 0.50] 

 

Despite slopes found in both sites were significantly different at the 95% level (p-level<0.05) 

(http://www.danielsoper.com/statcalc3/calc.aspx?id=103), an overall-combined LSTa_D-LE 

equation for both sites was also retrieved. 

 

𝐿𝐸𝑉𝐴&𝐶𝑀_1𝑑 = 0.5141(±0.1433) + 0.1634(±0.0044) ∗  𝐿𝑆𝑇𝑑                    [𝑛 = 834, 𝑅2 = 0.63] 

𝐿𝐸𝑉𝐴&𝐶𝑀_8𝑑 = 0.1832(±0.0065) − 0.4072(±0.1971) ∗  𝐿𝑆𝑇𝑑                    [𝑛 = 204, 𝑅2 = 0.80] 

 

Standard errors of parameters are shown between parentheses. LSTa_D is the day land surface 

temperature, in Celsius degrees, measured by the Aqua-MODIS sensor. LE is the actual 

evapotranspiration in MJ/m2.day 

 

 

http://www.danielsoper.com/statcalc3/calc.aspx?id=103
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Figure 14. LST-LE relationships at Villa-Antonia and Casa-Mulero experimental stations 

from daily (left) and 8-day values (right).  

 

 

In order to explore how the FAO crop coefficient can be predicted and be used according to 

Equation 1, the difference/ratio between the measured and the basal crop coefficient (here set 

at 0.56) was tested against ground-based and satellite-based variables.  

 

In general, higher correlations were found when the Kc/Kcb was used. However, correlations 

were still weak being the reference evapotranspiration the best predictor among the 

meteorological variables (R2=0.34-0.38) and land surfacte temperature among the satellite-

based ones (R2=0.17-0.23). The addition of an estimated Kc from a meteorological or satellite-

based variable did not increase the predictive power of a linear regression model with LST, or 

Eref,. 

 

 
Figure 15. Threshold (P5 and P95 percentile) functions for the LSTd-crop coefficient 

relationship for VA and CM sites. Basal crop coefficient set at 0.62 

 

3.4 Light Use Efficiency: temporal variability 

Light Use Efficiency is defined as: 
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𝐿𝑈𝐸𝑔𝑟𝑜𝑠𝑠 =
𝐺𝑃𝑃

𝑃𝐴𝑅 ∗ 𝐹𝑃𝐴𝑅
 

[Eq. 4] 

𝐿𝑈𝐸𝑛𝑒𝑡 =
𝑁𝑃𝑃

𝑃𝐴𝑅 ∗ 𝐹𝑃𝐴𝑅
 

[Eq. 5] 

in which, 

GPP, NPP = Gross or Net Primary Production, respectively (gC/m2). Both variables were 

estimated from Eddy-covariance Net Ecosystem Exchange (NEE) and respiration 

measurements. 

PAR = incoming Photosynthetically Active Radiation (MJ/m2). PAR was directly measured with 

a PAR-pyranometer. 

FPAR = Fraction of Absorbed PAR by vegetation/canopy.  

 

In this study FPAR has been estimated following Ogutu and Dash (Ogutu and Dash, 2013a). It 

states, 

 

𝐹𝑃𝐴𝑅 =  
𝐿𝑈𝐸𝑒𝑐𝑜

𝑖𝑞𝑦 ∗ 𝑓𝐷 ∗ 𝐸𝑝𝑠(𝑇)
 

[Eq. 6] 

 

being, LUEeco the ecosystem LUE estimated as the slope of the NEE-PAR relationship, iqy is 

the intrinsic quantum yield (i.e. 0.08 mol/mol), and fD and Eps(T) are terms describing the 

influence of vapour pressure deficit , and leaf temperature and leaf chloroplast CO2 partial 

pressure (Ci) on actual quantum yield, respectively. 

 

𝑓𝐷 =
1

1 + 𝑒𝑥𝑝[1.3 ∗ (𝑉𝑃𝐷𝑎 − 3)]
 

[Eq. 7] 

𝐸𝑝𝑠(𝑇) = −0.0043049 ∗ 𝑇 − 0.0002077 ∗ 𝑇2 + 0.8973228 

[Eq. 8] 

 

During the inversion of NEE data, it is necessary to set an upper limit for the incident PAR to 

ensure that the photosynthetic capacity of vegetation is not inhibited by light saturation (Ogutu 

and Dash, 2013a). This threshold is set up as upper limit in PAR where the relationship with 

NEE ceases to be linear. In the case study this upper limit was found at 20 mol/m2.day (Figure 

16). Overall, estimates of FPAR were well correlated with ground-based LAI measurements at 

Villa Antonia field station (Figure 17). 
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Figure 16. Relationship between daily values of PAR and NEE at Villa Antonia (filled dots) 

and Casa Mulero (open dots).  

 

 

Figure 17. Comparison of ground-based LAI measurements and FPAR estimates at Villa 

Antonia. FPAR values computed according Ogutu & Dash (Ogutu and Dash, 2013a). 

 

Maximum LUEgross daily values were reached during the autumn and winter seasons (Figure 18, 

Figure 19). In VA, a 90-th percentile value of 6.6 gC/PAR was reached, while in CM was 

reduced by 33% (4.4 gC/MJ) (Table 9). Daily LUEnet maximum values were reached at winter. 

LUEnet differences in 90-th percentile-values were found to be less than with gross values, ie. 

3.3 gC/MJ in VA vs 2.9 gC/MJ in CM. Overall, daily efficiencies were reduced by 10-18% when 

8-day composites were considered. As representative figures of LUE values in Citrus, values of 

5.5 and 3.0 gC/MJ can be set up for LUEgross and LUEnet respectively.  

 

Table 9. 90th-percentile values measured in Light Use Efficiencies at Citrus plots (days 

with negative NPP values were excluded in the analysis). 

Station LUE trait 1d-
timescale 

8d-
timescale 

VA + CM 
LUEgross 5.8 5.0 
LUEnet 3.1 2.6 

VA 
LUEgross 6.6 5.4 
LUEnet 3.3 2.7 

CM 
LUEgross 4.4 3.7 
LUEnet 2.9 2.6 
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Figure 18. Seasonal variation of gross and net LUE values in Villa Antonia (VA, filled 

dots) and Casa Mulero (CM, open dots) experimental stations. 
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Figure 19. Boxplots with seasonal differences in Light Use Efficiency values (LUE, 

gC/MJ) in Villa Antonia (VA) and Casa Mulero (CM) stations. Results retrieved from the 

1d-timescale dataset.  

 

3.5 Satellite-based versus ground-based variables  

The best predictor found was daytime Land Surface Temperature by Terra (LST) with moderate 

relationships (R2 = 0.58, 0.28 and 0.50 for FPAR, LUEgross and LUEnet, respectively) and the 

lowest RMSE values. Relationships were weak with NDVI with RMSE values much higher than 

those found with LST.  
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Table 10. Relationships between satellite-based variables and EC-based FPAR and LUE 

values. 

1d-timescale Slope Intercept R2 MAE RMSE 

FPAR 

NDVI -0.4072 0.6443 0.27 0.04 0.00 

EVI -0.0413 0.4074 0.00 0.05 0.00 

LST 51.9635 0.2504 0.58 0.03 0.00 

LUEgross 

NDVI 14.2590 -5.5082 0.39 1.06 4.17 

EVI 8.8377 -0.7332 0.11 1.31 8.92 

LST -0.0601 4.4955 0.28 0.76 0.87 

LUEnet 

NDVI 6.7223 -2.6065 0.22 0.72 1.02 

EVI 0.8188 1.2272 0.00 0.85 1.67 

LST -0.0543 2.8403 0.50 0.40 0.09 

 

 

 

 
Figure 20. Scatterplots between daytime Land Surface Temperature and EC-based FPAR 

and LUE estimates. 
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3.6 Calibration of Production Efficiency Models  

GPP/NPP models were calibrated and tested in their performance to explain productivity values. 

All tests were addressed using the 8d-timescale dataset.  

 

3.6.1 VI model 

According to Wu et al. (Wu et al., 2010c) (see section 0), 

 

GPP = PAR * FPAR(VI) * LUE(VI or LST) 

[Eq. 9] 

 

NDVI and EVI vegetation indices retrieved from MODIS were considered as potential predictors 

of FPAR and LUE. Additionally, the LST was evaluated as a potential predictor of LUE. NDVI, 

EVI and LST by alone, and the combination NDVIxNDVI, EVIxEVI, NDVIxLST, and EVIxLST 

were tested (Figure 21, Table 11). 

 

LST by alone was the best predictor of GPP values in both experimental sites, explaining 85% 

and 76% of the variance of GGP in Villa Antonia and Casa Mulero, respectively (Table 11).  

 

Among the different combinations of PAR*satellite-traits, the PAR*NDVI*LST contributed to 

explain the 76% and 67% of the GPP variance observed in Villa Antonia and Casa Mulero, 

respectively. However, the inclusion of satellite traits did not increase the predictability of a 

simple linear regression model with PAR as the only predictor. In general, the adoption of the 

VI*VI approach (VI model) did not provide a qualitative improvement over a SLR model in which 

PAR or LST act as the only predictor (see Figure 23 for the Villa Antonia case study). 

 

Table 11. Pearson correlations (r values) between productivity values and satellite-based 

traits. LST refers to Day Land Surface Temperature retrieved by Terra platform. Pearson 

correlations consider a simple linear regression with intercept. 

 
EVI500 and NDVI500 represent values at the 500m spatial resolution retrieved for both experimental stations from the 

MOD09A1 product. 

Ws_gao is the LSWI-based soil moisture scalar adopting a LSWImax=1.0 
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Figure 21. Matrix of scatterplots between productivity and LUE values, and satellite-

based traits (alone or combined with PAR measurements). Relationships using the 8d-

timescale dataset and taking the VA and CM values as a whole.  

 

 

Figure 22. Seasonal dynamics of LST and productivity values at Villa Antonia (left) and 

Casa Mulero (right). 
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Figure 23. Calibration of no-intercept simple linear regression models for GPP estimation 

in Villa Antonia using PAR and NDVI as predictors. Calibration done using the 8-d 

timescale dataset. 

 

3.6.2 MOD-PCM model 

The MOD-PCM model uses the combined effect of a vegetation index and a LSWI-based soil 

moisture scalar as a surrogate of the seasonal variability of the photosynthetic capacity of the 

land cover, and the downward reduction of the GPP value due to the soil dryness, respectively.  

 

The soil moisture scalar, Ws_gao, is computed as in the VPM model: 

𝑊𝑠 =
1 + 𝐿𝑆𝑊𝐼

1 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥

 

 

𝑊𝑠_𝑔𝑎𝑜 =
1 + 𝐿𝑆𝑊𝐼

2
 

[Eq. 10] 

𝐿𝑆𝑊𝐼 =
𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟

𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟
 

 [Eq. 11] 

 

being, nir and swir the spectral reflectances of the near infrared and short-wave infrared bands 

in the MODIS imagery, respectively. LSWImax is the maximum value reached during the growing 

season. Here, it is adopted a constant value of 1.0 for the LSWImax in a similar way than done by 

(Gao et al., 2014). 

 

Timeseries of nir and swir data required to compute LSWI values were retrieved from the 

MOD09A1 product downloaded from the University of Oklahoma Data Center 

(http://www.eomf.ou.edu/modis/visualization/). Relationships between vegetation indices and 

LSWI against productivity variables (GPPoff, NPPoff, LUEgross, LUEnet) were assessed at the 500 

m spatial resolution, i.e. the spatial resolution at which swir reflectances are provided by 

MODIS. 

  

In Figure 21 and Table 11 are shown the scatterplots and pearson correlation coefficients 

between productivity traits, and LSWI and combined VI-Ws_gao values. LSWI has a weakly-

http://www.eomf.ou.edu/modis/visualization/
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moderately negative correlation with NPP and GPP, and positive correlation with Light Use 

Efficiencies.  
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4 Conclusions 
 

 

 

Field and satellite-based data for the irrigated Citrus-dominated system of Villa Antonia and 

Casa Mulero allowed the exploration of the usefulness of simple meteorological and satellite-

based variables in quantifying actual evapotranspiration rates in an operational mode. Data 

from both sites were analyzed on its own and together.  

 

The trees are fully irrigated which means that both systems are mainly energy-controlled: water 

is not a limiting resource. This makes that the primary controls of the energy balance and actual 

evapotranspiration are those variables directly related with the radiative forcing of the Penman-

Monteith equation. These variables include measurements of surface incoming and net 

radiation (highest correlation but difficult to obtain), air temperature (widely available) o 

temperature-based potential evapotranspiration (e.g. Hargreaves-Samani method), or satellite-

based variables as Land Surface Temperature at midday. Satellite-based variables provide an 

interesting mean for retrieving energy turbulent fluxes in a spatially-distributed way. 

 

The crop coefficient is difficult to predict from ancillary data. Its prediction from meteorological 

(e.g. air temperature, vapour pressure deficit) or satellite-based variables (land surface 

temperature, vegetation indices) is subject to a high uncertainty. A comparison between 

satellite-based vegetation indices and field-based LAI shows no relationship, suggesting that 

vegetation indices are not good proxies for this type of systems (fully irrigated trees). 

 

In this study, we propose a set of empirical linear relationships for estimating daily actual 

evapotranspiration in irrigated Citrus-dominated agrosystems in SE Spain. These equations 

were calibrated at the daily and 8-day level, using the pool of total measurements taken at VA 

and CM sites. These local empirical equations lead to a relative error of 18% over the measured 

value. Besides, several Gross and Net Primary Productivity models using satellite-based 

variables were calibrated successfully and their performance to explain productivity values was 

evaluated.  
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Appendix I: Satellite-based Production 

Efficiency Models 
 

An overview is provided of the principal satellite data-based Production Efficiency Models. 

CASA (Carnegie Ames Standford Approach) 

Source: (Potter, 1993).  

CASA estimates NPP directly using a numerical model of monthly fluxes of water, carbon and 

nitrogen in terrestrial ecosystems. Estimates of terrestrial NPP fluxes depend on inputs of global 

satellite observations for land surface properties and on gridded model drivers from interpolated 

weather station records. The calibrated model has been assessed globally. A constant LUEmax 

value of 0.389 gC/MJ is adopted, and stress scalars depend on temperature and soil moisture 

conditions.  

 

In CASA, the temperature stress scalar is derived considering optimal temperatures for plant 

production, while the water stress scalar is estimated as the monthly water deficit computed 

from a comparison of the moisture supply and the potential evapotranspiration demand figures.  

 

SDBM (Simple Diagnostic Biosphere Model) 

Source: (Knorr and Heimann, 1995).  

 

NPP is estimated monthly from climate data, observed greenness from vegetation index data, 

and a drought-stress scalar which equals the Priestley-Taylor ratio in an hypothetical one-layer 

bucket model. A LUEmax constant value of 1.00 gC/MJ is adopted.  

 

NPP = PAR * FPAR * LUEmax * Ds 

 

in which,   

FPAR is computed using a linear relationship function with the NDVI vegetation index.  

𝐹𝑃𝐴𝑅 = 2.186 ∗ 𝑁𝐷𝑉𝐼 − 0.1913 

[Eq. 12] 

𝐷𝑠 =
𝐸𝑇𝑎

𝐸𝑇𝑒𝑞

 

[Eq. 13] 

being  

Ds the Priestley-Taylor ratio computed as the ratio of actual to equilibrium evapotranspiration. 

 

SDBM computes the Net Ecosystem Productivity as the difference between NPP and the soil-

heterotrophic respiration, as 

NEP = NPP - Rh 

 

in which, Rh is modeled as a function of temperature and water availability. Rh is assumed to be 

equal to NPP at the end of each year (this implies that the respiring pool of soil carbon is in 

equilibrium at the annual scale).  

Rh = β*Q10
T/10*Ds 

Q10 = 1.5 

 

T is the air surface temperature, and β is calibrated for reaching NPP=Rh at the end of the year 
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TURC 

Source: (Ruimy et al., 1996).  

 

This model includes a soil water deficit scalar (SWD) as a primary stressor in controlling 

productivity in drier regions. A LUEmax constant value of 1.10 gC/MJ is adopted. 

 

FPAR = 1.25*NDVI – 0.025 

 

Respiration: Autotrophic-maintenance respiration (RaM) and growth respiration (RaG). 

MR = f(T,vegC); vegC = maintenance coeff. depending on C pool-type (leaves, fine roots, 

sapwood) 

GR = 0.28 * (GPP-RaM)  

 

NPP is finally computed as 

NPP = 0.72*(GPP-RaM) 

C-Fix 

Source: (Veroustraete et al., 2002).  

C-Fix estimates daily ecosystem productivity ranging from local to global scale by using three 

inputs, namely solar radiation, temperature and APAR. A LUEmax constant value of 1.10 gC/MJ 

is adopted. After, NPP is computed as the difference between GPP and Ra (autotrophic 

respiration),  and NEP as NPP less Rh (heterotrophic respiration). At the present, C-Fix has 

been adopted by the Copernicus system to provide global NPP estimates (maps of NPP, called 

Dry Matter Productivity, is available since 1998 and can be accesed from here). In the 

operational system, several simplifications have been adopted over the original formulation 

(Smets et al., 2016). 

 

LUE scalars: Temperature (normalized temperature dependency factor, p(Tc) ), Soil moisture (it 

controls the Radiation Use Efficiency/LUE, RUE), CO2- fertilization. 

 

Respiration: It is a fraction of GPP which depends on: 1) an allometric factor (carbon release 

ratio between leaves to roots), and  2) a respiratory fraction based on air temperature 

3-PGS (3-Physiological Principles Predicting Growth using Satellites) 

Source: (Coops et al., 1998).  

The 3-PGS model is a modified version of the dynamical vegetation 3-PG model originally 

developed by Landsberg and Waring (1997). 3-PGS runs monthly, and uses a constant LUEmax 

(1.8 gC/MJ2) and inputs of meteorological data (e.g. temperature, VPD, rainfall and frost), soil 

information (e.g. fertility and soil moisture) and biophysical parameters (e.g. fPAR and 

physiological information) to estimate vegetation productivity. 

 

GPP = PAR(Tmin,Tmax) * FPAR(NDVI) * LUEmax * Scalars 

 

Scalars: Frost days, Soil Water Deficit, VPD 

 

NPP = 0.45 * GPP 

 

http://land.copernicus.eu/global/products/dmp
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Figure 24. Diagrammatic representation of the 3-PGS model (taken from Coops et al. 

(Coops et al., 1998)). 

GLO-PEM 

Source: (Prince and Goward, 1995). 

It was designed to run with both biological and environmental variables derived entirely from 

satellites. However, it requires to quantify the relative contribution of C3 and C4 vegetation by 

pixel. This is computed as a function of above ground biomass estimated from the minimum 

annual visible channel reflectance and the air temperature.  

GLO-PEM estimates LUEmax values rather than using prescribing values. 

  

LUE scalars: Air temperature, VPD, and Soil moisture. 

Respiration: Autotrophic respiration is modeled for maintenance respiration (Ram) using a semi-

empirical relationship as a function of vegetation, biomass, air temperature and photosynthetic 

rate; Growth respiration (Rag) is a constant of GPP (0.25). Below-ground biomass is not 

estimated, thus Ra is assumed to apply to the whole plant. 

 

MOD17 

 

MODIS primary production products (MOD17) are the first regular, near-real-time data sets for 

repeated monitoring of vegetation primary production on vegetated land at 1-km resolution at an 

8-day interval (Zhao et al., 2005). MOD17 does not rely on empirically defined vegetation 

indices, but attempts to model the biochemical and physical processes involved in 

photosynthesis. The MOD17 is operational at a global scale utilizing a modified version of the 

LUE algorithms and three upstream inputs, MODIS land-cover products (MOD12), LAI/fPAR 

(MOD15), and daily meteorological data from the Global Modeling and Assimilation Office 

(GMAO) (Running and Zhao, 2015). GPP is estimated at daily scale, while NPP is computed 

annually (Figure 25). 
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Figure 25. Conceptual structure of MOD17 algorithm (taken from Running and Zhao 

(Running and Zhao, 2015)) 

 

Daily GPP estimation:  

 

It uses [Eq. 1], being  

PAR = 0.45 * Rs 

FPAR is taken from MOD15, in which FPAR = a*VI+b. 

 

LUE scalars: Minimum temperature (Tmin), Vapour Pressure Deficit (VPD).  

 

Source of weather inputs: PAR, Tmin, VDP provided by GMAO (Global Modeling and 

Assimilation Office) 

 

LUEmax, VPD and T threshold values are derived from outputs of the BIOME-BGC model and 

summarized in the MOD12 Biome Properties Look-Up Table. 

 

Only 8-day accumulated values are provided to the public. The summations are named for the 

first day included in the 8-day period. 

 

Daily MR and PSNnet estimation:  

Daily Net Photosynthesis (PSNnet) is estimated as the difference between daily GPP and daily 

maintenance respiration (MR). PSNnet does not include maintenance respiration associated with 

live wood (Livewood_MR), nor does it include growth respiration (GR). 

 

Daily MR is diverted into respiration driven by roots (Froot_MR) and leaves (Leaf_MR). Both are 

computed based on an exponential function of average daily temperature and scaled down by 

leaf mass, i.e. the LAI/SLA ratio (SLA = Specific Leaf Area). LAI is extracted from MOD15 and 

SLA from MOD12-BPLUTs 

 

PSNnet = GPP – Leaf_MR – Froot_MR   

  

Leaf_MR = Leaf_Mass * leaf_mr_base * Q10_mr**[(Tavg-20)/10] 

Froot_MR = Leaf_Mass * froot_leaf_ratio * froot_mr_base * Q10_mr**[(Tavg-20)/10] 
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Leaf_Mass = LAI / SLA 

 

Finally, PSNnet can be extracted as 

 

PSNnet = GPP - Leaf_Mass * Q10_mr**[(Tavg-20)/10] * (leaf_mr_base + froot_leaf_ratio * 

froot_mr_base) 

 

As for GPP, only 8-day accumulated values of PSNnet values are provided to the public. The 

summations are named for the first day included in the 8-day period. 

 

Annual NPP estimation:  

 

NPPannual = ΣGPPday – [ΣLeaf_MR + ΣFroot_MR + Lwood_MRannual] - GRannual  

NPPannual = GPPannual – MRannual - GRannual 

 

From Running and Zhao (Running and Zhao, 2015), 

If (GPPannual – MRannual) > 0, GRannual = 0.2 * (GPPannual – MRannual)  

If (GPPannual – MRannual) = 0, GRannual = 0  

If (GPPannual – MRannual) <0, GRannual = GPPannual – MRannual 

 

Performance indicators 

A) Global assessment (Heinsch et al., 2006). The error between annual GPP computed from 

NASA's Data Assimilation Office's (DAO/ GMAO) and tower-based meteorology is 28%, 

indicating that NASA's global meteorology plays an important role in the accuracy of the GPP 

algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates 

based on field measurements, although remaining values overestimated site values. Land cover 

presented the fewest errors, with most errors within the forest classes, reducing potential error. 

MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer 

estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most 

likely the result of the relatively rapid onset of leaf-out. Current MODIS GPP algorithm shows 

reasonable spatial patterns and temporal variability across a diverse range of biomes and 

climate regimes. Efforts are needed to isolate particular problems in specific biomes. 

 

B) Global GPP/NPP assessment (Turner et al., 2006). Eddy Covariance flux measurements 

must be scaled over areas on the order of 25 km2 to make effective comparisons to the MODIS 

products. MODIS products were compared against ground-based and spatially-scaled 

estimates of NPP/GPP usign the Biome-BGC carbon cycle process model and Landsat auxiliary 

data. Outputs from both were compared at 9 sites varying widely in biome type and land use 

(arctic tundra, boreal forest, temperate hardwood forest, temperate conifer forest, tropical rain 

forest, tallgrass prairie, desert grassland, and cropland). MODIS products showed no overall 

bias, but they tended: a) to overestimate at low productivity sites — often because of artificially 

high values of MODIS FPAR, and b) to underestimate in high productivity sites — often a 

function of relatively low values for vegetation light use efficiency in the MODIS GPP algorithm. 

A global network of sites where both NPP and GPP are measured and scaled over the local 

landscape is needed to more comprehensively validate the MODIS NPP and GPP products and 

to potentially calibrate the MODIS NPP/GPP algorithm parameters. 

 

C) Dry Sahel (Sjöström et al., 2013). Overall, seasonality was well captured but MOD17A2 GPP 

was underestimated for the dry sites located in the Sahel region. εmax calculated from tower data 

was higher than the prescribed in MOD17A2. This, in addition to uncertainties in fraction of 
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absorbed photosynthetically active radiation (FPAR) explains some of the underestimations. 

The results suggest that improved quality of driver data, but primarily a readjustment of the 

parameters in the biome parameter look-up table (BPLUT) may be needed to better estimate 

GPP for African ecosystems in MOD17A2. 

 

D) Dry Australia (Kanniah et al., 2009). GPP for C5 showed much lower values (RPE 25%) than 

actual measurements. Recalculation of MODIS GPP using site specific input parameters 

indicated that MODIS FPAR was the main reason for the differences between MODIS and 

tower derived GPP followed by LUE and meteorological inputs. The early initiation of the 

growing season calculated by the MODIS algorithm was improved when the vapor pressure 

deficit (VPD) function was replaced with a soil water deficit function. The results of this study 

however, reinforce previous findings in water limited regions, like Australia, and incorporation of 

soil moisture in a LUE model is needed to accurately estimate the productivity. 

 

E) Tropical monsoon regions (Gebremichael and Barros, 2006). GPP products, available at 8-

day and 1-km resolutions, were evaluated in two representative tropical ecosystems: a mixed 

forest (MXF) site in the humid tropics (the Marsyandi river basin in the Nepalese Himalayas), 

and an open shrubland (SHR) site in a semi-arid region (Sonora river basin in northern Mexico). 

The MODIS-GPP products were compared against simulations made with a process-based 

biochemical-hydrology model (LEHM) driven by flux tower meteorological 

observations.Temporal trajectories of vegetation indices and GPP products are consistent 

between the model and the algorithm. There is a positive bias in the humid mixed forest biome, 

and a negative bias in the semiarid open shrublands. The bias between the GPP estimates 

using DAO and tower meteorology is −2.77 gC/m2/day (i.e., −77% of the mean of the tower-

based GPP) in the humid ecosystem, and 0.33 gC/m2/day (i.e., 18% of the mean of the tower-

based GPP) in the semiarid one. Analysis of the temporal evolution of the discrepancies 

between the model and the MODIS algorithm points to the need for examining the light use 

efficiency parameterization, especially with regard to the representation of nonlinear functional 

dependencies on vapor pressure deficit (VPD), photosynthetically available radiation (PAR), 

and seasonal evolution of the productive capacity of vegetation as influenced by water stress. 

 

E) Forests (Tang et al., 2015). Overall, the site-specific evaluation of multi-year mean annual 

GPP estimates indicates that the current MODIS product works more significantly for deciduous 

broadleaf forest (DBF) and mixed forest (MF), less for evergreen needleleaf forest (ENF), and 

least for evergreen broadleaf forest (EBF). Except for the tropical forest, MODIS estimates 

could capture the broad trends of GPP at an 8-day time scale for the other sites. At the 

seasonal time scale, the highest performance was observed in ENF, followed by MF and DBF, 

and the least performance was observed in EBF. Trend analyses also revealed the weak 

performance in EBF and DBF. This study suggested that current MODIS GPP estimates still 

need to improve the quality of different upstream inputs in addition to the algorithm for 

accurately quantifying forest production. 

 

G) Croplands (Xin et al., 2015). Model parameterization of the maximum light use efficiency 

(εGPP*) varies considerably for croplands in agricultural studies at different scales. In this study, 

we evaluate cropland εGPP* in the MODIS Gross Primary Productivity (GPP) model (MOD17) 

using in situ measurements and inventory datasets across the Midwestern US. Our results are 

in line with recent studies and imply that cropland GPP is largely underestimated in the MODIS 

GPP products for the Midwestern US. Our findings indicate that model parameters (primarily 

εGPP*) should be carefully recalibrated for regional studies (Chen et al., 2011) and field-derived 
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εGPP* can be consistently applied to large-scale modeling as we did here for the Midwestern 

US. 

BEAMS (Biosphere model integrating Eco-physiological And Mechanistic approaches using 
Satellite data) 

Source: (Sasai et al., 2005).  

BEAMS runs at the monthly resolution and includes a stress calculation method for the 

LUE concept based on a photosynthesis model and a stomatal formulation. It requires 

both satellite and climate data. The stress scalar is computed using a Photosynthesis 

model and a canopy conductance formulation (Figure 26). BEAMS requires a large 

number of parameters (

 
Figure 27). 

 

GPP = PAR * FPAR * LUEmax * Phs 

 

Phs = P/Pmax, i.e. the actual/maximum photosynthesis ratio. Phs depends on air temperature, air 

relative humidity, soil moisture and CO2 concentrations. All these factors control the 

photosynthesis rate and its departure from optimum conditions.  

 

NPP is computed as 

NPP  = GPP – Ra 

 

Ra is the autotrophic respiration which is estimated using a carbon cycle submodel based on the 

Century model (Parton, 1993). BEAMS simulates mechanistically fluxes of GPP in different 

pools (biomass pools, litter pools and soil organic pools) and is allocated into leaf, stem and root 

components by an empirical equation using climate parameters. In BEAMS, the Ra of leaves, 

stems and roots consists of maintenance and growth respiration. Maintenance respiration is 

modeled in proportion to biomass with temperature dependence (Q10 = 2), while growth 

respiration is modeled in proportion to the potential NPP. 

 

NEP is finally estimated simulating the litter fall and soil decomposition dynamics. Soil 

decomposition is parameterized taking into account the impact of soil moisture dynamics on the 

soil decomposition. Soil moisture dynamics is simulated using a hydrological submodel based 

on the BIOME3 model (Haxeltine and Prentice, 1996).  
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Figure 26. Schematic diagram of the BEAMS model (taken from Sasai et al. (Sasai et al., 

2005)).  

 

 
Figure 27. Input datasets used in BEAMS (taken from Sasai et al. (Sasai et al., 2005)). 

EC-LUE model (Eddy Covariance – Light Use Efficiency model) 

Source: (Yuan et al., 2007).  

 

GPP = PAR * FPAR * LUEmax * min(Ts, Ws) 

[Eq. 14] 

In its original formulation, FAPAR is computed as 

FPAR = 1.24 * NDVI – 0.168 

[Eq. 15] 

 

The EC-LUE model assumes the Liebig’s law, in which LUE is controlled by the minimum value 

of a set of scalar factors acting at the same time. In the EC-LUE model, a temperature-based 

and water-based scalar are considered.  

 

T-scalar. It is computed following the formulation adopted in the Terrestrial Ecosystem Model 

TEM (Raich, 1991), as 

 

𝑇𝑠 =
(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥)

[(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥)] − (𝑇 − 𝑇𝑜𝑝𝑡)2
 

[Eq. 16] 
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Table 12. Temperature thresholds used for computing the T-scalar parameter in the VPM 

model. 

Vegetation type Tmin Topt Tmax Reference 
Evergreen forest 2.5 27.5 47.5 (Raich, 1991) 
Evergreen needleleaf 
forest 

0.0 20.0 40.0 
(Xiao et al., 
2004) 

Temperate forest -2.0 22.5 44.0 (Raich, 1991) 
Tropical forest 

2.0 28.0 48.0 
(Xiao et al., 
2005) 

Xeromorphic forest -1.5 22.5 48.5 (Raich, 1991) 
Arid shrubland -3.0 25.0 48.5 (Raich, 1991) 
Savanna -1.0 30.0 49.5 (Raich, 1991) 
Grassland 1.0 30.0 48.0 (Raich, 1991) 
Maize 

10 28.0 48.0 
(Kalfas et al., 
2011) 

Soybean 
-1.0 28.0 50.0 

(Wagle et al., 
2015) 

 

W-scalar. It is computed as the Evaporative Fraction, as: 

 

𝑊𝑠 = 𝐸𝐹 =
𝐿𝐸

(𝐿𝐸 + 𝐻)
=

1

1 + 𝛽
 

[Eq. 17] 

 

Being, LE the latent heat flux (MJ/m2.day), H the sensible heat flux (MJ/m2.day), and β the 

Bowen ratio (non-dimensional). The evaporative fraction can be computed from satellite data 

(see for example the Wang’s or Venturini’s approaches (Venturini et al., 2008; Wang et al., 

2006)) 

 

 

 

VPM (Vegetation Photosynthesis Model) 

Source:(Xiao et al., 2004).  

VPM estimates GPP using satellite data from MODIS and SPOT-Vegetation sensors. It uses 

EVI to account for APAR and, functions of optimum temperature, water and leaf phenology to 

scale down the maximum LUE. Soil water condition is represented using a Land Surface Water 

Index (LSWI) that is calculated from the near infrared -nir- and shortwave infrared -swir- spectral 

bands.  

 

GPP = PAR * FPARPAV * LUEmax * (Ts * Ws * Ps) 

 

T-scalar. See [Eq. 16].  

 

W-scalar. It is computed as 

 

𝑊𝑠 =
1 + 𝐿𝑆𝑊𝐼

1 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥

 

[Eq. 18] 

𝐿𝑆𝑊𝐼 =
𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟

𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟
 

[Eq. 19] 

where 
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LSWI = Land Surface Water Index,  

LSWImax = maximum value of LSWI reached during the growing season.  

 

Other W-scalar formulations have been proposed by others using LSWI (Gao et al., 2014; Jin et 

al., 2015) or the Vapour Pressure Deficit of the air (Nguy-Robertson et al., 2015). 

 

Phenology scalar, it is computed as: 

𝑃𝑠 = {
𝑚𝑖𝑛 {1,

1 + 𝐿𝑆𝑊𝐼

2
} ,    𝑓𝑜𝑟 𝑑𝑒𝑐𝑖𝑑𝑢𝑜𝑢𝑠

1,                                    𝑓𝑜𝑟 𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
 

[Eq. 20] 

 

VPM does not track accurately the seasonal variability of GPP in tropical evergreen forest 

where old-growth trees remain a dense canopy (phenology is not well characterized) and 

develop deep roots to absorb underground water during the dry season. 

 

VI-based models for estimating GPP  

TG model (Temperature and Greenness model) 

Source: (Sims et al., 2008) 

It is an empirical model based entirely on remote sensing data. It rests on simple relationships 

between Land Surface Temperature (LST) and the Enhanced Vegetation Index (EVI), both 

retrieved from MODIS (Sims et al., 2008). The TG model does not use weather variables nor 

PAR measurements as inputs, becuse Sims et al. (2008) found for Norht America that LST is 

strongly correlated  with PAR and VPD measurements. GPP is then estimated as a product of 

scaled values of LST and EVI. The TG model has been proposed to be used to estimate 

ecosystem productivity when there is no prior knowledge about the site (Wu et al., 2010b).  

 

Overall, the TG model agreed well (R2 = 0.79–0.94) with nine site measurements in North 

America (Sims et al., 2008), and provided substantially better predictions of GPP than did the 

MODIS-GPP product. However, both models resulted in poor predictions for sparse shrub 

habitats where solar angle effects on remote sensing indices were large (Sims et al., 2008).  

 

𝐺𝑃𝑃 = (𝐸𝑉𝐼𝑠𝑐 ∗ 𝐿𝑆𝑇𝑠𝑐) ∗ 𝑚 

[Eq. 21] 

being, 

𝐸𝑉𝐼𝑠𝑐 = 𝐸𝑉𝐼 − 0.1 

[Eq. 22] 

𝐿𝑆𝑇𝑠𝑐 = 𝑚𝑖𝑛 [(
𝐿𝑆𝑇

30
) ; 2.5 − 0.05 ∗ 𝐿𝑆𝑇] 

[Eq. 23] 

 

The slope m is computed from Eddy-covariance GPP measurements and EVIsc*LSTsc values, 

and varies site-by-site. Sims et al. (2008) found a close correlation with the annual mean of 

nightime LST values, probably because nighttime values represent a better estimate of the 

baseline temperature that regulates plant phenology.  

 

m = a – b * LSTan 

 

being LSTan the annual mean nighttime LST. The a-b pair values optimized for deciduous and evergreen 

sites were 2.49-0.074, and 2.10-0.0625 respectively. 
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Figure 28. Actual GPP measurements as a function of Land Surface Temperature (LST) in 

different vegetation-type systems (taken from Sims et al. (2008)).  

GR model (Greenness and Radiation Model) 

Sources: (Gitelson et al., 2006, 2012; Peng et al., 2011; Wu et al., 2011).  

Peng et al. (Peng et al., 2011) provide the theoretical background behind the GR model, and 

test its performance using different satellite-based vegetation indices extracted from ground-

based reflectance measurments in maize (SR, NDVI, EVI2, WDRVI, Clgreen, Clred-edge). The 

chlorophyll indices and the simple ratio (SR) were the best predictors of GPP. 

 

GPP = VIChl * PAR  

[Eq. 24] 

In which, VIChl is a function of a vegetation index. 

 

According to (Wu et al., 2011), 

GPPmonth = m * (EVI * PAR) 

[Eq. 25] 

where 

m = f(EVImax – EVImin, T_sd) 

VI model (Vegetation Index Model) 

Source: (Wu et al., 2010c). 

It is based on a VI*VI approach. GPP is estimated from ground PAR measurements and the 

combination of two vegetation indices (i.e. PAR * Vegetation index * Vegetation index). In this 

model, vegetation indices are assumed to be well surrogates of FPAR and actual LUE values.  

 

GPP  = PAR * FPAR(VI) * LUE(VI) 

[Eq. 26] 

 

Among the different tests performed by (Wu et al., 2010c), the PAR*EVI*EVI combination 

resulted in the best configuration for explaining GPP in maize (Wu et al., 2010c), wheat (Wu et 

al., 2010b) and deciduous forests (Wu et al., 2010a). However, the application of the VI model 

may be problematic under drought conditions because in those cases VIs usually fail in 

explaining light use efficiency values. 

 

TGR (Temperature and Greenness Rectangle) 

Source: See Yang et al. (Yang et al., 2013) for a detailed description. 

 



 

58  

MOD-PCM  

Source: (Gao et al., 2014) 

 

The general equation of PEMs (see [Eq. 1]) can be rewritten into: 

GPP = (LUEmax * pPARmax) * (FPAR * pPARt) * f = PCmax * PCt * f  

[Eq. 27] 

 

where, PCmax represents the maximum photosynthetic capacity, PCt is a down-regulated factor 

that varies with the absorbed PAR, which can be used to represent the variability of 

photosynthetic capacity under different growth stages, and f is a downward regulating factor for 

LUEmax ranging from 0 to 1 under various environmental limiting conditions. The term pPAR 

represent the maximum values of incoming PAR that may occur when concentrations of 

atmospheric aerosols and gases are minimal. 

 

This model states that the photosynthetic capacity depends on the amount of photosynthetic 

apparatus within a plant community and can be directly expressed by the total content of 

canopy chlorophyll which can be estimated from satellite-based vegetation indices as the EVI. 

Additionally, soil moisture is considered as the primary limiting factor of GPP, so [Eq. 27] is 

finally converted into: 

 

GPP = PCmax * EVIs * Ws  

[Eq. 28] 

 

where, EVIs represents the variability of PC, and Ws indicates the moisture conditions that 

downward regulate PC (it is computed using a LWSI-based approach, see .  

 
 

 

. 


