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Executive summary 
 

 

Monitoring Water Productivity is set as a target for Sustainable Development Goal 6 (“ensure 

availability and sustainable management of water and sanitation for all”). This report summaries 

a demonstration case for the ThirdEye area in southern Mozambique on methods to monitor 

Water Productivity. 

 

This demonstration case is financially supported by: 

• Securing Water for Food (USAID) 

• Brigaid (EU-H2020) 

• Mkb-innovatiestimulering Regio en Topsectoren (MIT) 

• Core funds FutureWater 

 

Interactions, inspiration, and/or information obtained from various people have been highly 

appreciated: 

• Mr. Job Kleijn (Ministry of Foreign Affairs, The Netherlands) 

• Mrs. Antje van Driel (NL Embassy, Maputo)  

• Mr. Jan Vlaar (NL Embassy, Kigali) 

• Mr. Ku McMahan (USAID) 

• Mr. Wim Bastiaanssen (UNESCO-IHE) 

• Mr. Jippe Hoogeveen (FAO) 

• Mr. Ebel Smidt (W4GR) 

• Mr. Rob Nieuwenhuis (W4GR) 

• Mr. Maurits Voogt (eLEAF) 

• Mr. Chris Perry (IWMI) 
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1 Introduction 

1.1 Background 

In the context of the Sustainable Development Goal 6 (“ensure availability and sustainable 

management of water and sanitation for all”) the Government of the Netherlands has adopted 

the monitoring of target 6.4 (“change in water use efficiency over time”). To explore how this can 

be put in practice, a demonstration case has been setup focusing on measuring Water 

Productivity (WP) for a project area in southern Mozambique.  

 

The demonstration area is part of FutureWater’s ThirdEye project in Mozambique that aims at 

supporting farmers’ decision making using Flying Sensors (drones). Two scale levels are used 

for this demonstration: 

• project area of 700 ha 

• individual fields of on average 0.15 ha 

 

Water Productivity information was obtained from:  

• Level_01: based on WaPOR (FAO’s Water Productivity database) 

• Level_02: based on satellite MODIS 

• Level_03: based on satellite Landsat 

• Level_04: based on Flying Sensors (drones) 

 

The overall objective of this demonstration case can be summarized as: “to demonstrate 

strengths and weaknesses of various Water Productivity information products”. 
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2 Methodology and Data 

2.1 Project Area 

The ThirdEye project supports farmers in Mozambique with their decision making in water and 

crop management by setting up a network of Flying Sensors (drones) operators. These 

operators are equipped with Flying Sensors and tools to analyze the obtained imagery. This 

project is unique as it is a first demonstration in a developing country to supply information on a 

regular base using Flying Sensors. At the moment, more than ten Flying Sensors and operators 

are supporting around 8000 farmers in southern Mozambique. 

 

Details on the ThirdEye project can be obtained from http://www.thirdeyewater.com/ and 

http://www.futurewater.eu/. 

 

The ThirdEye project is undertaken in various regions in southern Mozambique. For this 

particular Water Productivity (WP) monitoring demonstration focus will be on the Xai-Xai area 

(Figure 1). Two levels of WP monitoring are considered: (i) sub-project level and (ii) field level. 

At the sub-project level, an area receiving ThirdEye services of 700 ha is compared to a control 

area not receiving ThirdEye advice. At the second level, individual maize fields of on average 

area of 0.15 ha are monitored (Figure 2).  

 

Cropping pattern varies substantially within the Xai-Xai area and is also influenced by prevailing 

weather conditions and availability of water for irrigation. For this ThirdEye demonstration area 

maize is the main crop with growing season of planting date around 20-May and harvesting at 

1-September. A second growing season runs from around 20-September to 31-December. 

 

 
Figure 1. ThirdEye study area in the Xai-Xai region in southern Mozambique. 
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Figure 2. The two levels of Water Productivity analysis: sub-project level (left) and field 

level (right). 

 

 

2.2 Water Productivity Data 

Water Productivity information was obtained from four different sources:  

• Level_01: based on WaPOR (FAO’s Water Productivity database) 

• Level_02: based on MODIS sensor on board of Aqua and Terra satellites (NASA) 

• Level_02: based on Landsat satellites (NASA) 

• Level_04: based on Flying Sensors (drones) 

 

Summary of these data are shown in Table 1. Details on the listed data sources are described 

in the Appendix. 

 

Table 1. Summary of the four Water Productivity monitoring date sets used. 

Name Source Spatial 
Resolution 

Spatial 
Extent 

Temporal 
Resolution 

Temporal 
Extent 

WaPOR* FAO 250 m Africa, Near 
East 

Annual** 2010 – 
2016 

MODIS NASA 250 m Global Daily 1999 – 
present 

LANDSAT NASA 30 m Global 14-days 1972 - 
present 

Flying 
Sensors 

HiView 0.1 m Project 
specific 

Project 
specific 

Project 
specific 

* Level 1 product; level 2 and 3 are under development 
** Lower level data (e.g. biomass, evapotranspiration) available at 10-days interval 
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3 Results 

3.1 Water Productivity monitoring based on FAO-WaPOR 

The WaPOR Water Productivity data can be obtained directly from the WaPOR website and is 

available for Africa and Near East. Typical output at country level is shown in Figure 3. WP 

values vary substantially over the country, with high values in the northern part of the country. 

Differences between years can also be substantially mainly as function of precipitation rates 

(Figure 4). 

 

 
Figure 3. Average annual water productivity (kg/m3) for the years 2010-2016 based on the 

FAO-WaPOR database for the entire Mozambique. 

 

  
Figure 4. Annual water productivity (kg/m3) for the years 2012 (left) and 2016 (right) based 

on the FAO-WaPOR database. 
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For the ThirdEye demonstration case 2016 WP maps based on WaPOR are plotted in Figure 5 

and Figure 6. At project level the spatial resolution provides a reasonable level of detail (Figure 

5), but at field scale level insufficient (Figure 6). The WaPOR data include biomass and not 

actual harvestable yield. WaPOR WP information is only readily available over an entire year, 

and multiple cropping seasons, non-agricultural vegetation or bare periods are all lumped 

together. Post-processing is required to derive WP for a specific period of interest. The big 

advantage of the WaPOR database is that it is freely available and based on the most 

advanced algorithms to calculate WP.  

 

 
Figure 5. Annual water productivity (kg/m3) for the year 2016 based on the FAO-WaPOR 

database for the ThirdEye and Control site. 

 

 
Figure 6. Annual water productivity (kg/m3) for the year 2016 based on the FAO-WaPOR 

database for the demonstration fields. 
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The summarized WP results based on WaPOR are plotted in Figure 7. Since the start of the 

ThirdEye project in 2015, WP values of the ThirdEye area are higher compared to the Control 

site. At the same time a decline compared to previous years can be seen, mainly attributed to 

the poor rainfall conditions in the last years. Figure 8 shows the underlying information for the 

WP calculations (biomass and actual evapotranspiration), indicating that less water has been 

consumed by the ThirdEye area compared to the Control. 

 

 
Figure 7. Average annual water productivity (kg/m3) for the years 2010-2016 based on the 

FAO-WaPOR database. 

 

 

 
Figure 8. Components of the Water Productivity: biomass (top) and actual evapo-

transpiration (bottom). Data based on the FAO-WaPOR database. 
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3.2 Water Productivity Based on MODIS 

To overcome the restrictions in the WaPOR database (entire year, only biomass), Google Earth 

Engine has been used to calculate WP using the MODIS satellite information. Results can be 

seen in Figure 9 and Figure 10. Main differences with the WaPOR data are that now actual crop 

yields are calculated, and only the corresponding growing season is considered. Results show 

that the ThirdEye service has a positive impact in terms of Water Productivity.  

 

 
Figure 9. Growing season water productivity (kg/m3) for the years 2010-2016 based on 

the MODIS satellite data. 

 

 

 
Figure 10. Components of the Water Productivity: yield (top) and actual evapo-

transpiration (bottom) during the growing season. Data based on MODIS satellite data. 
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3.3 Water Productivity Based on LANDSAT satellite 

To overcome spatial resolution problems of WaPOR and MODIS (both 250 x 250 m, i.e. 6.25 ha 

per pixel) the LANDSAT satellite has been used to calculate WP. Figure 11 and Figure 12 

demonstrate the high spatial resolution, making it almost applicable for the small fields (average 

0.15 ha) in the ThirdEye area. 

 

 
Figure 11. Growing season Water Productivity (kg/m3) for the year 2016 based on the 

LANDSAT satellite for the ThirdEye and Control site. 

 

 
Figure 12. Growing season Water Productivity (kg/m3) for the year 2016 based on the 

LANDSAT satellite for the maize fields. 
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The summarized WP results based on LANDSAT are plotted in Figure 13. Note that data are 

based on LANDSAT 8 which was launched in 2013. Other LANDSAT satellites can be used to 

go further back in time. Results show that only in 2016, when ThirdEye was fully operational, 

WP was higher compared to Control. Differences with the WaPOR and MODIS results are most 

likely due to ‘mixed pixels’ (=more crops/vegetation types) effect of WaPOR and MODIS.  

 

 
Figure 13. Growing season water productivity (kg/m3) for the years 2010-2016 based on 

the LANDSAT satellite data. 

 

 

 
Figure 14. Components of the Water Productivity: yield (top) and actual evapo-

transpiration (bottom). Data based on LANDSAT satellite data. 
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3.4 Water Productivity Based on Flying Sensors 

Given spatial and temporal restrictions of the previous WP monitoring methods, data of the 

Flying Sensors (drones) were used to evaluate WP at local scales. Figure 15 and Figure 16 

demonstrate the high level of detail that can be obtained. Moreover, results of Flying Sensors 

are directly available after growing season, or even during the growing season. Although Flying 

Sensor data were mainly used to support farmers in their decision making, data are also useful 

to monitor WP. Results show that there exis a huge variation in WP between and within fields. 

 

 
Figure 15. Growing season Water Productivity (kg/m3) for the year 2017 based on the 

Flying Sensor information for the maize fields. White fields are bare. 

 

 
Figure 16. Detail ofFigure 15. 
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4 Conclusions and Recommendations 
 

The ThirdEye services based on Flying Sensors (drones) have a positive impact on Water 

Productivity. Based on previous analyses, farmers indicated that the information was mainly 

used for: early crop stress detection by the near-infrared information; better insight of within-field 

variation; comparing farmers’ practices in the same area; and supporting decisions on irrigation, 

fertilizer, and harvest timing. 

 

The four types of information for monitoring Water Productivity were demonstrated by looking at 

sub-project level (700 ha) and field level (0.15 ha). The four WP monitoring tools show 

consistent results, although distinct variation in the type of monitoring and its applicability 

became evident. Not one of the methods outperforms the others, but each has its own merits. 

Table 2 summarizes the main strengths and weaknesses. This table can be used to make a 

sound decision on which Water Productivity monitoring method fits the requirement for a 

specific application. 

 

Table 2. Strengths and weaknesses of the four Water Productivity monitoring date sets 

used in this demonstration case. 

Method Strengths Weaknesses 

FAO-WaPOR* • Most advanced and rigorous 
calculation algorithms 

• Easy accessible 

• Low level of expertise needed 

• Entire Africa and Near East 
 

• Based on biomass (not yield) 

• Available for entire year only 

• Spatial resolution (250 m) 

MODIS satellite • Based on yield 

• Growing season specific 

• Simplified calculation algorithms 

• Locally adjustable calculation 
algorithms 

• Applicable world-wide 
 

• Moderate level of expertise level 
needed 

• Spatial resolution (250 m) 
 

LANDSAT 
satellite 

• Based on yield 

• Growing season specific 

• Simplified calculation algorithms 

• Locally adjustable calculation 
algorithms 

• Applicable world-wide 

• Spatial resolution (30 m) 
 

• Moderate level of expertise level 
needed 

• Cloud sensitive 
 

Flying Sensors 
(drones) 

• Based on yield 

• Growing season specific 

• Simplified calculation algorithms 

• Locally adjustable calculation 
algorithms 

• Applicable world-wide 

• Spatial resolution (0.1 m) 
 

• High level of expertise level 
needed 

• For smaller areas 

• Costs 
 

* Level 1 product; level 2 and 3 are under development 

 

In order to achieve true WP improvement and work towards SDG 6.4, monitoring of WP is an 

important first step. In addition to monitoring, it is crucial to understand and anticipate on the 

long-term impacts of different water and farm management options on local and regional WP. 

This would support an understanding of why certain interventions are effective within a specific 
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agricultural, environmental and climatological context. Coupling of remotely sensed information, 

such as demonstrated in this report, to agro-hydrological simulation models is an effective 

method to quantify WP under different scenarios. 
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Appendix: Datasets 

WaPOR 

FAO (in collaboration with eLeaf and UNESCO-IHE and support from the Netherlands 

Government) is developing a publicly accessible near real time database using satellite data 

that allows monitoring of agricultural water productivity. 

 

The annual Gross Biomass Water Productivity expresses the quantity of output (above ground 

biomass production) in relation to the total volume of water consumed in the year (actual 

evapotranspiration). By relating biomass production to total evapotranspiration (sum of soil 

evaporation and canopy transpiration), this indicator provides insights on the impact of 

vegetation development on consumptive water use and thus on water balance in a given 

domain. When the focus is on monitoring performance of irrigated agriculture in relation to water 

consumption, it is more appropriate to use transpiration alone as a denominator, as a measure 

of water beneficially consumed by the plant. This latter indicator, for which we use the term ‘net 

water productivity’, provides useful information on how effectively vegetation (and particularly 

crops) uses water to develop its biomass (and thus yield). 

 

Unit  

kgDM/m³/year is the ratio of kg of dry matter per cubic meter of water consumed. 

Spatial resolution  

250m (0.00223 degree) 

Spatial extent  

Africa and Near East 

Temporal resolution  

Annual 

Temporal extent  

from 2010 to date 

Methodology  

The calculation of gross biomass water productivity is as follows: WPb_g=AGBP/ETa 

Where AGBP is annual Above Ground Biomass Production in kgDM/ha and ETa is 

annual Actual EvapoTranspiration in m³/ha. The following data is used for calculating 

WPb_g - Annual AGBP - Annual ETa 

 

 

MODIS Combined 16-Day NDVI 

The Normalized Difference Vegetation Index is generated from the Near-IR and Red bands of 

each scene as (NIR - Red) / (NIR + Red), and ranges in value from -1.0 to 1.0. This product is 

generated from the MCD43A4 MODIS surface reflectance composites. 

 

Data availability (time) 

Feb 18, 2000 - Mar 14, 2017 

Provider 

Google 

ImageCollection ID 

MODIS/MCD43A4_NDVI 
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Landsat 8 8-Day NDVI Composite 

These Landsat 8 composites are made from Level L1T orthorectified scenes, using the 

computed top-of-atmosphere (TOA) reflectance. See Chander et al. (2009) for details on the 

TOA computation. The Normalized Difference Vegetation Index is generated from the Near-IR 

and Red bands of each scene as (NIR - Red) / (NIR + Red), and ranges in value from -1.0 to 

1.0. 

 

These composites are created from all the scenes in each 8-day period beginning from the first 

day of the year and continuing to the 360th day of the year. The last composite of the year, 

beginning on day 361, will overlap the first composite of the following year by 3 days. All the 

images from each 8-day period are included in the composite, with the most recent pixel as the 

composite value. 

 

Data availability (time) 

Apr 7, 2013 - May 1, 2017 

Provider 

Google 

ImageCollection ID 

LANDSAT/LC8_L1T_8DAY_NDVI 

 

 

Flying Sensors 

A Flying Sensor consists of two major components, a flying platform and one or more sensors. 

Flying platforms can be either multi-copter or fixed wing. The flight of Flying Sensors may 

operate with various degrees of autonomy: either under remote control by a human operator, or 

fully or intermittently autonomously, by onboard computers.  

Two types of platforms are being employed: multi-copters and fixed wing airplanes (Figure 17). 

Both aerial platforms have several advantages and limitations. Multi-copters were first designed 

as universal aerial platforms mainly dedicated to aerial film/photography with great stability and 

maneuverability and no take-off or landing runway requirements. Usually, multi-copters are built 

out of light, resistant materials (such as carbon fiber, aluminum, glass fiber and kevlar) 

developed with couples of brushless motors running clock- wise and counter-clockwise, 

respectively (4, 6 or 8 engines depending on the payload requirement). The fixed-wing aircrafts 

offer simpler flight systems and longer durations, increasing their capacity to cover wider areas. 

However, they are also not able to hover and require more space for launching and landing.  
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Figure 17: Typical example of a multi-copter (left) and fixed-wing (right) platform. 

 

Sensors are available in a wide range of types, accuracies, prices, configuration etc. The most 

important differentiation is passive versus active sensing. Passive sensing is based on the sun 

as a source of energy or radiation. The sun's energy is either reflected, as it is for visible 

wavelengths, or absorbed and then re-emitted, as it is for thermal infrared wavelengths. Sensor 

systems which measure energy that is naturally available are called passive sensors. Passive 

sensors can only be used to detect energy when the naturally occurring energy is available. For 

all reflected energy, this can only take place during the time when the sun is illuminating the 

Earth. There is no reflected energy available from the sun at night. Energy that is naturally 

emitted (such as thermal infrared) can be detected day or night, as long as the amount of 

energy is large enough to be recorded. 

Active sensors, on the other hand, provide their own energy source for illumination. The sensor 

emits radiation which is directed toward the target to be investigated. The radiation reflected 

from that target is detected and measured by the sensor. Advantages of active sensors include 

the ability to obtain measurements anytime, regardless of the time of day or season. Active 

sensors can be used for examining wavelengths that are not sufficiently provided by the sun, 

such as microwaves, or to better control the way a target is illuminated. However, active 

systems require the generation of a fairly large amount of energy to adequately illuminate 

targets. Some examples of active sensors are a laser fluorosensor and a synthetic aperture 

radar (SAR). 

Flying Sensors are normally equipped only with passive sensors as the energy need and the 

weight of active sensors make it impossible to attach them to a platform.  

The physics behind sensing is based on the electromagnetic (EM) spectrum which can be 

considered as radiation (energy) at various wavelengths (Figure 18). Only part of the EM is 

visible by the human eye from about 390 to 700 nm. 

 
Figure 18: The electromagnetic spectrum with its names and wavelengths.  
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Figure 19: Some typical examples of sensors with responses in different wavelength: RGB 

(top), NIR (middle) and Red Edge (bottom). Source: SenseFly 

 

 

 
Figure 20: Solar irradiance and absorbance of leaves in various wavelengths. Source: 

Siegmund, Menz 2005. 
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Appendix: Calculation Algorithms 
 

A large number of algorithms to calculate biomass, yield and evapotranspiration based on 

satellite data are described in the literature. Each of these methods has its own merits, 

strengths, weaknesses and application area. For this project two generically applicable 

approaches were used to calculate yield and actual evapotranspiration based on NDVI. 

 

 

Definition Water Productivity 

Water Productivity (WP) in general is defined as the quantity of output per quantity of water 

consumed. This can relate to any production process that uses water (e.g. cars, trees, nature).   

More specifically in agriculture WP is defined as output of crop per unit of water consumed and 

is calculated by: 

𝑊𝑃 =
𝑌

𝐸𝑇𝑎𝑐𝑡
  

where 

 WP = water productivity (kg∙m-3) 

 Y = crop yield (kg∙ha-1) 

 ETact = actual evapotranspiration (m3∙ha-1) 

 

In order to compare different crops, the numerator can be replaced by a monetary unit resulting 

in WP with unit (e.g. US$∙m-3).  

 

Higher WP can be obtained in two ways: the same production from less water resources, or a 

higher production from the same water resources. 

     

Therefore, in order to calculate WP, two quantities should be obtained: crop yield and actual 

water consumed.  

 

 

 

Obtaining yield 

Yield can be obtained directly based on measuring at time of harvesting. Although straight 

forward and very accurate, this type of data provides yield aggregated over a field (or a smaller 

sampling area). In order to obtain WP at smaller scales information from satellites or Flying 

Sensors (drones) can be used. There are several methods known to estimate yield based on 

remote sensing, all based on the concept of obtaining the biomass production and the so-called 

harvest index. Biomass can be estimated using complex algorithms or more straightforward 

relations with vegetation indices: 

 

𝑌 = 𝐵 ∙ 𝐻𝐼  
 

𝐵 = 𝑎 ∙ 𝑒𝑏∙𝑁𝐷𝑉𝐼   
 

where 

 Y = crop yield (kg∙ha-1) 

 B = biomass (kg∙ha-1) 

 HI = harvest index (-) 
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 a = regression coefficient (-); 463  

b = regression coefficient (-); 4.48  

 

 
Figure 21. Relation between NDVI and biomass. Source: Jones et al., 2007 

 

 

 

Obtaining ETact 

Measurements of actual evapotranspiration can be done by a wide range of methods such: as 

soil water balance, eddy-correlation, sap-flow, lysimeters, etc. For a brief overview see e.g. 

http://swhydro.arizona.edu/archive/V7_N1/feature3.pdf.  

 

The use of remote sensing to estimate ETact is presently being developed along two 

approaches: (i) land surface energy balance (EB) methods, which include applications of the 

Penman–Monteith (P–M) equation, using visible and near infrared spectral bands and ancillary 

meteorological data; (ii) a reflectance-based vegetation index (VI) approach that relies on the 

ability of vegetation indices (VIs), derived from surface reflectance data to trace the crop growth 

and estimate the basal crop coefficient (Kcb). This second method determines spatially 

distributed values of Kcb that capture field-specific crop development and are used to adjust 

daily reference ET (ET0) estimated from local weather station data or climate data sets derived 

ones. The main advantage of the VI-based methods is that satellite images in the reflective 

bands of the spectrum are more readily available than the thermal band data, and generally at 

higher spatial resolution. (Source: Minacapilli, 2016). 

 

There is a strong correlation between NDVI and ETact (Glenn et al., 2008). Different correlation 

equations were found, depending on crop and physical setting. In general, the best estimate 

can be found by developing site-specific correlation factors. A robust and generally applicable 

approach can be followed by using the concept of relative evapotranspiration (ETact / ETref) and 

by using the adjusted NDVI* (Groeneveld et al., 2007): 

 

𝐸𝑇𝑎𝑐𝑡 = 𝐾𝑎𝑐𝑡 ∙ 𝐸𝑇𝑟𝑒𝑓   

 

𝐾𝑎𝑐𝑡 = 𝑎 ∙ 𝑁𝐷𝑉𝐼∗ + 𝑏 
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𝑁𝐷𝑉𝐼∗ =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼0

𝑁𝐷𝑉𝐼𝑆−𝑁𝐷𝑉𝐼0
  

where 

 ETact = actual evapotranspiration (mm) 

Kact = actual crop coefficient that considers effects of moisture stress reduction 

coefficient, 0 to 1 (-) 

ETref = reference evapotranspiration (mm) 

a = regression coefficient (-); 0.925  

b = regression coefficient (-); 0.058  

NDVI = Normalized Difference Vegetation Index (-) 

NDVI* = Adjusted NDVI (-) 

NDVI0 = NDVI with lowest value in imagery (-) 

NDVIS = NDVI with highest value in imagery (-) 

 

  

 
Figure 22. Relation between Kact (ETact / ETref) and NDVI*. Source: Groeneveld et al., 2007 

 


