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Executive summary 
 

Energy is one of the major drivers of changes in the HKH region. The region has a high 

hydropower potential due to abundance of water in conjunction with verticality of landscape. 

However, the climate, cryosphere and hydrology of the Hindu Kush Himalaya (HKH) region 

have been changing in the past and will continue to change in the future, posing a risk to 

hydropower development in the future. It has become imperative for hydropower developers to 

have a good understanding about the changes in the hydrological cycle and its uncertainty and 

how the changes might affect the hydropower production in the region. Also, changing 

probabilities and magnitudes of extreme events can put additional risk on hydropower 

infrastructures. For Statkraft, being a leading company in hydropower internationally, an 

understanding of future changes to the hydrological cycle and its uncertainty is crucial for 

effective business planning. Additionally, changing probabilities and magnitudes of extreme 

events can put additional risk on infrastructure, and trigger natural hazards such as e.g. floods 

and landslides. To match the growing demand of electricity in Nepal and the region, Statkraft is 

interested to develop hydropower facilities in the Tamakoshi River Basin in Nepal.  

 

Therefore, the objective of this study is to improve the understanding of the expected impacts of 

climate change on water availability in the context of potential hydropower development in the 

Tamakoshi River Basin. The approach followed in this study to achieve this objective can be 

summarized in: 

 Selection and bias-correction of reference climate data set, representing the baseline 

climate (1981-2010); 

 Selection and statistical downscaling of 4 RCP4.5 and 4 RCP8.5 GCMs, representing 

an ensemble of future climates (2016-2075); 

 Calibration of a spatially distributed hydrological model to match the observed glacier 

mass balance and river discharge; 

 Forcing the hydrological model with the baseline and future climate data to obtain time-

series of daily discharge for the hydropower plant locations Khimti and Tamakoshi-III; 

 Analyses of changes in precipitation, temperature, glacier melt, and river discharge 

between the future and baseline period; 

 Using the simulated time-series of river discharge as input in the Water Evaluation And 

Planning (WEAP) model to assess the hydropower generation potential for the current 

and future climate for the plants Tamakoshi-III and Khimti. Scenario analysis, using 

different design criteria for reservoir storage capacity and maximum turbine flow, 

provided the hydropotential for the future under different design criteria. 

 

Based on the results of this study it can be concluded that we can expect an overall increase in 

basin average precipitation and temperature, and a gradual decrease in glacier melt. Since the 

change in flow due to the increase in precipitation is larger than the decrease in glacier melt, 

and the contribution of glacier melt to the total river discharge in this basin is minor, an increase 

in river discharge is projected for the future.  

 

For Tamakoshi-III we may expect average annual discharges varying between 125-225 m3/s in 

the future (currently 130 m3/s on average), which is mainly contributed by the increase in 

rainfall, especially during the monsoon season. The current monthly average discharge at 

Tamakoshi-III peaks at 400 m3/s during August, whilst this may increase towards 450-500 m3/s 

for 2016-2045, and 450-550 m3/s for 2046-2075. Extreme analyses showed that the maximum 

annual discharge with a return period of once every 10 years for the baseline climate is approx. 

650 m3/s for Tamakoshi-III. With the same probability (1/10 year), this extreme discharge 
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increases to 1000-1100 m3/s for 2016-2045, and 1200-1300 m3/s for 2046-2075. The current 

maximum annual discharge with 100-year return period is approx. 700 m3/s. As a result of 

climate change, this maximum annual discharge with 100-year return period may increase 

towards 1400 m3/s for 2016-2045, and to 1600 m3/s for 2046-2045. 

 

For Khimti the average river discharge is approx. 23 m3/s for the baseline climate, and this may 

increase towards 30-35 m3/s in the future. This is only contributed by rainfall, since no glaciers 

are to be found upstream of Khimti. Monthly discharge at Khimti peaks during August with an 

average monthly discharge of 67 m3/s for the baseline climate. This likely increases towards 65-

85 m3/s during 2016-2045, and 70-95 m3/s during 2046-2075. Extreme analyses showed that 

the maximum annual discharge with a return period of once every 10 years for the baseline 

climate is approx. 110 m3/s for Khimti. With the same probability (1/10 year), this extreme 

discharge increases to 150-160 m3/s for 2016-2045, and 170-190 m3/s for 2046-2075. The 

current maximum annual discharge with 100-year return period is approx. 130 m3/s. The 

maximum annual discharge with 100-year return period may increase towards 190-200 m3/s for 

2016-2045, and to 240-330 m3/s for 2046-2075. 

 

As a result of the expected increase in river discharge, higher hydropower production can be 

expected in the future. Under current design criteria, the total energy production from both 

plants is expected to increase from 2700-2800 GWh/y to 2750-3050 GWh/y on average. For 

Tamakoshi-III only, an increase is expected from 2350-2400 GWh/y to 2370-2600 GWh/y. The 

increase for Khimti is from 370-400 GWh/y to 390-430 GWh/y. While the increase in discharge 

is a positive development for hydropower generation, the increase in total flow and extremes 

may have a negative impact on floods, the vulnerability of infrastructure, erosion, and the 

sedimentation of reservoirs. Two types of scenarios were evaluated: (i) different reservoir 

capacities for Tamakoshi-III, and (ii) different maximal turbine flows for Tamakoshi-III and 

Khimti. With an increase in reservoir capacity of 2 to 5 times, hydropower generation will 

increase by about 5% to 22% for Tamakoshi-III. Likewise, reducing the storage capacity by 50% 

would reduce hydropower projection by about 8%. For the different maximum turbine flow 

scenarios, it can be concluded that for Tamakoshi-III the maximum turbine flow design capacity 

is well-planned, as an increase will have only a minor impact on hydropower generation. 

However, for Khimti there seems to be a real potential to re-evaluate the maximum flow design 

capacity; doubling the capacity will generate about 55% more hydropower. These projected 

potential hydropower productions are associated with certain uncertainties. Obviously, the most 

important uncertainty is the projected flows in the rivers at the potential hydropower plant 

locations. This is handled by considering a broad range of climate projections. Another 

important source of uncertainty is the actual configuration of the plant itself with factors as 

maximum turbine flow and generating efficiencies. Finally, operations and maintenance of the 

actual plant once constructed are as usual an important uncertainty factor in terms of 

hydropower production.   
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1 Introduction 
 

The climate, cryosphere and hydrology of the Hindu Kush Himalaya (HKH) region have been 

changing in the past and will continue to change in the future [Immerzeel et al., 2010; Lutz and 

Immerzeel, 2013; Lutz et al., 2016a]. Warming of the climate system is unequivocal; the 

atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level 

has risen as a result of the increase in concentrations of greenhouse gases. The Himalayan 

region has the third largest stores of ice and snow in the world, after Antarctica and the Arctic 

and might be exceptionally vulnerable due to a warming climate. There is a good agreement 

among Global Climate Models (GCM) on future temperature trends in the region, but projections 

of future precipitation patterns differ widely and detailed impact studies are largely lacking. 

Consequently, the demand for increased knowledge about future climate change is still high. A 

main focus has been given to temperature increases and changes to the hydrological cycle with 

the tendency that wetter regions mainly will become wetter and drier regions will become drier. 

Recent scientific knowledge supported by observed weather events show that extremes related 

to hydrological changes can be substantial though and the geographical and time-wise 

resolution of predicted changes is still low in many areas.  

 

Energy is one of the major drivers of changes in the HKH region. The region has a high 

hydropower potential due to abundance of water in conjunction with verticality of landscape 

[Shrestha et al., 2016]. However, the changing climate and hydrological regime might pose risk 

to hydropower development in the future. It has become imperative for hydropower developers 

to have a good understanding about the changes in the hydrological cycle and its uncertainty 

and how the changes might affect the hydropower production in the region. Also, changing 

probabilities and magnitudes of extreme events can put additional risk on hydropower 

infrastructures. 

 

 
Figure 1: The Tamakoshi river (source: http://www.nepalenergyforum.com).  

 

For Statkraft1, as the largest generator of renewable energy in Europe, and a leading company 

in hydropower internationally, an understanding of future changes to the hydrological cycle and 

its uncertainty is crucial for effective business planning. Investment decisions regarding the 

business strategy for the next 50 years depend on reliable predictions of climate change 

impacts on streamflow and thereby hydropower development over that period.  In addition, 

changing probabilities and magnitudes of extreme events can put additional risk on 

infrastructure (dams and hydropower plants) or on other crucial infrastructure (roads and 

transmission lines). Statkraft’s intention to develop hydropower in the region makes it necessary 

                                                     
1 http://www.statkraft.com/ 
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to assess short, medium and long-term impacts, risks and opportunities resulting from climate 

change, to ensure sustainable development of renewable energy in general and hydropower 

development for all stakeholders. To match the growing demand of electricity in Nepal [NEA, 

2015] and the region, Statkraft is interested to develop hydropower facilities in the Tamakoshi 

River Basin in Nepal. For this reason, Statkraft is interested in the impact of climate change on 

the potential of hydropower development in the Tamakoshi River Basin, particularly focusing on 

changes in seasonal variations and extreme events. 

 

The overall objective of this study is therefore to improve the understanding of the expected 

impacts of climate change on water availability in the context of potential hydropower 

development in the Tamakoshi River Basin. Specifically, this study aims to: 

 Understand current baseline hydrological regime of the Tamakoshi River Basin; 

 Develop detailed projections for the 21st century, including factors relevant for 

hydropower development; 

 Understand the future hydrology and its potential impact on hydropower potential; 

 Evaluate the potential for hydropower under a changing climate using different dam and 

reservoir design criteria. 

 

For this study it was decided to evaluate the impact of climate change on the hydropower 

development for the Tamakoshi-III and Khimti hydropower plants only. The methodology, as 

applied in this study, can therefore be repeated to evaluate the hydropower potential for other 

hydropower plants in this basin, or region. 

 

The methodology applied in this study to evaluate the hydropower potential under a changing 

climate is subsequently described in this report. Chapter 2 provides an overview of the 

topography and orography of the Tamakoshi River Basin, whereas ongoing hydropower 

initiatives are described in Chapter 3. Trends in snow cover for the current climate are 

described in Chapter 4. The methodology followed in this study are described in Chapter 5. The 

selection of a baseline reference climate dataset, and bias-correction thereof is described in 

Chapter 6. The hydropower potential for the future climate is compared with respect to this 

baseline climate. The next chapter provides the reader with some background information on 

General Circulation Models (GCMs), Representative Concentration Pathways (RCPs), the 

selection of eight GCMs to be used as ensemble to assess the future climate, and the statistical 

downscaling thereof. Chapter 8 introduces the Spatial Processes in HYdrology (SPHY) model 

[Terink et al., 2015], explains the improved glacier module, and describes the model calibration 

for the glaciers’ mass balance and river discharge. In Chapter 9 the impact of climate change is 

described, with a specific focus on changes in precipitation and temperature patterns, glacier 

melt, and the impact of those changes on the river discharge. The impact on the river discharge 

is analyzed annually and monthly for the entire river basin, as well as for Tamakoshi-III and 

Khimiti separately. Changes in extreme river discharge are assessed as well. The impacts of 

climate change on the potential for hydropower for Tamakoshi-III and Khimti are described in 

Chapter 10. The hydropower potential has been evaluated for the baseline climate, and for the 

future climate using different dam and reservoir design criteria. Conclusions and 

recommendations are described in Chapter 11. 
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2 Tamakoshi River Basin overview 
 

 

The Tamakoshi River Basin (2,926 km2) is located on the southern slopes of the Hindu Kush 

Himalayan region (Figure 2). The elevation in this basin ranges from more than 800 MASL in 

the southern valleys to approx. 7,000 MASL northern part.  Geographically this basin is situated 

between 27°37’42’’N to 28°19’23’’N latitudes and 86°0’9’’E to 86°34’12’’E longitudes. 

 

 
Figure 2: Tamakoshi River Basin with location of Statkraft hydropower plants, 

precipitation- and temperature stations. 

 

Tamakoshi River Basin is a tributary of the Koshi River Basin, which is the most eastern 

catchment of the Ganges River Basin. The basin originates from the high-altitude areas of 

China and Nepal. Approximately 51% (1,498 km2) of this basin is located in China, and the 

remaining part in Nepal Himalaya. On average 20% of the area is covered with snow [Khadka et 

al., 2014]. According to Pfeffer et al., [2014], 276 individual glaciers are present in the 
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Tamakoshi River Basin, totaling an area of 329 km2. This corresponds with approx. 11% of the 

total basin area. The largest glacier is located in the north of the basin, and has a total surface 

area of 42 km2 [Pfeffer et al., 2014]. The Tamakoshi River Basin is a tributary of the Koshi River 

Basin, which merges into the Ganges [Khadka et al., 2014]. According to Bajracharya et al. 

[2014], the glacierized area in the Nepalese part of the Tamakoshi River Basin was 120 km2 in 

1980, which decreased to 102 km2 in 1990 (-15%), 94 km2 in 2000 (-22%) and 84 km2 in 2010 (-

30%). At the same time, the number of glaciers has increased by nearly 10%. This change in 

glacier dynamics might affect hydrological regime of the Tamakoshi River Basin. 

 

Climatologically the basin is heavily influenced by the summer monsoon, which runs from June 

through September. The average basin temperature is 28 °C in summer compared to 7°C 

during winter [Khadka et al., 2014]. Annually the basin average precipitation equals 1900 mm 

with 80% falling during the monsoon season. The wettest months are July and August, with 

average annual precipitation sums of 500 and 460 mm, respectively [Khadka et al., 2014]. 

 

Figure 2 provides an overview of the Tamakoshi River Basin, including its elevation range, the 

location of precipitation and temperature stations, and Statkraft Hydropower Plant locations for 

which the potential has to be evaluated. 
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3 Ongoing Hydropower Initiatives 

3.1 Hydropower potential and outlook 

Because of the steep topography and strong dominance of monsoon, the Tamakoshi River 

Basin has a high potential for hydropower development. A number of studies have attempted to 

estimate the total hydropower potential of the Tamakoshi River Basin using a combination of 

GIS analyses and models based on hydrological observation data. Jha [2011] estimated the 

total hydropower potential of the Tamakoshi River Basin to be 2,088 MW at 40% flow 

exceedance and 80% efficiency (17,000 MW for whole Koshi River basin). The total installed 

capacity of hydropower in Nepal is only 887 MW through 59 hydropower projects as of 1 

February 2017 [DOED, 2016], which have installed capacities ranging from 1 to 144 MW. Out of 

this, 9% (75.52 MW) is contributed by the Tamakoshi River Basin alone.  

 

The energy demand in Nepal as a whole for 2014-2015 during peak hours was 1,286 MW 

[NEA, 2015]. Electricity demands have increased with approx. 7% each year in Nepal [NEA, 

2015], mainly for rural electrification, industries and domestic use. The domestic consumer has 

the largest demand, with a 9% increase (in the range of 3 to 13%) between 2006 and 2015. 

According to the Nepal Electricity Authority (NEA), the forecasted demand for 2033 is around 

5,785 MW (Figure 3) [NEA, 2015]. 

 

 
Figure 3: Load forecast of electricity demand until 2033/34 [NEA, 2015]. 

3.2 Hydropower development 

The Department of Electricity Development (DOED), the Ministry of Energy is the nodal agency 

to develop and promote electricity sector in Nepal. As shown in Figure 4, the following key steps 

are involved in the electricity generation in Nepal. First, a survey license is applied to DOED by 

hydropower developers. Once the survey license of a hydropower project is issued, the 

developers prepare a feasibility report after the completion of the survey and submit to DOED. 

Then, the developers submit an application for the generation license within the validity of the 

license. After the evaluation of the applications, the generation license is issued for construction 
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and the developers then can start the construction of the projects. While under construction, a 

transmission license can be applied to DOED; whereas distribution license is applied and 

issued only after the completion of the project and testing of the generation is carried out. 

 
Figure 4: Flow chart of Hydropower development process in Nepal [DOED, 2016]. 

 

According to WECS [2011], the Government of Nepal considers three strategic levels 

hydropower development: 

1. Large scale storage projects primarily intended for exporting energy (>100 MW1); 

2. Medium-scale projects to meet national energy demands (1-100 MW); 

3. Small-scale projects catering to the local communities (<1 MW). 

 

From the first category, the potential energy production was estimated to be around 22,200 

MW, through four storage projects; Chisapani-Karnali (10,800 MW), the Pancheswor (6480 

MW), the Budhi Gandaki (600 MW) and the Sapta Koshi High Dam (3600 MW). The Tamakoshi 

River Basin has the potential to fulfil the requirement of all three levels. Currently, four 

hydropower projects are running which are producing 76 MW of electricity to the national grid 

(Table 1 and Figure 5). Similarly, 9 hydropower projects with a total capacity of 595 MW are 

under construction. These projects range from 5 MW (Ghatte Khola Hydropower) to 456 MW 

(Upper Tama Koshi). The latter - which is scheduled to be completed by 2018 - would be the 

largest hydropower (also under construction) in Nepal so far. This will be a run-of-the-river type 

of hydropower plant with a design discharge of 66 m3/s, and a maximum gross head of 822 m 

[Shrestha et al., 2016]. Additionally, there are 15 hydropower projections with a total installed 

capacity of 1,156 MW which are in different stages of license application (Table 1). Altogether, 

these 29 hydropower projects are able to produce 1,826 MW of hydropower to the national grid 

from the Tamakoshi River Basin.   

 

                                                     
1 Category ranges according to the Water Resources Policy (in draft) 
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Figure 5: Hydropower initiatives in the Tamakoshi River Basin [DOED, 2016]. 

 

Table 1: Status of different stages of hydropower in the Tamakoshi River Basin [DOED, 

2016]. 

Project Type 
Capacit
y (MW) Status 

Gross Head 
(m) 

Design 
flow 
(m3/s) 

Catchment 
area (Km2) 

Sipring Khola 
Run-of-the-
river 9.6 Running 443.7 2.61   

Charnawati 
Khola 

Run-of-the-
river 3.52 Running 199 2.19   

Jiri Khola 
Run-of-the-
river 2.4 Running       

Khimti 1 
Run-of-the-
river 60 Running 660 10.75 358 

Upper 
Tamakoshi 

Peaking 
Run-of-the-
river 456 Under construction 822 66 1745 

Khani Khola 
1 

Run-of-the-
river 40 Under construction 963 5.1 76 

Lower Khare 
Run-of-the-
river 11 Under construction 136.7 10.1 180 

Khani 
Khola(Dolakh
a) 

Run-of-the-
river 30 Under construction       

Khare 
Hydropower 
Project 

Run-of-the-
river 24.1 Under construction 343.85 8.43   
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Suri Khola 
Run-of-the-
river 7 

Generation license 
issued, yet to start 
construction 282 2.75 36.4 

Ghatte Khola 
Run-of-the-
river 5 Under construction 329.76 1.78 30 

Upper Khimti 
Run-of-the-
river 12 Under construction 300.23 5.16 73 

Upper Khimti 
2 

Run-of-the-
river 7 Under construction 145 6.45 73 

Chake Khola 
Run-of-the-
river 2.83 Under construction 558.89 0.633 12.5 

Jum Khola 
Run-of-the-
river 62 Survey license issued       

Upper sagu 
Run-of-the-
river 4.74 Survey license issued       

Pegu Khola 
Run-of-the-
river 4.35 Survey license issued       

Sagu Khola 
Run-of-the-
river 5 Survey license issued       

Lower Khani 
Khola 

Run-of-the-
river 9 Survey license issued       

Upper Suri 
Khola  

Run-of-the-
river 7 Survey license issued       

Lower 
Charnawati 

Run-of-the-
river 6.4 Survey license issued 203 4   

Upper lapche 

Peaking 
Run-of-the-
river 99 

Generation license 
applied       

lapche khola 

Peaking 
Run-of-the-
river 160 

Generation license 
applied       

Khimti II 
Run-of-the-
river 48.8 

Generation license 
applied 355 16.11 317.94 

Tamakoshi-3 
TA-3 Storage  650 

Generation license 
applied 333 220 2927 

Sano milti 
khola 

Run-of-the-
river 3 

Generation license 
applied       

Tamakoshi-V 
Run-of-the-
river 87 

Generation license 
applied 160.93 66 2153 

Jhyakhu 
khola 

Run-of-the-
river 5 

Survey license 
applied       

Sangu khola 
Run-of-the-
river 5 

Survey license 
applied       
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Figure 6: Locations of potential hydropower projects with respect to their capacity. 
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4 Snow cover trends 
 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor with a spatial resolution 

of 500 m was used for snow cover analysis. The 8-day composites of maximum snow cover 

from Terra (MOD10A2) and Aqua (MYD10A2) were used to derive them from daily snow cover 

products. The MODIS snow cover product for the Hindu Kush Himalayan region contains errors 

arising from cloud pixels. To remove these errors, the Terra and Aqua images were combined 

and temporal and spatial filters were applied, which has been explained in Gurung et al. [2011]. 

 

MODIS snow cover data from 2002-2014 were used to analyze the snow cover trend in the 

Tamakoshi River Basin. Figure 7 (top) shows the average monthly snow cover variability in the 

Tamakoshi River Basin from 2002-2014. Maximum snow cover is reached in February during 

the winter season because of winter precipitation and low temperature. Similarly, minimum 

snow cover is during the summer season when the temperature is high. The data indicates 

higher snow cover variability during spring, autumn and winter season than summer. Normally, 

temperatures start increasing from March and snow cover decrease due to accelerated melt 

associated with high temp. Figure 7 (bottom) shows the annual variability in different elevation 

zones which suggested maximum snow cover in between 5000-6000 MASL, followed by 4000-

5000 m. 

 

 
Figure 7: Snow cover variability in the Tamakoshi River Basin from 2002-2014. Top: 

monthly variability. Right: annual variability in different elevation zones. 
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Figure 8 shows the annual variability in different elevation zones. Most of the variation in annual 

snow cover is found below 6000 meter. All elevation zones show decreasing snow cover trends, 

except below 3000 meter (0.015 km2/month), but the trend seems very low in magnitude in both 

directions. The maximum negative trend was observed between 4000-5000 MASL., with a value 

of -0.21 km2/month, followed by -0.12 km2/month for elevations ranging between 3000-4000 m. 

 

Khadka et al. [2014] estimated a negative trend in snow cover during spring and winter, while a 

small positive trend is seen during autumn for the observed period (2000-2009). Similarly as 

suggested by Maskey et al. [2011], in Nepal, a negative trend in winter snow cover between 

3000-5000 MASL and positive trend in autumn snow cover above 4000 MASL has been 

observed. The most evident trend in snow cover is visible during summer season, with snow 

cover decreasing for all elevation bands (Figure 10). 

 

 
Figure 8: Annual snow cover variability in different elevation zone. 
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Figure 9: snow cover trend analysis on a monthly basis for different elevation bands. 
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Figure 10: Annual seasonal snow cover trends for different elevation bands.  
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5 Methodology 
 

The previous Chapters provided background information on the topography and orography of 

the Tamakoshi River Basin, ongoing hydropower initiatives, and a trend analyses on snow 

cover within this river basin. The overall objective of this study is to improve the understanding 

of the expected impacts of climate change on water availability in the context of potential 

hydropower development in the Tamakoshi River Basin. To achieve this objective, we need to: 

 

1. Understand the current baseline hydrological regime of the Tamakoshi River Basin; 

2. Develop detailed projections for the 21st century, including factors relevant for 

hydropower development; 

3. Understand the future hydrology and its potential impact on hydropower potential; 

4. Evaluate the potential for hydropower under a changing climate using different dam and 

reservoir design criteria. 

 

 
Figure 11: Schematic overview of methodology followed in this study. 

 

These four steps are schematized in more detail in Figure 11. The first step is to understand the 

baseline (reference) climate, for which we should select an appropriate gridded climate 

reference product. This selection (Section 6.1) is based on a comparison between three gridded 

products and observed station data for precipitation and temperature. The remaining bias in 

temperature and precipitation between the selected gridded climate reference product and 

observed data was bias-corrected according to Terink et al. [2010] (Section 6.2). This bias-

correction resulted in a bias-corrected climate reference product for the period 1981-2010, 

which serves as the baseline climate. 
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For step 2 and 3 we need to select a range of possible future climates that capture the most 

relevant climate indices (means, extremes, performance) for hydropower development. This 

procedure follows the envelope approach [Lutz et al., 2016b; Wilcke and Bärring, 2016] and is 

described in detail in Section 7.2. The results of this step are 8 selected General Circulation 

Models (GCMs), of which 4 are represented by RCP4.5 and 4 by RCP8.5. These GCMs provide 

precipitation and temperature data for the period 1981-2075 on a coarse model grid resolution 

(~100 km2 to ~250 km2). This is too coarse for hydrological applications, and therefore these 

GCMs were statistically downscaled to the SPHY model resolution (250 m). Statistical 

downscaling was done using Quantile Mapping [Immerzeel et al., 2013], and comparing the 

statistics of the bias-corrected reference climate product (1981-2010) with those of the 8 GCMs 

for the period 1981-2010. This step is described in more detail in Section 7.3. The 8 resulting 

downscaled GCMs represent the range of detailed climate projections for the 21st century 

(2016-2075), and are compared with the bias-corrected climate reference product to assess the 

change in precipitation and temperature. 

 

To understand the baseline hydrological regime (step 1) we have calibrated the Spatial 

Processes in HYdrology (SPHY) model [Terink et al., 2015] to match the observed glacier mass 

balance and discharge for the period 2001-2009 (see Section 8.4). The calibrated SPHY model 

was subsequently forced with the bias-corrected reference climate product to construct a 30-

year time-series of daily discharge for the period 1981-2010 for the locations Tamakoshi-III and 

Khimti intake. For the future hydrological regimes (step 3), the calibrated SPHY model was 

forced with the 8 statistically downscaled GCMs, resulting in 8 time-series of daily discharge for 

the period 2016-2075 for the locations Tamakoshi-III and Khimti intake. For the hydrological 

impact assessment (Section 9), the future period was split into two periods of 30 years; 2016-

2045, and 2046-2075. 

 

To evaluate the potential for hydropower under a changing climate (step 4), the resulting time-

series of daily discharge for the reference climate and 8 future climates were used as input in 

the Water Evaluation And Planning (WEAP) model [Sieber and Yates, 2015]. Using current 

reservoir and turbine flow design criteria, the hydropower generation potential for the baseline 

and future climate was assessed for the plants Tamakoshi-III and Khimti. The potential for 

hydropower generation for the future was further analyzed by using different design criteria of 

reservoir storage capacity for Tamakoshi-III, and maximum turbine flow for both Tamakoshi-III 

and Khimti. This step is described in more detail in Section 10. 
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6 Reference climate products 
 

For the downscaling of General Circulation Model (GCM) data, a high-resolution historical 

climate dataset is required to establish correction functions that can be applied to the GCM 

future data. These correction functions are required for mainly two reasons: 

1. GCMs generally have coarse spatial resolutions (~100 km or more), and therefore 

climate forcing of these GCMs cannot be used directly as input to spatially distributed 

hydrological models, which require more detailed spatial resolutions (e.g. 250 m in the 

current study); 

2. GCMs contain biases if compared with gridded observation products for a reference 

climate ([van Beek and Bierkens, 2008; Terink et al., 2010; Khadka et al., 2014]). In 

other words, the statistics represented by the GCM often do not match the statistics 

represented by the gridded reference climate product. Since the gridded reference 

climate product is based on observational data, it is required to statistically downscale 

the GCM forcing’s to match the statistics with those of the gridded reference climate 

product. 

 

Before the selected GCMs (Section 7.2) can be downscaled, a reference climate product needs 

to be selected. In this chapter, three different gridded reference products (Table 2) are 

compared, and their quality is assessed by comparison with station data of precipitation and 

mean air temperature. The Watch Forcing ERA-Interim (WFDEI) dataset has been used for the 

HI-AWARE project [Lutz and Immerzeel, 2015], for which air temperature field were bias-

corrected using station data from the upstream basins, and precipitation fields have been 

corrected for the common underestimate of high-altitude precipitation, by using glacier mass 

balance data as a proxy to reconstruct precipitation amounts, as described by Immerzeel et al. 

[2015a]. This dataset has been referred to as HI-AWARE in the remainder of this study. 

 

Table 2: Gridded climate products for comparison with station data. 

Product Spatial 
resolution 

Period covered Reference 

High Asia Reanalysis 
(HAR) 

10x10 km Oct 2000- Sept 2010 [Maussion et al., 2014] 

Corrected WFDEI (HI-
AWARE) 

5x5 km 1981-2010 [Lutz and Immerzeel, 2015] 

ERA-Interim (ERA) 75 x 75 km 1979-2015 [Dee et al., 2011] 

 

The product with the best correspondence with station data is eventually selected to serve as i) 

baseline climate (1981-2010), and ii) dataset to downscale the GCMs (Section 7.3). 

6.1 Selection of reference climate product 

6.1.1 Precipitation 

6 precipitation stations are available in the river basin (Figure 2), which are managed by the 

Department of Hydrology and Meteorology (DHM1), Nepal. For comparison with the gridded 

climate products, a homogeneous and complete time-series of precipitation records was 

extracted for the period 2000-2009. For each of the three gridded climate products, a time-

series of precipitation was extracted for the grid-cells that match the locations of the 

                                                     
1 http://dhm.gov.np/ 
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precipitation stations. These time-series were aggregated to monthly averages for the period 

2000-2009, and are shown in Figure 12. 

 

Based on the comparison shown in Figure 12 we conclude that the HI-AWARE precipitation 

dataset is the best candidate to be used for precipitation in the remainder of this study. The 

High Asia Reanalysis dataset [Maussion et al., 2014] shows substantial differences with respect 

to the observed precipitation data, especially during the most relevant season (monsoon) and 

for station ID 1103. ERA and HI-AWARE are generally in line with each other, but overall HI-

AWARE precipitation shows better alignment with the observed precipitation data, especially for 

the station IDs 1123, 159, and 163. 

 

 
Figure 12: Comparison of gridded precipitation of reference climate products with 

observed precipitation records for 6 stations in the Tamakoshi River Basin. Results are 

averaged to monthly precipitation sums for the period 2000-2009. 

 

Although HI-AWARE is selected as the best candidate for the remainder of this study, there are 

still substantial differences between the monthly precipitation sums of HI-AWARE and those of 
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the observed precipitation. Therefore, it was decided to apply an additional bias-correction to 

the HI-AWARE precipitation data. This is described in detail in Section 6.2. 

 

6.1.2 Temperature 

Temperature data is available for three locations (Figure 2). It is clear that these stations are 

located in the lower elevation areas of the Tamakoshi River Basin. Since high-elevation 

temperature stations are not available, temperature estimations for those higher elevation areas 

may be less accurate. Similar as for precipitation, temperature time-series were extracted for 

the period 2000-2009 for the three gridded reference climate products and grid-cells that match 

the locations of the temperature stations. Temperature data for each of these gridded climate 

products were subsequently aggregated to monthly averages for the period 2000-2009, and are 

shown in Figure 13 along with the observed temperature data. 

 
Figure 13: Comparison of gridded temperature of reference climate products with 

observed temperature records for 3 stations in the Tamakoshi River Basin. Results are 

averaged to monthly temperature values for the period 2000-2009. Bias-corrected HI-

AWARE temperature is shown as well (Section 6.2). 

 

Except for station ID 1103, HI-AWARE shows the best comparison with the observed 

temperature data. Since precipitation and temperature are generally correlated [Terink et al., 

2010] (when it rains it is generally colder and vice versa), it is preferred to select the same 

gridded reference climate dataset for temperature as for precipitation. Since HI-AWARE was 

selected for precipitation, and it also shows the best comparison results for temperature, the HI-

AWARE reference climate dataset was selected for temperature as well. 

 

From Figure 13 it is clear that there is a substantial offset between the gridded HI-AWARE 

temperature and the observed temperature data. For all stations the HI-AWARE temperature 

underestimates the observed temperature, which will lead to substantial errors in the calculation 

of glacier- and snow melt if not corrected for. Therefore, temperature has also been corrected 

for a bias, which is described in detail in 6.2. The red line in Figure 13 already shows the bias-

corrected HI-AWARE temperature, which compares very well with the observed temperature. 
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6.2 Bias-correction of precipitation and temperature 

Based on the comparison with observed records for precipitation and temperature (Section 6.1) 

it was decided to use HI-AWARE as gridded reference climate product in the remainder of this 

study. It was also concluded that an additional bias-correction is needed for both precipitation 

and temperature to correct for the offsets that are present, especially during the monsoon 

season. Bias-corrections were performed according to Terink et al. [2010] and Leander and 

Buishand [2007], and is explained in detail in the two sections below. 

6.2.1 Precipitation 

Terink et al. [2010] determined precipitation correction factors for each block of 5 days in the 

year, resulting in 73 correction factors for parameter a and b. They corrected precipitation to 

match the Coefficient of Variation (CV) and mean with those of the observations according to: 

 

𝑃∗ = 𝑎 𝑃𝑏 

 

with P* the corrected precipitation, P the uncorrected precipitation, b the correction parameter 

for the CV, and a the correction parameter for the mean. Unfortunately, only 6 precipitation 

stations are available, and they are located in the lower elevation areas. Precipitation dynamics 

in the higher elevation zones can be rather complex, and because i) the b parameter is very 

sensitive to these dynamics, and ii) no stations are located in these areas, we decided to correct 

for the mean precipitation only; thus we focused on the determination of parameter a. This 

parameter was determined for the 73 5-day blocks for each of the 6 locations, and were 

subsequently interpolated to the model domain grid cells using nearest-neighbor interpolation. 
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Figure 14: Comparison of observed, uncorrected, and corrected monthly average 

precipitation for the period 2000-2009. 

 

Details regarding this bias-correction method can be found in Terink et al. [2010], and we only 

focus on the results here. Figure 14 shows the monthly average observed, uncorrected HI-

AWARE, and corrected HI-AWARE precipitation. It is clear that the bias-corrected HI-AWARE 

precipitation data shows a substantial improvement with respect to the uncorrected HI-AWARE 

precipitation, especially during the monsoon season. 

6.2.2 Temperature 

Terink et al. [2010] corrected temperature for the mean and variance according to: 

 

𝑇∗ = 𝑇𝑜𝑏𝑠 +
𝜎(𝑇𝑜𝑏𝑠)

𝜎(𝑇𝑢𝑛𝑐)
(𝑇𝑢𝑛𝑐 − �̅�𝑜𝑏𝑠) + (�̅�𝑜𝑏𝑠 − �̅�𝑢𝑛𝑐) 

 

with 𝑇∗ the corrected temperature, 𝑇𝑜𝑏𝑠 the average observed temperature of a 5-day block, 

including the 5 days of all considered years, 𝜎(𝑇𝑜𝑏𝑠) the standard deviation of the observed 

temperature of that same 5-day block, 𝜎(𝑇𝑢𝑛𝑐) the standard deviation of the uncorrected HI-

AWARE temperature for that block, 𝑇𝑢𝑛𝑐 the uncorrected HI-AWARE temperature for the day to 

correct, and �̅�𝑢𝑛𝑐 the average uncorrected temperature of that 5-day block. More details 
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regarding this bias-correction method can be found in Terink et al. [2010]. The correction 

parameters were determined for each of the three temperature stations, and were subsequently 

interpolated to the model grid domain using nearest-neighbor interpolation. 

 

Figure 13 shows the average monthly observed, uncorrected and bias-corrected temperature 

for the 3 station locations. It can be concluded that the correction performs very well. Daily 

values of bias-corrected temperature also show better comparison with the observations, as is 

shown in the scatter-plots of Figure 15. Since temperature is also corrected for the variance it is 

interesting to compare the histograms of the observed, uncorrected, and corrected temperature 

with each other (Figure 16). It is clear that the statistics and shape of the bias-corrected 

temperature histograms are the best match with the histograms of the observed temperature. 

 

 
Figure 15: Scatter-plots of observed daily temperature vs. uncorrected and bias-

corrected daily temperature for the three station locations for the period 2000-2009. 
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Figure 16: Histograms (bin width 1°C) of observed, uncorrected, and bias-corrected daily 

temperature for the period 2000-2009. 
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7 Climate Change Scenarios 

7.1 Background information 

7.1.1 Representative concentration pathways 

Since the release of Intergovernmental Panel on Climate Change’s fifth Assessment Report, 

four representative concentration pathways (RCPs) have been defined as a basis for long-term 

and near-term climate modeling experiments in the climate modeling community [van Vuuren et 

al., 2011]. The four RCPs together span the range of radiative forcing values for the year 2100 

as found in literature, from 2.6 to 8.5 Wm-2 (Table 3, Figure 17). Climate modelers use the time 

series of future radiative forcing from the four RCPs for their climate modeling experiments to 

produce climate scenarios. The development of the RCPs allowed climate modelers to proceed 

with experiments in parallel to the development of emission and socio-economic scenarios 

[Moss et al., 2010]. The four selected RCPs were considered to be representative of the 

literature, and included one mitigation scenario (RCP2.6), two medium stabilization scenarios 

(RCP4.5/RCP6) and one very high baseline emission scenario (RCP8.5) [van Vuuren et al., 

2011]. 

 

Since the four RCPs are considered to be representative of radiative forcing that can be 

expected by 2100, each of them should theoretically be considered with equal probability to be 

included in climate change impact studies. However, in climate change impact studies there is 

usually a trade-off in how many RCPs and how many climate models can be included within the 

available time and resources, whilst at the same time having the ability of producing robust and 

reliable results. 

 

Table 3: Description and visualization of the four representative concentration pathways 

(RCPs) [van Vuuren et al., 2011]. 
 

RCP Description 

RCP8.5 
Rising radiative forcing pathway leading to 8.5 

Wm2 (~1370 ppm CO2eq) by 2100 

RCP6 

Stabilization without overshoot pathway to 6 

Wm2 (~850 ppm CO2eq) at stabilization after 

2100 

RCP4.5 

Stabilization without overshoot pathway to 4.5 

Wm2 (~650 ppm CO2eq) at stabilization after 

2100 

RCP2.6 

Peak in radiative forcing at ~3 Wm2 (~490 ppm 

CO2eq) before 2100 and then decline (the 

selected pathway declines to 2.6 Wm2 by 2100 

 

Figure 17: RCPs. blue: 

RCP8.5, black: RCP6, red: 

RCP4.5, green: RCP2.6 [van 

Vuuren et al., 2011]. 

7.1.2 Types of climate models 

Climate is modeled at different spatial scales. General Circulation Models (GCMs) are used to 

simulate global climate and operate at spatial resolutions ranging from ~100 km2 to ~250 km2. 

Regional Climate Models (RCMs) can be used to simulate regional climate at a typical 

resolution of ~10-50 km. Climate change information is usually required at a higher spatial 
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resolution since applications like hydrological models, forced by the data from GCMs or RCMs, 

operate at higher resolutions, down to several meters. The hydrological model used in this 

project operates at 250x250 m spatial resolution. This requires additional downscaling. 

 

The current state-of-the-art GCMs are organized in the fifth Coupled Model Inter-comparison 

Project (CMIP5) archive [Taylor et al., 2012], which was used as a basis by the IPCC for the 

generation of its fifth Assessment Report.  

7.1.3 Downscaling 

Because of the discrepancy in spatial resolution, different downscaling techniques can be 

applied to overcome differences in resolution when climate models are used to force other 

models such as hydrological models. Downscaling techniques can be divided in two groups: 

dynamical downscaling and empirical-statistical downscaling [Wilby and Wigley, 1997]. 

7.1.3.1 Dynamical downscaling 

Dynamical downscaling is the nesting of climate models of different spatial resolutions. A GCM, 

operating at spatial resolutions ranging from ~100 km2 to ~250 km2 usually provides the 

boundary conditions for a RCM that has a nested domain within the GCM domain, and operates 

at a resolution of ~10-50 km2. Higher resolutions can be reached when a finer resolution RCM 

or a high-resolution numerical weather prediction model (which needs to be non-hydrostatic in 

mountainous areas) is nested within the RCM domain. The RCM then in turn provides the 

boundary conditions for the finer resolution RCM. On finer scales, Large Eddy Simulation (LES) 

models can be deployed, which can include atmospheric turbulence in the simulations. Because 

of the high spatial resolution of RCMs, computational resources are a limiting factor for the 

temporal and spatial coverage of the simulation [Fowler et al., 2007].  

7.1.3.2 Empirical-statistical downscaling 

In most climate types, but especially in climate types with large spatial variation, such as the 

climate in mountainous regions, the GCM or RCM resolution is generally not sufficient to 

satisfactory simulate the climate, because climatic variables vary strongly over short distances 

due to orographic effects. Many processes such as local circulation patterns leading to 

hydrological extreme events cannot be resolved by GCMs [Christensen and Christensen, 2002]. 

Besides a gap in resolution, GCMs and RCMs exhibit biases with respect to observed climate 

data. To try to overcome these two problems, additional empirical-statistical downscaling and 

error correction techniques are required to account for the scale differences between GCMs or 

RCMs and hydrological models, and to correct for systematic biases between GCMs or RCMs 

and local-scale observations (Figure 18). Empirical-statistical methods are based on statistical 

relationships between large-scale predictors (climate model data) and local-scale observations 

[Wilby and Wigley, 1997; Fowler et al., 2007; Maraun et al., 2010]. Advantages of statistical 

downscaling methods include the possibility to provide point-scale climatic variables derived 

from GCM scale climate model output, the ability to directly incorporate observed data and the 

computational efficiency compared to dynamical downscaling. Important disadvantages on the 

other hand, include the requirement of a sufficiently long and reliable observed historical data 

series for calibration and the assumption that the statistical relationship between the large-scale 

data and the local-scale data stays constant in the future [Wilby and Wigley, 1997; Fowler et al., 

2007]. 

 

Maraun et al. [2010] categorize statistical downscaling methods into ‘perfect prognosis (PP)’, 

which include regression models and weather typing schemes, ‘model output statistics (MOS)’, 
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and ‘weather generators (WG)’. Here the categorization by Maraun et al. [2010] is followed to 

summarize the different approaches for statistical downscaling. 

 

 
Figure 18: Scheme of different statistical downscaling approaches. Traditional empirical-

statistical downscaling (right pathway) calibrates the statistical transfer function 

between large-scale observation/reanalysis data and local-scale observations. Empirical-

statistical downscaling and error correction methods (DECMs) (left pathway) are 

calibrated on RCM or GCM data and local observations, account for downscaling as well 

as model errors. Adapted from Themeßl et al. [2011a]. 

 

Perfect Prognosis statistical downscaling approaches (or traditional empirical-statistical 

downscaling methods [Themeßl et al., 2011b]) establish links between observed large-scale 

predictors and observed local-scale predictands. Often, the large‐scale observations are 

replaced by data from reanalysis products. As predictors, variables with high predictive power to 

predict the variable of interest should be used. These can include various predictors 

representing the atmospheric circulation, humidity and temperature [Maraun et al., 2010]. 

Different statistical models can be used to represent the statistical relationships between the 

large-scale observations and the local-scale observations. These include regression models, 

which can be linear models, more complex generalized linear models, generalized additive 

models, vector generalized linear models, or non-linear regression models [Maraun et al., 

2010]. Weather type based downscaling is based on the relation of different weather classes to 

local climate. Climate change can then be estimated by evaluating the change in frequency of 

the weather classes in the climate model [Fowler et al., 2007]. 

 

In Model Output Statistics (MOS) approaches, the statistical relationship between predictors 

and predicted values is established by using simulated predictor values instead of observed 

values [Maraun et al., 2010]. MOS combines a downscaling and an error correction step 

[Themeßl et al., 2011a]. The predictors can be simulated time series or properties of the 

distributions of climatic variables. The predicted values can be local-scale time series or local-
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scale distributions of the variable of interest. MOS is mostly used for RCM downscaling, while 

MOS application for GCM downscaling is still limited [Eden et al., 2012; Eden and Widmann, 

2014]. Multiple post-processing methods, termed empirical-statistical downscaling and error 

correction methods (DECMs, Figure 18), are based on the MOS approach [Themeßl et al., 

2011a]. The most basic MOS approach is the simple delta change or perturbation method 

[Prudhomme et al., 2002; Kay et al., 2008], which downscales climate models to local scale 

using change factors. Differences between a future and control GCM run are superimposed on 

a local-scale baseline observation dataset. Because of the simplicity of this method, a large 

number of climate models can be downscaled, facilitating the possibility to use a large 

ensemble of possible future climates in climate change impact studies [Wilby and Wigley, 1997]. 

The major shortcoming of this method is the fact that only changes in the mean, minima and 

maxima of climatic variables are considered [Fowler et al., 2007], making this less suitable to 

assess changes in the distribution’s tails, i.e. the extreme weather events. Another method with 

a slightly different concept is the scaling method or direct approach [Widmann and Bretherton, 

2003; Lenderink et al., 2007]. In this approach the future precipitation is determined as the 

simulated future precipitation scaled to the ratio of the mean observed and mean control run 

precipitation. 

 

The Advanced Delta Change (ADC) approach [van Pelt et al., 2012], built on work by Leander 

and Buishand [2007], has the advantage over the classical delta change method that not only 

changes in the mean are considered, but also the changes in extremes, thus making a non-

linear transformation of climate signals derived from climate models. Besides, changes in multi-

day precipitation events are also modeled. The approach has been successfully applied in the 

Rhine basin in Europe [Terink et al., 2010; van Pelt et al., 2012]. To test the usefulness of the 

initial non-linear bias-correction approach developed by Leander and Buishand [2007] in 

complex, orographically influenced climate systems, it was used to bias-correct RCM 

temperature and precipitation for the upper Rhone basin in Switzerland [Bordoy and Burlando, 

2013]. The authors concluded that the method is able to dramatically reduce the RCM errors for 

both air temperature and precipitation and that the method could be used successfully for 

correcting future projections. However, they also observed that an undesired effect of the 

technique developed by Leander and Buishand [2007] was that it generated extreme 

precipitation values which considerably exceeded the range of the observations. 

 

Quantile mapping [Boe et al., 2007; Deque, 2007; Themeßl et al., 2011b] is based on the 

principle of comparing distributions of a climatic variable in a dataset of historical observations 

and climate model control run and defining an error function to correct for biases for each 

quantile in the distribution. This error function is applied to a future climate model run to correct 

future climate data. The approach can be based on empirical or fitted probability distributions 

[Piani et al., 2010; Themeßl et al., 2011a]. New extremes can be simulated by linear 

extrapolation of the error function outside the range of the distribution in the calibration period 

[Themeßl et al., 2011a]. 

7.2 Selection of climate models 

Due to their coarse spatial resolution, outputs from General Circulation Models (GCMs) are 

usually directly downscaled to higher resolution using empirical-statistical downscaling methods, 

or used as boundary conditions for Regional Climate Models (RCMs), with their outputs being 

downscaled to higher resolution subsequently. The downscaled outputs are then used to 

assess future climatic changes and to drive other sector-specific models for climate change 

impact studies. 
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The number of GCMs available for climate change projections is increasing rapidly. For 

example, the CMIP3 archive [Meehl et al., 2007], which was used for the 4th IPCC Assessment 

Report [IPCC, 2007] contains outputs from 25 different GCMs, whereas the CMIP5 archive 

[Taylor et al., 2012], which was used for the 5th IPCC Assessment Report [IPCC, 2013], 

contains outputs from 61 different GCMs. These GCMs often have multiple ensemble members 

resulting in an even larger number of available model runs. 

 

Despite improvements in the CMIP5 models compared to CMIP3 in terms of process 

representation [e.g. Blázquez and Nuñez, 2013; Sperber et al., 2013], uncertainty about the 

future climate remains large [e.g. Knutti and Sedláček, 2012], and locally even increases with 

the larger number of models available [e.g. Joetzjer et al., 2013; Lutz et al., 2013]. Considering 

the large number of available climate models and constraints in the available computational and 

human resources, detailed climate change impact studies cannot include all projections. In 

practice, rather one climate model or a small ensemble of climate models is selected for the 

assessment. Despite the importance of using an ensemble that is representative for the region 

of interest and shows the full uncertainty range, the selection of models to be included in the 

ensemble is not straightforward, and can be based on multiple criteria. 

 

The uncertainty originating from the spread in climate models’ projections is considered to be a 

large source of uncertainty in climate change impact studies, e.g.: this uncertainty is often larger 

than model parameter uncertainties, uncertainty stemming from natural variability and structural 

uncertainties in hydrological models [Minville et al., 2008; Finger et al., 2012]. Therefore, the 

selection of climate models is a crucial step when conducting a climate change impact study. 

 

Often climate models are selected based on their skill to simulate the present and near-past 

climate [e.g. Biemans et al., 2013; Pierce et al., 2009]. Another approach is the so-called 

envelope approach, where an ensemble of models covering a wide range of projections for one 

or more climatological variables of interest is selected from the pool of available models. This 

approach aims at covering all possible futures as projected by the entire pool of climate models. 

Some approaches consider only the changes in mean air temperature and total annual 

precipitation [e.g. Immerzeel et al., 2013; Sorg et al., 2014; Warszawski et al., 2014], whereas 

other approaches consider more climatological variables using cluster analysis algorithms [e.g. 

Cannon, 2014; Houle et al., 2012]. Other methodologies combine the past-performance 

approach and the envelope approach [Lutz et al., 2016b; Wilcke and Bärring, 2016]. 

 

For this study we apply the advanced envelope-based selection approach described by [Lutz et 

al., 2016b] to select a representative ensemble of GCMs. This approach follows three steps 

(Figure 19): 

1. Initial selection based on changes in mean air temperature and annual precipitation 

sum; 

2. Refined selection based on projected changes in four indices for climatic extremes; 

3. Final selection based on model skill in simulating the annual cycle of air temperature 

and precipitation. 
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Figure 19: Climate model selection procedure [Lutz et al., 2016b]. 

7.2.1 Selection of representative concentration pathways 

We select two ensembles containing four GCM runs from the CMIP5 database: one ensemble 

for the medium stabilization scenario RCP4.5 and one ensemble for the very high radiative 

forcing scenario RCP8.5. We did not include the mitigation scenario leading to a very low 

radiative forcing level (RCP2.6). It is unlikely that this RCP can be met, since it requires an 

immediate drastic decline of emissions followed by ongoing carbon sequestration in the second 

half of the 21st century, whereas the future emissions expected to come from existing capital are 

large [Arora et al., 2011; Rosenberg et al., 2015]. As we aim to present robust, realistic 

projections in our study we choose not to include RCP2.6 in the climate model ensemble. By 

selecting RCP4.5 and RCP8.5 we cover the entire range of radiative forcing resulting from 

RCP4.5, RCP6 and RCP8.5. 

7.2.2 Step 1: Initial selection based on changes in mean air temperature and annual 

precipitation sum 

 

The initial selection is based on the range of projections of changes in mean air temperature 

(ΔT) and annual precipitation sum (ΔP), between 1981-2010 and 2046-2075, for the GCM grid 

cell that covers the majority of the Tamakoshi River Basin (Figure 20). This calculation was 

done using the KNMI Climate Explorer (http://climexp.knmi.nl). For the model runs included in 

RCP4.5 and RCP8.5 separately, the 10th and 90th percentile values for ΔT and ΔP are 

determined, after resampling all GCM data to the same 2.5°x2.5° grid cell. These values 

represent the four corners of the spectrum of projections for temperature and precipitation 

change. The 10th percentile value for ΔT and 10th percentile value for ΔP are in the “cold, dry” 

corner of the spectrum. The 10th percentile value for ΔT and 90th percentile value for ΔP are in 

the “cold, wet” corner of the spectrum. The 90th percentile value for ΔT and 10th percentile value 

for ΔP are in the “warm, dry” corner of the spectrum. The 90th percentile value for ΔT and 90th 

percentile value for ΔP are in the “warm, wet” corner of the spectrum. The 10th and 90th 
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percentile values are chosen rather than the minimum and maximum projections to avoid 

selecting outliers, cf. other studies [e.g. Immerzeel et al., 2013; Sorg et al., 2014]. The proximity 

of the model runs to the 10th and 90th percentile values is derived from the model runs’ 

percentile rank scores corresponding to their projections for ΔT and ΔP with respect to the 

entire range of projections in the entire ensemble: 

 

 DPi
T,Pi

P = √((|Pi
T − Pj

T|)
2

+ (|Pi
P − Pj

P|)
2

) (Eq. 1) 

 

where DPi
T,Pi

P is the distance of a model (j)’s ΔT and ΔP (Pj
Tand Pj

Prespectively) to the corner (i)’s 

10th and/or 90th percentile score of ΔT and ΔP for the entire ensemble (Pi
Tand Pi

Prespectively). 

For each corner the five models with the lowest values for D and data available at a daily time 

step are selected from the ensemble. We select only models that have data available at a daily 

time step because this is a requirement for an empirical-statistical downscaling method to be 

applied to the GCM runs in a later stage. Nonetheless, model runs with data available at larger 

time steps are included in the initial pool of available model runs used to calculate the model 

runs’ percentile scores, to have a complete representation of all projected possible futures. The 

initial selection results in 5 model runs x 4 corners = 20 model runs for each RCP (Figure 21). 

 

 
Figure 20: Tamakoshi River Basin boundary indicated by red line. GCM grid cell covering 

the majority of the river basin indicated by green rectangle. 
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Figure 21: Changes in mean air temperature and annual precipitation sum for RCP4.5 

(left) and RCP8.5 (right) CMIP5 GCM runs for the Tamakoshi River Basin. Models 

selected during step 1 are indicated with colored dots. 

 

Table 4: Description of ETCCDI indices used in step 2 of the climate model selection 

procedure. 

Meteorological 

variable 

ETCCDI index Index description 

Precipitation R99pTOT precipitation due to extremely wet days (> 99th percentile) 

Precipitation CDD consecutive dry days: maximum length of dry spell (P < 1 mm) 

Air temperature WSDI warm spell duration index: count of days in a span of at least six days 

where TX > 90th percentile (TXij is the daily Tmax on day i in period j) 

Air temperature CSDI Cold spell duration index: count of days in a span of at least six days 

where TN < 10th percentile (TNij is the daily Tmin on day i in period j 

 

7.2.3 Step 2: Refined selection based on projected changes in four indices for climatic 

extremes 

The number of model runs remaining after the initial selection process is further reduced during 

the refined selection step. In this step, the model runs are evaluated for their projected changes 

in climatic extremes. We evaluate the changes in climatic extremes for air temperature and 

precipitation, by considering the changes in two ETCCDI indices [Peterson, 2005] (Table 4) for 

both air temperature and precipitation. For characterization of changes in air temperature 

extremes we analyze changes in the warm spell duration index (WSDI) and the cold spell 

duration index (CSDI). For characterization of changes in precipitation extremes we consider 

the precipitation due to extremely wet days (R99pTOT) and the number of consecutive dry days 

(CDD). Since the climate model ensemble will be used to force a hydrological model, we have 
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chosen to analyze changes in R99pTOT and CDD as obvious indicators of precipitation 

extremes leading to associated hydrological extremes whereas CDD is an important indicator 

for dry spells that affect hydropower generation. Changes in WSDI and CSDI both have effects 

on the cryospheric processes (snow- and ice melt/accumulation), which are important in our 

study area. The indices are calculated from the daily model output, for each individual year in 

the future period (2046-2175) and reference period (1981-2010), for the GCM grid cells 

covering the study area (Figure 20). For both periods, the indices are then averaged over the 

period of thirty years. The changes in the indices are then calculated as a percentual change for 

the future period with respect to the reference period. 

 

For each model selected during the initial selection, the most relevant index for air temperature 

and the most relevant index for precipitation are considered. For example, for the models in the 

warm, wet corner, WSDI indicating warm spells and R99pTOT indicating extreme precipitation 

events are considered. CDD and CSDI are not considered in that case, but they are considered 

for models in the dry and cold corners respectively. For the five models initially selected for 

each corner, the two relevant indices are both ranked and given scores 1 to 5. For example, in 

the warm, wet corner the model with the largest increase in R99pTOT scores 5 points for that 

index whereas the model with the smallest increase in R99pTOT scores 1 point for that index. 

Similarly, the model with the largest increase in WSDI scores 5 points for that index and the 

model with the smallest increase in WSDI scores 1 point for that index. Both scores are then 

averaged to obtain a final score. Based on that final score, the two models with the highest 

scores are selected (Table 5). Thus for each corner the number of models is reduced from five 

to two models. For each RCP 4 corners x 2 models = 8 models are selected, which are 

validated to the climatic reference product in the next step. 
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Table 5: GCM runs analyzed during the refined selection step. Models selected for step 3 

are indicated with yellow color. 

 
 

7.2.4 Final selection based on model skill in simulating the annual cycle of air temperature 

and precipitation. 

The final selection of models is based on a validation of model performance to the selected HI-

AWARE reference climate dataset (Table 2) [Lutz and Immerzeel, 2015]. For mean air 

temperature and precipitation sum, the bias between the GCM run and the reference dataset is 

calculated on annual basis and for the key seasons (monsoon (June-Sep) and winter 

(December-Feb)). The biases for precipitation are expressed as a percentage and the biases 

for air temperature are expressed as degrees Celsius. The biases are normalized and 

expressed as a fraction of the largest found bias within the ensemble (Table 6). For example, 

RCP Projection model ΔR99P (%) ΔCDD (%) ΔWSDI (%) ΔCSDI (%) ΔT (°C)ΔP (%)
T index

rank

P index

rank

Combined

score

CMCC-CM_r1i1p1 167.3 13.2 1628.2 -97.9 3.2 -0.8 4 3 3.5

CMCC-CMS_r1i1p1 68.3 18.2 811.7 -100.0 3.1 -0.5 3 4 3.5

HadGEM2-AO_r1i1p1 35.2 25.3 640.5 -90.4 2.8 1.3 1 5 3.0

IPSL-CM5A-LR_r4i1p1 16.6 1.5 1921.8 -98.7 3.2 3.2 5 1 3.0

MPI-ESM-LR_r2i1p1 68.1 12.5 790.2 -97.8 2.8 -6.5 2 2 2.0

CanESM2_r1i1p1 121.4 -6.1 540.3 -91.8 2.9 18.3 3 4 3.5

CanESM2_r3i1p1 113.3 -9.9 530.2 -100.0 3.1 14.9 2 3 2.5

CanESM2_r4i1p1 159.7 -11.9 582.0 -93.6 2.7 15.9 4 5 4.5

IPSL-CM5A-MR_r1i1p1 71.8 -17.8 744.0 -94.8 3.1 20.3 5 1 3.0

CanESM2_r2i1p1 102.9 -8.8 459.7 -97.3 2.7 17.7 1 2 1.5

bcc-csm1-1_r1i1p1 127.8 -4.6 953.0 -97.9 1.8 19.6 1 5 3.0

IPSL-CM5B-LR_r1i1p1 71.1 -12.2 535.2 -92.9 1.4 22.8 5 2 3.5

CESM1-BGC_r1i1p1 114.0 -4.3 467.1 -94.2 2.0 14.7 4 4 4.0

GISS-E2-R_r6i1p1 -16.7 -9.2 722.0 -97.6 2.0 12.9 2 1 1.5

NorESM1-M_r1i1p1 99.3 11.5 702.9 -97.1 2.1 11.6 3 3 3.0

bcc-csm1-1-m_r1i1p1 67.8 0.7 844.2 -96.7 2.0 -0.5 2 2 2.0

inmcm4_r1i1p1 3.8 11.1 685.7 -76.4 1.6 2.8 5 4 4.5

MPI-ESM-MR_r1i1p1 89.0 2.4 689.3 -93.2 2.1 -4.3 4 3 3.5

MPI-ESM-MR_r2i1p1 27.6 13.0 871.7 -94.4 2.1 0.1 3 5 4.0

MRI-CGCM3_r1i1p1 83.1 -0.6 448.7 -99.0 1.9 2.6 1 1 1.0

CMCC-CM_r1i1p1 407.5 19.4 3258.3 -100.0 5.8 0.2 5 2 3.5

CMCC-CMS_r1i1p1 173.6 30.4 1555.9 -100.0 6.3 -3.5 1 4 2.5

IPSL-CM5A-LR_r2i1p1 210.9 19.3 2460.3 -100.0 6.5 6.0 4 1 2.5

MPI-ESM-LR_r2i1p1 108.2 28.9 1953.9 -100.0 5.6 -9.1 2 3 2.5

MPI-ESM-LR_r3i1p1 97.6 39.9 2358.8 -99.7 5.7 -2.4 3 5 4.0

CanESM2_r1i1p1 200.5 -13.4 1153.9 -98.8 6.0 24.3 3 1 2.0

CanESM2_r2i1p1 277.7 -8.8 1080.3 -98.6 6.1 21.9 1 2 1.5

CanESM2_r4i1p1 333.2 -13.1 1283.2 -100.0 6.0 21.0 4 3 3.5

CanESM2_r5i1p1 387.5 4.0 1125.2 -100.0 6.0 27.7 2 5 3.5

IPSL-CM5A-MR_r1i1p1 379.8 23.0 3429.0 -100.0 6.2 21.3 5 4 4.5

bcc-csm1-1_r1i1p1 229.2 -15.2 2139.7 -100.0 4.4 21.7 1 4 2.5

CCSM4_r2i1p1 159.1 4.9 2483.0 -100.0 4.1 10.8 1 2 1.5

CNRM-CM5_r1i1p1 222.7 -4.1 1167.4 -98.2 3.9 18.9 4 3 3.5

EC-EARTH_r9i1p1 68.9 1.6 1476.8 -84.6 4.3 13.0 5 1 3.0

MIROC5_r1i1p1 411.7 -3.0 1734.5 -100.0 4.3 13.0 1 5 3.0

CCSM4_r1i1p1 162.7 16.1 2628.1 -99.9 4.3 9.2 3 3 3.0

CCSM4_r6i1p1 71.8 -3.3 1134.0 -87.4 4.2 9.1 5 2 3.5

inmcm4_r1i1p1 1.7 20.8 1614.4 -92.4 3.6 7.0 4 5 4.5

MRI-CGCM3_r1i1p1 136.1 -9.8 1185.7 -100.0 4.4 8.0 1 1 1.0

NorESM1-M_r1i1p1 129.5 20.8 1024.9 -100.0 4.3 7.7 1 4 2.5
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for the CMCC-CMS_r1i1p1 model run for RCP4.5, the normalized P bias for the monsoon is 

0.4. The maximum bias for monsoon P in the RCP4.5 ensemble is -72.1% (IPSL-CM5B-LR-

r1i1p1) whereas the bias for the CMCC-CMS_r1i1p1 model run is 26.7%. Thus the normalized 

P bias is 26.7 / 72.1 = 0.4. Normalized annual and seasonal scores are averaged for 

precipitation and temperature separately. Finally, a combined score is calculated by summing 

the resulting two values. In each corner (warm/wet, warm/dry, etc.), the GCM run with the 

lowest scores, indicating the lowest bias, is selected. The selected models form the climate 

model ensemble that will be downscaled before they are used in the climate change impact 

assessment. 

 

Table 6: Biases between GCM runs and reference climate dataset for the Tamakoshi 

River Basin. 

 

7.3 Climate model downscaling 

There are many different statistical downscaling approaches and choosing the most appropriate 

method is challenging, especially for complex mountainous climate types like in Tamakoshi 

River Basin. Themeßl et al. [2011b] compared different empirical-statistical downscaling 

methods for precipitation in the Austrian Alps and found that the Quantile Mapping method has 

best performance in mountainous climate, particularly at high quantiles, which is promising for 

assessing future changes in extreme precipitation events. Other advantages of Quantile 

Mapping are that i) it can be applied to other climatic variables, including air temperature, as 

well, and ii) that it useful for the analysis of extremes. A Quantile Mapping approach applied at 

catchment scale application in the Langtang and Baltoro catchments in Indus and Ganga basins 

was successful [Immerzeel et al., 2013]. Because of its robustness and good performance over 

mountainous areas, we select the Quantile Mappig (QM) approach for the empirical-statistical 

downscaling of climate change scenarios in this project. 

 

Quantile mapping is applied on a daily basis (t) and for each grid cell (i) separately resulting in a 

corrected time series Ycor using a correction function (CF) as defined here [Themeßl et al., 

2011b]: 

𝑌𝑡,𝑖
𝑐𝑜𝑟 = 𝑋𝑡,𝑖

𝑟𝑎𝑤 + 𝐶𝐹𝑡,𝑖 Eq. 2 

𝐶𝐹𝑡,𝑖 = 𝑒𝑐𝑑𝑓𝑚,𝑖
𝑜𝑏𝑠,𝑐𝑎𝑙−1

(𝑃𝑡,𝑖) − 𝑒𝑐𝑑𝑓𝑚,𝑖
𝑚𝑜𝑑,𝑐𝑎𝑙−1

(𝑃𝑡,𝑖) Eq. 3 

𝑃𝑡,𝑖 = 𝑒𝑐𝑑𝑓𝑚,𝑖
𝑚𝑜𝑑,𝑐𝑎𝑙(𝑋𝑡,𝑖

𝑟𝑎𝑤) Eq. 4 

 

CF represents the difference between the observed (obs) and the modeled (mod) inverse 

empirical cumulative density distributions (ecdf-1), for the representative day of the year (doy) in 

RCP Projection model
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Combined

score

CMCC-CM_r1i1p1 21.7 13.5 -7.9 -5.0 -11.5 0.4 0.2 1.0 1.0 1.0 0.3 1.0 1.3

CMCC-CMS_r1i1p1 37.2 26.7 -0.6 0.1 -3.5 0.7 0.4 0.1 0.0 0.3 0.5 0.1 0.7

CanESM2_r1i1p1 -34.5 -30.4 1.4 3.3 -0.7 0.7 0.4 0.2 0.7 0.1 0.5 0.3 0.8

CanESM2_r4i1p1 -30.7 -27.3 1.3 3.0 -0.1 0.6 0.4 0.2 0.6 0.0 0.5 0.2 0.7

IPSL-CM5B-LR_r1i1p1 -40.3 -72.1 -5.7 -3.4 -6.5 0.8 1.0 0.7 0.7 0.6 0.9 0.7 1.6

CESM1-BGC_r1i1p1 45.5 53.3 -4.5 -1.7 -8.1 0.9 0.7 0.6 0.3 0.7 0.8 0.5 1.3

inmcm4_r1i1p1 -10.4 -21.2 -3.4 -0.2 -6.9 0.2 0.3 0.4 0.0 0.6 0.2 0.4 0.6

MPI-ESM-MR_r2i1p1 52.3 54.7 -0.7 -0.3 -2.8 1.0 0.8 0.1 0.1 0.2 0.9 0.1 1.0

CMCC-CM_r1i1p1 20.7 11.2 -7.9 -5.0 -11.7 0.4 0.2 0.7 0.8 0.8 0.3 0.7 1.0

MPI-ESM-LR_r3i1p1 55.6 60.9 -0.9 -0.6 -2.7 1.0 1.0 0.1 0.1 0.2 1.0 0.1 1.1

CanESM2_r4i1p1 -32.6 -29.8 1.1 3.0 -0.5 0.6 0.5 0.1 0.4 0.0 0.5 0.2 0.7

CanESM2_r5i1p1 -34.1 -31.4 1.2 3.2 -0.7 0.6 0.5 0.1 0.5 0.0 0.6 0.2 0.7

IPSL-CM5A-MR_r1i1p1 11.8 15.4 -2.8 -2.4 -2.1 0.2 0.3 0.2 0.4 0.1 0.2 0.2 0.5

CNRM-CM5_r1i1p1 -12.6 -22.3 -11.5 -6.6 -15.6 0.2 0.4 1.0 1.0 1.0 0.3 1.0 1.3

EC-EARTH_r9i1p1 -14.8 -19.7 -4.0 -3.8 -4.4 0.3 0.3 0.3 0.6 0.3 0.3 0.4 0.7

MIROC5_r1i1p1 37.8 37.8 2.0 2.8 0.2 0.7 0.6 0.2 0.4 0.0 0.7 0.2 0.8

CCSM4_r6i1p1 51.4 58.1 -4.5 -1.8 -7.8 0.9 1.0 0.4 0.3 0.5 0.9 0.4 1.3

inmcm4_r1i1p1 -10.9 -22.0 -3.3 -0.2 -6.2 0.2 0.4 0.3 0.0 0.4 0.3 0.3 0.5
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the calibration period (cal) at probability P. P is obtained by relating the raw climate model 

output Xraw to the corresponding ecdf in the calibration period. For QM calibration ecdfs are 

constructed for each month of the year (as in [Immerzeel et al., 2013]). As observed data we 

use the bias-corrected HI-AWARE reference climate product (Section 6.1 and Section 6.2). 

 

Figure 22 serves as an illustrated example of the QM methodology. The upper panel shows all 

daily temperature observations in July during 1981-2010 and the corresponding GCM values for 

one grid cell. For both distributions an empirical distribution function can be constructed (middle 

panel). With both ecdfs the correction function can be determined to correct GCM values from 

the future run to downscaled values (lower panel). If for example, the GCM future run projects T 

= 14 °C on 10 July 2073 (lower panel), then this value can be looked up in the ecdf from the 

GCM values in the control run (middle panel) and the corresponding value from the ecdf for 

observations can be determined (e.g. T = 12 °C). Thus the downscaled value will be 12 °C 

(lower panel). This is done for all daily values. The approach is comparative for other 

meteorological values, like for example precipitation (example in Figure 23). 

 

As described in [Themeßl et al., 2011b], the QM procedure can be extended by frequency 

adaptation (FA), to account for a methodological problem, occurring when the dry-day 

frequency in the model result is greater than in the observations, resulting in a systematic wet 

precipitation bias. Usually this is not the case because of the underestimate of the dry-day 

frequency (“drizzling effect”) in GCMs and RCMs. Problems have however been reported with 

the so called summer drying problems of RCMs in south-eastern Europe [e.g. Hagemann et al., 

2004].  With FA, only the fraction ∆𝑃0 =
(𝑒𝑐𝑑𝑓𝑑𝑜𝑦,𝑖

𝑚𝑜𝑑,𝑐𝑎𝑙(0)−𝑒𝑐𝑑𝑓𝑑𝑜𝑦,𝑖
𝑜𝑏𝑠,𝑐𝑎𝑙(0))

𝑒𝑐𝑑𝑓𝑑𝑜𝑦,𝑖
𝑜𝑏𝑠,𝑐𝑎𝑙(0)

 of dry-day cases with 

probability P0 are corrected randomly by linearly interpolating between zero precipitation and 

the precipitation amount of 𝑒𝑐𝑑𝑓𝑑𝑜𝑦,𝑖
𝑚𝑜𝑑,𝑐𝑎𝑙−1

(𝑒𝑐𝑑𝑓𝑑𝑜𝑦,𝑖
𝑚𝑜𝑑,𝑐𝑎𝑙(0)), i.e. the first precipitation class in QM 

without FA). We will first test the necessity of this additional extension for the HKH region. 

 

In addition [Themeßl et al., 2011b] further extended the QM methodology for improved 

simulation of new extremes, being values of extremes outside the range of the calibration 

period, by including constant extrapolation of the correction value (i.e. the difference between 

ecdfobs,cal and ecdfmod,cal) at the highest and lowest quantiles of the calibration range. 

Considering the example in Figure 23, a value in the future GCM run of 80 mm is outside the 

range of the ecdf of the GCM control run. In that case the future downscaled value would be 

determined as: 

 

𝑃𝐹𝑢𝑡𝑢𝑟𝑒𝐷𝑆
= max(𝑃𝑂𝐵𝑆) ∙

𝑃𝐹𝑈𝑇𝑈𝑅𝐸𝐺𝐶𝑀

max(𝑃𝐹𝑈𝑇𝑈𝑅𝐸𝐺𝐶𝑀
)

= 35 ∙
80

65
= 43 𝑚𝑚 
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Figure 22: Illustrative example of GCM signal downscaling by Quantile Mapping for one 

grid cell. Upper panel: All daily observations and GCM control run values for days in July 

during control period (1981-2010). Middle panel: Empirical distribution functions (ecdf) 

constructed for observations and GCM control run values in upper panel. Lower panel: 

Future daily temperature for a July in the future as from raw GCM input and 

corresponding downscaled values. 
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For this project, the downscaling procedure is as follows:  

1) GCM runs for the reference period (1981-2010) are resampled and smoothed to the 

hydrological model resolution. 

2) For each hydrological model grid cell the ecdfs are determined for two variables (Tavg 

and P) for grid cells in the reference climate dataset for 1981-2010 and the grid cells in 

the GCM simulations for 1981-2010 for each month (Jan-Dec) 

3) Future GCM data (2011-2075), for each of the 8 GCMs is resampled and smoothed to 

the hydrological model resolution. 

4) Future GCM data for each of the 8 GCMs, is corrected for each day for each 

hydrological model grid cell for each of the 2 meteorological parameters for each 

studied time slice in the future are corrected to generate downscaled hydrological 

model forcing. 

 

Maximum and minimum daily temperature (Tmax and Tmin) are downscaled differently. For this 

we have assumed that the range between Tmax and Tavg, and Tmin and Tavg is correctly 

represented in the GCMs. Therefore, we have downscaled these forcings according to the 

procedure below: 

1. Project and resample Tavg, Tmax, and Tmin to the hydrological model resolution. 

2. Calculate the difference between the resampled GCM Tmax and Tavg:  

Tmx_diff = Tmax – Tavg 

3. Calculate the difference between the resampled GCM Tmin and Tavg: 

Tmn_diff = Tmin – Tavg 

4. Use the downscaled Tavg from the QM methodology (see step 4 above) 

5. Add the differences from step 2 and step 3 to the downscaled Tavg to calculate the 

downscaled Tmax and Tmin: 

a. Tmax_downscaled = Tavg(QM) + Tmx_diff 

b. Tmin_downscaled = Tavg(QM) + Tmn_diff 
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Figure 23: Illustrative example of GCM signal downscaling by Quantile Mapping for one 

grid cell. Upper panel: All daily observations and GCM control run values for days in July 

during control period (1981-2010). Middle panel: Empirical distribution functions (ecdf) 

constructed for observations and GCM control run values in upper panel. Lower panel: 

Future daily temperature for a July in the future as from raw GCM input and 

corresponding downscaled values. 
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8 SPHY model and calibration 

8.1 Introduction to the SPHY model 

The Spatial Processes in HYdrology (SPHY) model [Terink et al., 2015] was developed with the 

explicit aim to simulate terrestrial hydrology at flexible scales, under various land use and 

climate conditions. SPHY is a spatially distributed leaky bucket type of model, and is applied on 

a cell-by-cell basis. In order to minimize the number of input parameters, and avoid complexity 

and long model run-times, SPHY does not include energy balance calculations, and is therefore 

a water-balance based model. The main terrestrial hydrological processes are described in a 

physically consistent way so that changes in storages and fluxes can be assessed adequately 

over time and space. SPHY is written in the Python programming language using the PCRaster 

[Karssenberg et al., 2001, 2010; Karssenberg, 2002] dynamic modelling framework. 

 

 
Figure 24: SPHY model concepts [Terink et al., 2015]. 

 

Figure 24 provides a schematic overview of the SPHY modeling concepts. SPHY is grid based 

and cell values represent averages over a cell. For glaciers, sub-grid variability is taken into 

account: a cell can be glacier free, partially glacierized, or completely covered by glaciers. The 

cell fraction not covered by glaciers consists of either land covered with snow or land that is free 

of snow. Land that is free of snow can consist of vegetation, bare soil, or open water. 

 

The soil column structure is similar to VIC [Liang et al., 1994, 1996], with two upper soil 

storages and a third groundwater storage. Their corresponding drainage components are 
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surface runoff, lateral flow and baseflow. SPHY simulates for each cell precipitation in the form 

of rain or snow, depending on the temperature. Precipitation that falls on land surfaces can be 

intercepted by vegetation and evaporated in part or whole. The snow storage is updated with 

snow accumulation and/or snowmelt. A part of the liquid precipitation is transformed in surface 

runoff, whereas the remainder infiltrates into the soil. The resulting soil moisture is subject to  

evapotranspiration, depending on the soil properties and fractional vegetation cover, while the  

remainder contributes to river discharge by means of lateral flow from the first soil layer, and  

baseflow from the groundwater layer.  

 

Melting of glacier ice contributes to the river discharge by means of a slow and fast component,  

being (i) percolation to the groundwater layer that eventually becomes baseflow, and (ii) direct  

runoff. The cell-specific runoff, which becomes available for routing, is the sum of surface runoff,  

lateral flow, baseflow, snowmelt and glacier melt. 

 

SPHY has been successfully applied in several studies in the Hindu Kush Himalayan region 

[Lutz et al., 2012, 2014a, 2016a]. More details regarding the SPHY model can be found in 

Terink et al. [2015]. 

8.2 SPHY model glacier module concepts 

In the current version of SPHY (2.1) glaciers are implemented as a fixed mass generating 

glacier melt using a degree day factor. In other words; glaciers remain constant in area and 

mass throughout the entire simulation period, while in reality glaciers disappear at a certain 

moment if ablation (melt) exceeds accumulation for a significant period of time. Additionally, the 

current version of SPHY does not account for precipitation falling onto the glacier, which can 

either fall as rain or snow. This means snowfall, accumulation and melt of snow is not 

accounted for. 

 

For a valuable assessment of the potential for hydropower in the future, it is essential that 

glaciers are implemented as dynamic entities that can melt, redistribute ice, and disappear over 

time if ablation exceeds accumulation. Therefore, the glacier module in the current version of 

SPHY has been improved to account for: 

 Precipitation falling on the glacier (rain or snow); 

 Accumulation and melt of a dynamic snowpack on the glacier; 

 Redistribution of ice from the accumulation to the ablation zone (Figure 25); 

 Removal of glacier fraction if ice depth becomes zero. 

 

These improvements are realized using a i) high-resolution DEM, ii) a map with glacier IDs 

(according to the Randolph Glacier Inventory v5.0 [Pfeffer et al., 2014]), iii) initial ice thickness 

(Glaptop2 [Frey et al., 2014; Linsbauer et al., 2016]), and iv) the model grid domain. As a pre-

processing step a glacier table is created that creates records with Unique IDs (UIDs); a unique 

combination of the model grid cell ID and glacier ID of a glacier that is located within that 

particular model grid cell. For that glacier ID fraction located within the model grid cell an 

average elevation is calculated using the high-resolution DEM. This allows for more accurate 

temperature estimations for that fraction, which eventually improves the calculation of snowfall 

and rainfall. The initial glacier volume for each UID is calculated by multiplying the glacier 

fraction with the cell area and initial ice depth. Each model time-step this table is updated using 

precipitation and temperature as input. 
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Figure 25: Illustration of a glacier’s accumulation and ablation area, and the Equilibrium 

Line Altitude (ELA) [Armstrong, 2010]. 

 

Accumulated snow in the glacier’s accumulation zone is transformed into ice and is distributed 

downstream towards the ablation area. This process of ice redistribution is implemented in 

SPHY by accumulating all melt and snow for each hydrological year and glacier, and calculate 

the difference. If this difference is negative, then a glacier is losing mass and ice from the 

ablation zone will be redistributed over the ablation zone according to the volume ice 

redistribution. This will be updated once a year, and is done at the end of the monsoon for the 

Tamakoshi River Basin. 

8.3 Input data 

As input, SPHY requires static data as well as dynamic data. For the static data, the most  

relevant are the Digital Elevation Model (DEM), land use type, glacier extents and ice depths, 

and soil characteristics. The DEM was obtained from HydroSHEDS1. GLOBCOVER2009 

[Bontemps et al., 2011] was used for the definition of land use classes. Hydrological soil 

properties were derived from HiHydroSoil [De Boer, 2015], which provides these properties on a 

spatial resolution of 1 km. Input data used for glaciers is described in the previous section. 

 

For dynamic data SPHY requires gridded maps of daily precipitation and the average-, 

minimum-, and maximum daily temperature. For the reference climate period we use the bias-

corrected HI-AWARE dataset, as described in Section 6.1 and 6.2. For the future climate we 

use an ensemble of 8 downscaled GCMs (Section 7.3). 

8.4 Calibration 

The SPHY model was calibrated using a two-step approach: first the model was calibrated to 

match the overall average glacier mass balance in this region, and secondly the model was 

calibrated to match the observed river discharge. 

8.4.1 Glacier mass balance 

Several studies determined the mass balance of glaciers in the Hindu Kush Himalayan region 

[Gardelle et al., 2013; Kääb et al., 2015]. The Tamakoshi River Basin is located in the Everest 

region (Figure 26), and the average annual mass balance in this area is approx. -370 mm/year 

(Table 7). As a first step the SPHY model’s glacier mass balance has been calibrated for the 

period 2001-2009 to match with the average observed mass balance of -370 mm/year. The year 

2000 was used to initialize the model. Calibration was done manually by optimizing the degree 

                                                     
1 http://www.hydrosheds.org/ 
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day factor for clean ice (DDFG), the degree day factor for debris covered ice (DDFDG), the 

critical temperature for precipitation to fall as rain or snow (Tcrit), snow storage capacity for 

liquid water (SnowSc), and the degree day factor for snow (DDFS). 

 

 
Figure 26: Sites in the HKH region where geodetic mass balance data has been analyzed 

[Gardelle et al., 2013]. Everest is the site which is nearest to the Tamakoshi River Basin. 

 

Table 7: Glacier elevation difference trends over the Pamir–Karakoram–Himalaya [Kääb 

et al., 2015]. 

 
 

The area-average annual mass balance of all glaciers in the Tamakoshi River Basin was 

calibrated as -391 mm/year. This result is very close to the observed value of -370±0.10, and 

therefore satisfactory to be used in the remainder of this study. The calibrated model 

parameters are shown in Table 8. Figure 27 shows per hydrological year the area-weighted 

accumulation, melt, and change in mass for all glaciers in the Tamakoshi River Basin. It is clear 

that there is more melt than accumulation, and therefore the overall mass balance being 

negative. The area-averaged annual glacier mass balance with all fluxes is shown in Table 9. 
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Table 8: Calibrated SPHY model glacier and snow parameters. 

Parameter Calibrated value Unit 

DDFG 4 mm °C-1 day-1 

DDFDG 2 mm °C-1 day-1 

Tcrit 2 °C 

SnowSc 0.5 - 

DDFS 5.5 mm °C-1 day-1 

 

 
Figure 27: Calibrated area-weighted mass balance of all glaciers in the Tamakoshi River 

Basin for the period 2000-2009. For each hydrological year the total accumulation, melt, 

and change in mass (dS) is shown. 

 

Table 9: Area-averaged annual fluxes from all glaciers in the Tamakoshi River Basin. 

Flux mm year-1 

Precipitation 2070 

Rain 977 

Snow 1093 

Snow melt 522 

Snow runoff 581 

Glacier melt 1141 

Glacier runoff 1047 

Glacier percolation 864 

 

8.4.2 Discharge 

Observed daily discharge for the period 2001-2009 was available for two stations, being Busti 

(ID 647) and Rasnalu (ID 650). The locations of these stations are shown in Figure 28, and are 

in proximity of the Hydropower plants Tamkoshi-III and Khimti. Therefore, if calibration is 

successful, then also the simulated discharge for these hydropower plants is accurate. 
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Figure 28: Location of discharge stations Busti (ID 647) and Rasnalu (ID 650). 

 

Table 10: Average annual water balance for the upstream areas of Busti and Rasnalu. 

Flux Busti (ID 647) 

[mm year-1] 

Rasnalu (ID 650) 

[mm year-1] 

Precipitation 2100 2759 

Evapotranspiration 339 732 

Discharge 1410 1864 

 

River discharge is calibrated for the period 2001-2009, using the year 2000 as initialization 

period. The following five model parameters were selected for calibration: 

 alphaGW 

 deltaGW 

 glacF 

 kx 

 

Additionally, a fractional map is calibrated that adjust the saturated hydraulic conductivity (Ksat) 

of the root- and subzone soil layers. Calibration was done using the automatic calibration 

package SPOTPY [Houska et al., 2015], using the Maximum Likelihood Estimation (MLE) 

optimization algorithm to minimize the Mean Squared Error between the observed and 

simulated streamflow . SPHY was calibrated for station ID 647, and validated for ID 650.  
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Figure 29 and Figure 30 show the hydrographs of calibrated vs. observed daily discharge for 

Busti and Rasnalu station, respectively. The Nash-Sutcliffe [Nash and Sutcliffe, 1970] and bias 

model performance indicators are shown as well. The Nash-Sutcliffe efficiency (NS) can range 

from −∞ to 1. An efficiency of 1 corresponds to a perfect match of modeled discharge to the 

observed data. An efficiency of 0 indicates that the model predictions are as accurate as the 

mean of the observed data, whereas an efficiency less than zero occurs when the observed 

mean is a better predictor than the model. Essentially, the closer the model efficiency is to 1, the 

more accurate the model is. The bias is defined as the difference between the average 

simulated and average observed discharge. It is preferred to have a bias that is close to 0. 

Positive biases indicate overestimated discharge, while negative biases indicate 

underestimated discharge. 

 

 
Figure 29: Hydrograph of calibrated vs. observed daily discharge for Busti station (ID 

647). Missing values in 2002 and 2003 are not taken into account. 

 

 
Figure 30: Hydrograph of validated vs. observed daily discharge for Rasnalu station (ID 

650). Missing values in 2009 are not taken into account. 
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With NS-efficiencies of 0.79 and 0.76, and biases of 5.90% and -4.88% for Busti and Rasnalu, 

respectively, it can be concluded that the SPHY model is calibrated very satisfactory. It is clear 

that the model underestimates the extreme peak flows. There may be several reasons for the 

underestimation of high peak flows. First, according to DHM, who collects and manages these 

datasets (Table 11), the quality of the discharge data of the two stations are classified as ‘Fair’, 

which suggest that the observed data might have some issues related to the physical condition 

and/or the location of the discharge measurement. Second, because of the discharge rating 

curves (which changes over time), there are large uncertainties in the estimation of high peak 

flows. 

 

Table 11: Discharge station quality [http://www.dhm.gov.np/hydrological-station/].  

Station no. Name Elevation 

[MASL] 

Drainage area 

[km2] 

Quality 

647 Busti 849 2753 Fair 

650 Rasnalu 1120 313 Fair 

 

The section above evaluated the model performance on a daily basis. For Hydropower 

generation, however, it is also relevant to evaluate the model’s performance on a monthly time-

scale. Hydrographs of calibrated vs. observed monthly discharge are shown in Figure 31 and 

Figure 32 for Busti and Rasnalu, respectively. Based on these hydrographs it can be concluded 

that monthly performance is even better as daily model performance, and that the model is 

suitable to evaluate the impacts of climate change on Hydropower potential for Tamakoshi-III 

and Khimti. 

 
Figure 31: Hydrograph of calibrated vs. observed monthly discharge for Busti station (ID 

647). Missing values in 2002 and 2003 are not taken into account. 
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Figure 32: Hydrograph of validated vs. observed monthly discharge for Rasnalu station 

(ID 650). Missing values in 2009 are not taken into account. 
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9 Hydrological impacts of climate change 

9.1 Basin wide impacts 

9.1.1 Spatial patterns of precipitation and temperature 

Figure 33 shows the spatial changes in precipitation and temperature for the two future periods 

2016-2045 and 2046-2075 (referred to as P1 and P2 hereafter) with respect to the reference 

climate 1981-2010. Changes are calculated based on the average signal of the 4 RCP4.5 

GCMs. For P1 we can expect an increase in annual precipitation of 2-3%, while this increase is 

estimated to be 12% for P2. Average annual temperatures are expected to increase with 0.5-1 

°C for P1, and 1.4-2 °C for P2. For temperature the increase is more evident in the southern 

part of the basin. This is likely related to another GCM grid cell that is used for the lower part. 

 

 
Figure 33: Top (from left to right): average annual precipitation (P) for the reference 

climate, and the change in annual precipitation (%) for 2016-2045 (P1) and 2046-2075 

(P2), both averaged over the 4 RCP4.5 GCMs. Bottom (from left to right): average annual 

temperature (T) for the reference climate, and the change in annual temperature (°C) for 

2016-2045 and 2046-2075, both averaged over the 4 RCP4.5 GCMs. 

 

Figure 33 calculated the difference based on the average signal of the 4 RCP4.5 GCMs. In 

each GCM, the physics of the atmosphere are represented differently, and therefore each GCM 

produces a different precipitation and temperature signal. Figure 34 shows the standard 

deviation (δ) of the 4 RCP4.5 GCMs for the annual precipitation (top) and annual temperature 

(bottom) for P1 and P2. This can be interpreted as the uncertainty in the future estimates for 
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precipitation and temperature. It is clear that the variation in annual precipitation between the 

GCMs can range between 70 and 160 mm for P1, and 90-200 mm for P2, with the largest 

uncertainties in the southeastern part of the basin. Logically, this range is broader for P2 

because the far future is more uncertain than the nearby future. Standard deviations of average 

annual temperature for the RCP4.5 GCMs ranges between 0.25-0.45 °C for P1, and 0.5-0.75 

for P2., indicating a more uncertain 2046-2075 period. 

 

 
Figure 34: Top: standard deviations of the 4 RCP4.5 average annual precipitation sums 

for the two future periods. Bottom: same, but then for average annual temperature. 

 

Similar analyses have been conducted for the RCP8.5 GCMs, which are based on a higher 

radiative forcing pathway [van Vuuren et al., 2011]. Figure 35 shows the spatial changes in 

precipitation and temperature for P1 and P2, based on the RCP8.5 GCMs. Compared to the 

changes based on the RCP4.5 GCMs (Figure 33), it is clear that changes in average annual 

precipitation and temperature are larger for the RCP8.5 GCMs. For 2016-2045 it is expected 

that the average annual precipitation increases with 5.5-8%, while this is 14-18.5% for 2046-

2075. Temperature is expected to increase with 0.8-1.4 °C for 2016-2045, and with 2.2-2.9 °C 

for 2046-2075. 

 

Similar as done for RCP4.5, Figure 36 shows the standard deviation (δ) of the 4 RCP8.5 GCMs 

for the annual precipitation (top) and temperature (bottom) for P1 and P2. Standard deviations 

of annual precipitation for the RCP8.5 GCMs range between 25 and 70 mm for P1, and 70-135 

mm for P2. Again these uncertainties are larger for the far future, but smaller compared to the 

uncertainties found for the RCP4.5 GCMs. For temperature the RCP8.5 GCMs are more 

uncertain, with standard deviations ranging between 0.38 and 0.62 °C for P1, and 0.68 and 1.05 

°C for P2. 
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To take these uncertainties into account, this study evaluates the impact of climate change by 

analyzing the average, minimum, and maximum of GCM signals for both RCP4.5 and RCP8.5. 

This provides us with the broadest range of discharge possibilities for the future. 

 

 
Figure 35: Top (from left to right): average annual precipitation (P) for the reference 

climate, and the change in annual precipitation (%) for 2016-2045 (P1) and 2046-2075 

(P2), both averaged over the 4 RCP8.5 GCMs. Bottom (from left to right): average annual 

temperature (T) for the reference climate, and the change in annual temperature (°C) for 

2016-2045 and 2046-2075, both averaged over the 4 RCP8.5 GCMs. 
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Figure 36: Top: standard deviations of the 4 RCP8.5 average annual precipitation sums 

for the two future periods. Bottom: same, but then for average annual temperature. 

9.1.2 Annual time-series 

Figure 37 shows the basin average annual precipitation for the reference climate (1981-2010) 

and the future climate (2016-2075), as represented by four RCP4.5 GCMs. Currently, 

precipitation ranges between 1800 and 2500 mm per year. All four RCP4.5 GCMs show an 

increasing trend in annual precipitation. Annual precipitation sums ≥3000 mm are not unlikely. 

At the same time, we can also expect some years with less precipitation (1500 mm). 

 

 
Figure 37: Basin average annual precipitation sums for reference climate and 4 RCP4.5 

GCMs. 
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For RCP8.5 the increase in annual precipitation Figure 38is even more evident than for RCP4.5. 

Figure 38 shows a clear increasing trend for all RCP8.5 GCMs in annual precipitation. Based on 

these projections we may expect annual precipitation to reach 3000 mm during 2016-2045, and 

even larger sums are expected during 2046-2075. The most extreme case is shown by 

CanESM2_rcp85_r4i1p1, with approx. 4000 mm year-1 near the end of 2046-2075. Compared 

to RCP4.5, we notice a lower frequency in years with precipitation ranging between 1500-2000 

mm. 

 

 
Figure 38: Basin average annual precipitation sums for reference climate and 4 RCP8.5 

GCMs. 

 

 
Figure 39: Basin average annual temperature for reference climate and 4 RCP4.5 GCMs. 

 

Basin average annual temperature projections for the reference climate and future climate, as 

represented by the four RCP4.5 GCMs, is shown in Figure 39. The reference period already 

shows an increasing trend in annual temperature, with annual temperatures ranging between 

5.5 and 7°C. This trend continues to increase during the period 2016-2075. The average 

temperature during the period 1981-2010 is approx. 6.5°C, and is projected to be 7.0°C on 

average for 2016-2046. For 2046-2075 the average annual temperature of the 4 GCMs is 

approx. 8°C, which is an increase of 1.5°C with respect to the period 1981-2010. 
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Figure 40: Basin average annual temperature for reference climate and 4 RCP8.5 GCMs. 

 

Similar as for RCP4.5, Figure 40 shows the basin average annual temperature projections for 

the four RCP8.5 GCMs. It is clear that a stronger temperature increase is projected for RCP8.5, 

with an average annual temperature of approx. 7.5 °C for 2016-2045, and 8.5°C for 2046-2075. 

The latter period is therefore projected to be approx. 2°C warmer compared to the reference 

period. The range in temperature projections between the RCP8.5 GCMs is larger than those 

for RCP4.5. This range can be more than 2°C, meaning that the uncertainty in temperature 

projections is quite uncertain. These higher temperatures will affect snow- and glacier melt 

substantially. 

 

 
Figure 41: Basin average glacier melt for reference climate and 4 RCP4.5 GCMs. 

 

Figure 41 shows the basin average annual glacier melt as modelled by the SPHY model for the 

reference climate and future climate, using the four RCP4.5 GCM projections of precipitation 

and temperature. Average annual glacier melt for the reference climate is approx. 80 mm year-1, 

and ranges between 65 and 100 mm year-1. The projected increase in temperature for 2016-

2045 (Figure 39) results in an increased melt rate from glaciers, leading to a gradual retreat of 

these glaciers, and eventually the disappearance of those glaciers. With the glaciers retreating, 
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less glacier surface area is available for melting, which explains the decrease in glacier melt for 

2016-2045. This decrease is strongest during 2016-2045. 

 

 
Figure 42: Basin average glacier melt for reference climate and 4 RCP8.5 GCMs. 

 

Glacier melt as modelled by the SPHY model for the reference climate and the future climate, 

using the four RCP8.5 GCM projections of precipitation and temperature as input, is shown in 

Figure 42. Also for the RCP8.5 projections average annual glacier melt is expected to decrease. 

However, this decrease in melt is smaller compared to that of RCP4.5. This is related to the fact 

that RCP8.5 temperature projections are higher, resulting in a higher melting rate. This 

significantly affects the glaciers in the higher elevation areas, where ice depths are much larger 

compared to those in the lower elevation areas. Because of these larger ice depths, the 

percentual loss in volume is much larger compared to the loss in area for these high-elevation 

glaciers. In other words; the higher RCP8.5 temperature projections, and thus higher melting 

rates, especially reduce the glacier volume instead of glacier surface area in these regions, 

which explains the higher glacier melt around 2075 for the RPC8.5 projections. Additionally, the 

higher precipitation projections for RCP8.5 may lead to more snowfall in these higher elevated 

areas, which can contribute to a slight increase in glacier mass in those areas. 

 

 
Figure 43: Basin average discharge for reference climate and 4 RCP4.5 GCMs. 
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The projected increase in both precipitation (Figure 37 and Figure 38) and temperature (Figure 

39 and Figure 40) will result in an increase in river discharge. This is shown in Figure 43, with 

the basin average discharge for the reference climate and future period, based on the four 

RCP4.5 GCM projections. For the reference period, the basin average annual discharge 

fluctuates around 1500 mm year-1. The expected average annual discharge for 2016-2075 is 

approx. 1700 mm year-1, and can vary between 1000 and 2500 mm year-1 with exceptions of 

more than 2500 mm year-1. Discharges are highest for inmcm4_rcp45_r1i1p1, which is related 

to the higher precipitation projections of this GCM. 

 

 
Figure 44: Basin average discharge for reference climate and 4 RCP8.5 GCMs. 

 

With the higher precipitation and temperature projections of the RCP8.5 GCMs, it is logical that 

also the basin average annual discharge is higher for these GCMs, which is shown in Figure 44. 

Based on the RCP8.5 GCMs, the expected basin average annual discharge for 2016-2075 is 

approx. 1900 mm year-1, and the frequency of years with discharge >2000 mm year-1 is higher 

compared to that of the RCP4.5. 

9.1.3 Monthly changes 

Changes in precipitation are also assessed on a monthly basis (Figure 45). It can be seen that 

the increase in precipitation is most evident during the monsoon, especially during July-August. 

Currently, the average monthly precipitation for July-August is 550 mm month-1. For 2016-2045 

this may increase to 650 mm month-1, while this can reach 700 mm month-1 during 2046-2075. 

It is also indicated that it is not unlikely that we may expect less precipitation during July-August, 

especially during P1. 

 

Figure 46 shows the change in average monthly temperature for the reference climate and the 

periods 2016-2045 and 2046-2075. As shown earlier, both periods show an increase in basin 

average temperature, with the largest increase expected during 2046-2075. Temperature 

increases are largest during the winter and monsoon months, which is especially true for 2046-

2075. For 2046-2075, an increase of 2-3 °C is not unlikely during the winter and monsoon 

months. This inevitably will lead to more precipitation to fall as rain instead of snow. 
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Figure 45: Left: basin average monthly precipitation for the reference climate, and the 

2016-2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, respectively. 

Blue and red bands represent the range between the maximum and minimum of GCM 

projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 period. 

 

 
Figure 46: Left: basin average monthly temperature for the reference climate, and the 

2016-2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, respectively. 

Blue and red bands represent the range between the maximum and minimum of GCM 

projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 period. 

 

Figure 47 shows the change in average monthly glacier melt for the reference climate and the 

periods 2016-2045 and 2046-2075. Due to increased temperatures, glaciers gradually retreat 

and as a result contribute to a lesser extent to the total river discharge. Because of the 

retreating glaciers, melt from glaciers is smaller for both future periods, especially for 2046-

2075. On average, glacier melt during July-August decreases from 23 to 19 mm month-1 for 

2016-2045, and to 12 mm month-1 for 2046-2075, which is almost half of what is generated 

during the reference period. 
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Figure 47: Left: basin average monthly glacier melt for the reference climate, and the 

2016-2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, respectively. 

Blue and red bands represent the range between the maximum and minimum of GCM 

projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 period. 

 

However, considering the monthly discharge volumes (Figure 48), the contribution of glacier 

melt to the total flow is minor (6% for the reference climate). The higher temperatures result in 

more precipitation falling as rain instead of snow, which causes an increase in river discharge 

during the first few months of the year. The increase in precipitation during the monsoon causes 

the river discharge to increase during 2016-2045 and 2046-2075. For August the average 

discharge may increase from approx. 375 to 475 mm month-1 for P1, and to 500 mm month-1 for 

P2. During October-December no substantial changes in river discharge are expected. 

 

 
Figure 48: Left: basin average monthly discharge for the reference climate, and the 2016-

2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, respectively. Blue 
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and red bands represent the range between the maximum and minimum of GCM 

projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 period. 

9.2 Tamakoshi-III 

9.2.1 Annual time-series of discharge 

Figure 49 and Figure 50 show the average annual discharge for the periods 1981-2010 and 

2016-2075 for Tamakoshi-III. The expected discharge simulated using the RCP4.5 GCMs as 

input is shown in Figure 49, while the expected discharge using the RCP8.5 GCMs as input is 

shown in Figure 50. 

 

 
Figure 49: Average annual discharge for Tamakoshi-III for the reference climate and 4 

RCP4.5 GCMs. 

 

 
Figure 50: Average annual discharge for Tamakoshi-III for the reference climate and 4 

RCP8.5 GCMs. 

 

As a result of increased precipitation and temperature, an increase in discharge is expected for 

the period 2016-2075. The average annual discharge for Tamakoshi-III ranges between 100 

and 165 m3/s for the reference period. As a result of climate change, using the RCP4.5 GCM 
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projections, we may expect the average annual discharge for 2016-2075 to vary between 100-

200 m3/s. Years with more than 200 m3/s are not unlikely. The stronger increase in precipitation 

and temperature, as projected by the RCP8.5 GCMs, leads to higher discharge expectations for 

2016-2075, ranging between 125-225 m3/s. 

9.2.2 Monthly changes 

The total discharge as simulated by the SPHY model consists of four components, being 

baseflow, glacier runoff, snow runoff, and rain runoff. The contribution of each of these flow 

components to the total discharge at Tamakoshi-III is shown in Figure 51 for the reference 

period (1981-2010), and the two future periods 2016-2045 and 2046-2075. For the reference 

period, the annual contribution of these flow components to the total flow is 7-8% for glacier 

runoff, 18-19% for snow runoff, 12-13% for baseflow runoff, and 61-62% for rainfall runoff. 

 

 
Figure 51: Top: average monthly discharge for Tamakoshi-III as contributed by baseflow, 

glacier runoff, snow runoff, and rain runoff. Results are shown the reference period 

(1981-2010), and the two future periods 2016-2045 and 2046-2075, which are based on the 

average of the RCP4.5 GCMs. Bottom: idem, but based on the RCP8.5 GCMs. 

 

From Figure 51 it is clear that rain runoff (surface runoff + lateral flow) is the largest contributor 

to the total discharge, which occurs mainly during the monsoon season. As a result of climate 

change we see an increase in precipitation and temperature, and thus an increase in rain runoff. 

The average monthly discharge is highest during August, and is approx. 400 m3/s for the 

reference period. This increases to 470 and 490 m3/s for 2016-2045 and 2046-2075, 

respectively (RCP4.5 GCM projections). This increase is higher for the RCP8.5 GCM 

projections, being 480 m3/s for 2016-2045 and 500 m3/s for 2046-2075. Compared to the 
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reference climate we notice a decrease in glacier runoff as a result of the melting and 

disappearing of glaciers. Another interesting change is the smaller contribution of snow runoff, 

which is especially evident during 2046-2075. This is the result of the increase in temperature, 

leading to more precipitation to fall as rain instead of snow. 

 

The change in average monthly discharge at Tamakoshi-III is also shown in Figure 52, including 

uncertainty bands that reflect the difference between the maximum and minimum of the RCP 

GCMs. Based on this we may expect the average monthly discharge during August to vary 

between 450-500 m3/s during 2016-2045, and 450-550 m3/s during 2046-2075. The overall 

expected increase discharge is a positive development for Hydropower development. 

 

 
Figure 52: Left: average monthly discharge for Tamakoshi-III for the reference climate, 

and the 2016-2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, 

respectively. Blue and red bands represent the range between the maximum and 

minimum of GCM projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 

period. 

9.2.3 Extremes 

The previous two sections focused on annual and monthly averages only, while for Hydropower 

development extreme discharge events may produce conditions outside the current dam design 

criteria. For example, run-of-river systems are unable to store discharge that exceeds the 

maximum production capacity. This section therefore analyzes the impact of climate on extreme 

river discharge by comparing the maximum annual discharge of the reference climate with 

those of the future climate. 

 

Figure 53 shows the return periods of maximum annual discharge of the reference climate, and 

compares it with those of the two future periods 2016-2045 (left plots) and 2046-2075 (right 

plots), as represented by the 4 RCP4.5 GCMs (top plots) and 4 RCP8.5 GCMs (bottom plots). 

Since only 30 years of data was available, a Generalized-Extreme-Value (GEV) distribution 

[Kotz and Nadarajah, 2000] has been fitted through the data points to extent the analysis for 

return periods up to a 100 years. 

 

For the reference climate (1981-2010) we notice that the maximum annual discharge that 

occurs once every 10 years is approx. 650 m3/s. With the same probability (1/10 year), this 
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extreme discharge increases to 1000-1100 m3/s for 2016-2045, and 1200-1300 m3/s for 2046-

2075, which is approx. twice as much as is the case for the reference period. Once every 100 

years we may experience a river discharge of roughly 700 m3/s. Although these long return 

periods are more uncertain, we already can see a substantial increase in maximum annual river 

discharge for this 1/100 year event for the two future periods. It is clear that the fit through the 

inmcm4_rcp45_r1i1p1 data points is very sensitive to one outlier, and therefore we put less 

confidence in this fit. Considering the other fits, however, it is clear that the 1/100 year 

maximum annual discharge in the future increases from 700 to approx. 1400 m3/s for 2016-

2045, and to 1600 m3/s for 2046-2045. 

 

 
Figure 53: Return periods of maximum annual discharge for Tamakoshi-III. A 

Generalized-Extreme-Value (GEV) distribution has been fitted through the data. Left and 

right plots differentiate between the two future periods, while top and bottom distinguish 

between RCP4.5 and RCP8.5. 

9.3 Khimti 

9.3.1 Annual time-series of discharge 

Figure 54 and Figure 55 show the average annual discharge for the periods 1981-2010 and 

2016-2075 for Khimti intake. The expected discharge simulated using the RCP4.5 GCMs as 

input is shown in Figure 54, while the expected discharge using the RCP8.5 GCMs as input is 

shown in Figure 55. 
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Compared to Tamakoshi-III, the river discharge at Khimti intake is substantially smaller (130 

m3/s at Tamakoshi-III vs 23 m3/s at Khimti (annual average)). The average annual discharge for 

Khimti intake ranges between 15 and 30 m3/s for the reference period. Using the RCP4.5 GCM 

projections, we can expect an average annual discharge at Khimti intake that ranges between 

15-35 m3/s during 2016-2075. An average annual river discharge of more than 35 m3/s is not 

unlikely in the future. The stronger increase in precipitation and temperature, as projected by 

the RCP8.5 GCMs, leads to higher discharge expectations for 2016-2075, ranging between 15-

40 m3/s. EC_EARTH_rcp85_r9i1p1 results in the highest projections of average annual river 

discharge, with values of more than 40 m3/s not being unlikely. This means we may expect 

twice the average annual discharge in the future for Khimti intake. 

 

 
Figure 54: Average annual discharge for Khimti intake for the reference climate and 4 

RCP4.5 GCMs. 

 

 
Figure 55: Average annual discharge for Khimti intake for the reference climate and 4 

RCP8.5 GCMs. 

9.3.2 Monthly changes 

Since almost no glaciers are to be found upstream of Khimti intake, discharge at Khimti is even 

more rainfall dominated than Tamakoshi-III. The contribution of each of the flow components to 

the total discharge at Khimti intake is shown in Figure 56 for the reference period (1981-2010), 
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and the two future periods 2016-2045 and 2046-2075. For the reference period, the annual 

contribution of these flow components to the total flow is 0% for glacier runoff, 2-3% for snow 

runoff, 20-21% for baseflow runoff, and 76-77% for rainfall runoff. 

 

From Figure 56 it is clear that most discharge is generated during the monsoon season, which 

is mainly contributed by rain runoff (surface runoff + lateral flow). As a result of climate change 

we see an increase in precipitation, and thus an increase in rain runoff. The average monthly 

discharge is highest during August, and is approx. 67 m3/s for the reference period. This 

increases to nearly 72 and 79 m3/s for 2016-2045 and 2046-2075, respectively (RCP4.5 GCM 

projections). This increase is higher for the RCP8.5 GCM projections, being approx. 78 m3/s for 

2016-2045 and 83 m3/s for 2046-2075. Because of the lower elevation area upstream of Khimti 

intake (Figure 2), most precipitation falls as snow, and does therefore barely contribute to the 

discharge. 

 

 
Figure 56: Top: average monthly discharge for Khimti intake as contributed by baseflow, 

glacier runoff, snow runoff, and rain runoff. Results are shown the reference period 

(1981-2010), and the two future periods 2016-2045 and 2046-2075, which are based on the 

average of the RCP4.5 GCMs. Bottom: idem, but based on the RCP8.5 GCMs. 

 

The change in average monthly discharge at Khimti intake is also shown in Figure 56, including 

uncertainty bands that reflect the difference between the maximum and minimum of the RCP 

GCMs. Based on this we may expect the average monthly discharge during August to vary 

between 65-85 m3/s during 2016-2045, and 70-95 m3/s during 2046-2075. The overall expected 

increase discharge is a positive development for Hydropower development. We may also 

expect an increase in discharge during the pre-monsoon season. 
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Figure 57: Left: average monthly discharge for Khimti intake for the reference climate, 

and the 2016-2045 period for the average of the RCP4.5 GCMs and RCP8.5 GCMs, 

respectively. Blue and red bands represent the range between the maximum and 

minimum of GCM projections for RCP4.5 and RCP8.5. Right: idem, but for the 2046-2075 

period. 

9.3.3 Extremes 

Similar as for Tamakoshi-III, Figure 58 shows for Khimti intake the return periods of maximum 

annual discharge of the reference climate, and compares it with those of the two future periods 

2016-2045 (left plots) and 2046-2075 (right plots), as represented by the 4 RCP4.5 GCMs (top 

plots) and 4 RCP8.5 GCMs (bottom plots). Since only 30 years of data was available, a 

Generalized-Extreme-Value (GEV) distribution [Kotz and Nadarajah, 2000] has been fitted 

through the data points to extent the analysis for return periods up to a 100 years. 

 

For the reference climate (1981-2010) we notice that the maximum annual discharge that 

occurs once every 10 years is approx. 110 m3/s. With the same probability (1/10 year), this 

extreme discharge increases to 150-160 m3/s for 2016-2045, and 170-190 m3/s for 2046-2075. 

Once every 100 years we may experience a river discharge of roughly 130 m3/s for the 

reference period. Although these long return periods are more uncertain, we already can see a 

substantial increase in maximum annual river discharge for this 1/100 year event for the two 

future periods. The GEV fit through the inmcm4_rcp45_r1i1p1 data points is very sensitive to 

one outlier, and therefore we put less confidence in this fit. Considering the other fits, however, 

it is clear that the 1/100 year maximum annual discharge in the future increases from 130 to 

approx. 190-200 m3/s for 2016-2045, and to 240-330 m3/s for 2046-2075. 
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Figure 58: Return periods of maximum annual discharge for Khimti intake. A 

Generalized-Extreme-Value (GEV) distribution has been fitted through the data. Left and 

right plots differentiate between the two future periods, while top and bottom distinguish 

between RCP4.5 and RCP8.5. 
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10 Hydropower Potential 

10.1 Approach 

10.1.1 Overall 

In the previous Chapters a detailed understanding of present hydrology and future changes to 

the hydrological cycle and its uncertainty has been presented. It is very relevant in terms of 

investment decisions to what extent this will affect potential hydropower generation. The Water 

Evaluation and Planning tool (WEAP) [Sieber and Yates, 2015] is used to asses this potential 

hydropower production. The simulated daily discharge from the SPHY model (see previous 

Chapter) at two proposed hydropower locations (Tamakoshi-III and Khimti) were fed into the 

WEAP model to evaluate hydropower potential under various climate change projections and 

hydropower facility design scenarios. WEAP has been used in the past to predict successfully 

hydropower in the Himalayan region [Sahukhal and Bajracharya, 2015], and more specifically 

for impact of climate change on hydropower [Droogers et al., 2009]. 

 

Potential hydropower locations used are shown in Figure 59. Two locations are selected for 

further analysis: Tamakoshi-III (dam) and Khimti-intake (run-off-river). Summarized 

characteristics of these two potential locations are provided in Table 12. 

 

 
Figure 59: Location of the proposed hydropower site. Tamakoshi-III (dam) and Khimti-

intake (ROR) were selected for further analysis. 
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Table 12: Main characteristics of the two proposed hydropower facilities. Tamakoshi-III 

has a reservoir and Khimti-intake is a run-off-river. 

  Tamakoshi-III Khimti-Intake 

RESERVOIR     

Reservoir (MCM) 157 N/A 

Highest level (masl) 940 N/A 

Lowest level (masl) 890 N/A 

Tunnel inlet (masl) 860 N/A 

Weir length effective (m) 200 N/A 

Tailwater elevation (masl) 660 N/A 

HYDROPOWER 
 

  

Max turbine flow (m3/s) 306 11.65 

Plant factor (%) 90 90 

Generating efficiency (%) 92 92 

Head (m) 330/380 660 

Installed capacity (MW) 600 60 

 

10.1.2 WEAP model 

WEAP places the demand side of the equation--water use patterns, equipment efficiencies, re-

use, prices, hydropower energy demand, and allocation--on an equal footing with the supply 

side--streamflow, groundwater, reservoirs and water transfers. WEAP is a laboratory for 

examining alternative water development and management strategies. There are various 

reasons for choosing the WEAP framework. Most important is that WEAP is completely focused 

towards scenario analysis in a user-friendly approach. Second, WEAP is very scalable and a 

first-order setup of a particular region can be easily expanded when more data/resources are 

available. Third, WEAP is commonly used world-wide for IWRM analyses, including hydropower 

assessment.  

 

A detailed discussion on WEAP can be found in the WEAP manual which can be obtained from 

the WEAP website (http://www.weap21.org/). In summary WEAP has the following features: 

 Integrated Approach: Unique approach for conducting integrated water resources 

planning assessments. 

 Stakeholder Process: Transparent structure facilitates engagement of diverse 

stakeholders in an open process. 

 Water Balance: A database maintains water demand and supply information to drive 

mass balance model on a link-node architecture. 

 Hydropower Analysis: A versatile approach to hydropower scenario analysis in an 

integrated way, including impacts and economics. 

 Simulation Based: Calculates water demand, supply, runoff, infiltration, crop 

requirements, flows, and storage, and pollution generation, treatment, discharge and in-

stream water quality under varying hydrologic and policy scenarios. 

 Policy Scenarios: Evaluates a full range of water development and management 

options, and takes account of multiple and competing uses of water systems. 

 User-friendly Interface: Graphical drag-and-drop GIS-based interface with flexible 

model output as maps, charts and tables. 

 Model Integration: Dynamic links to other models and software, such as QUAL2K, 

MODFLOW, MODPATH, PEST, Excel and GAMS. Links to all other models can be 

developed quite easily since WEAP can read and write plain text files similar as SWAT, 

SPHY, SWAP, Mike11, HEC-HMS, HEC-RAS and Geo-SFM.  

 

http://www.weap21.org/
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For this specific study focus is on the hydropower modules of WEAP. However, the model as 

developed can be easily extended to make a more balanced analysis for competing water 

demand scenarios. 

 

Hydropower generation in WEAP is computed from the flow passing through the turbine, based 

on the reservoir release or run-of-river streamflow, and constrained by the turbine's maximum 

flow capacity. Note that the amount of water that flows through the turbine is calculated 

differently for local reservoirs, river reservoirs and run-of-river hydropower. For river reservoirs, 

all water released downstream is sent through the turbines, but water pumped from the 

reservoir to satisfy direct reservoir withdrawals is not sent through the turbines. For local 

reservoirs, all linked demand sites are assumed to be downstream of the reservoir, so all 

reservoir releases are sent through the turbines. For run-of-river hydropower nodes, the 

"release" is equal to the downstream outflow from the node. Details of the calculation algorithms 

can be found in the WEAP User Guide. 

10.1.3 Model Setup 

The WEAP model has been setup based on the design characteristics of the potential 

hydropower facilities and the flow data as generated by the SPHY model (see previous 

Chapter). In the figure below a screenshot of the developed model is shown. Extensive use of 

the so-called “Read-By-File” option was used to ensure a good connection to the SPHY model 

results. Also “Key-Assumptions” were used effectively to ease scenario analysis. Finally, 

WEAP’s built in API (application programming interface) was used to automate various input 

and output processes.  

 

 
Figure 60: Screenshots of the WEAP model as developed for the Tamakoshi River Basin: 

schematic overview of main model components. 
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10.2 Current situation 

The WEAP models was first setup to explore what the hydropower production would have been 

in the past assuming the Tamakoshi-III and the Khimti hydropower plants were effective. To 

consider variation in weather conditions a 30-years period (1981-2010) was used. Expected 

hydropower production would be on average 2743 GWh/y of which Tamakoshi-III would have 

generated 2354 GWh/y and Khimti 389 GWh/y (Table 13). Year-to-year variation is modest 

(Figure 61) with during drier years (1981-1982 and 2009-2010) annual production levels around 

10% lower than long-term averages. Day-to-day variation is however substantial with peak 

levels during July to October (Figure 62). Obviously for Khimti with its run-of-river plant, no 

regulation is possible. For Tamakoshi-III, with a reservoir, regulation and storage might be 

possible. For this specific study the operational rule was set that a maximum of 4% of reservoir 

storage can be abstracted on each particular day. Obviously, more advanced operational rules 

are possible depending on the overall energy demand policies.  

 

A comparison between initial calculations of Statkraft’s hydropower model for Khimti and the 

results for WEAP is made. Figure 63 shows that overall results are quite comparable, 

differences might result from differences in calculation algorithms.  

 

Table 13: Potential hydropower production over a historic period of 30 years (1981-2010) 

assuming that hydropower station would have exist. 

  Tamakoshi-III Khimti Total 

Average (GWh/y) 2354 389 2743 

Minimum (GWh/y) 1997 320 2332 

Maximum (GWh/y) 2540 448 2988 

 

 
Figure 61: Stacked bar plot of potential hydropower generation over the last 30 years, 

assuming Tamakoshi-III and Khimti would have been constructed and operational.  
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Figure 62: Potential hydropower generation over the last 30 years assuming Tamakoshi-

III and Khimti would have been constructed and operational. Figure display the daily 

averages over a period of 30 years (1981-2010). 

 

 
Figure 63: Comparison of the potential hydropower generation for Khimti based on the 

Statkraft and the WEAP (this report) methodology. Results are presented for the period 

2016-2075 and for the eight climate scenarios combined. 

10.3 Hydropower production under changing climate 

Based on the flows as calculated by the SPHY model for the eight climate projections expected 

hydropower production is calculated using the WEAP model. There is quite some variation of 

projected hydropower generation based on the climate models, the RCP and the time horizon 

considered. In Figure 64 the full range of projected hydropower generation for the eight 

scenarios and for all the years is shown. The Figure shows that in general the climate models 

behave in the same trend, with the exception of the EC‐Earth model (a model based on the 

ECMWF weather forecast model). 
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Overall, higher hydropower production can be expected in the future as a results of higher 

discharge. These higher discharges are expected because of the increase in precipitation in 

combination with changes in glaciers’ extent. The differences between the RCp4.5 and RCP 8.5 

projections is quite noticeable (Figure 65 and Figure 66), but in general a positive trend can be 

seen for both. 

 

Year-to-year variation in hydropower production is explored and can be quite high and is climate 

model dependent (Figure 67 and Figure 68). Somewhat surprisingly, this annual variation for 

Tamakoshi-III is higher compared to Khimti (Figure 69 and Figure 70), while Tamakoshi-III has 

a regulating reservoir. Main reason is that the storage capacity of Tamakoshi-III is relatively low 

compared to the high flows during the wet season. Other reason is that Khimti’s design capacity 

is relatively low, so even in years with low flows it still operates at its design capacity. 

  

 
Figure 64: Potential hydropower generation (sum of Tamakoshi-III and Khimti) under the 

eight climate change projections. 

 

 
Figure 65: Potential hydropower generation (sum of Tamakoshi-III and Khimti) under the 

eight climate change projections averaged over RCP4.5 and RCP8.5. 

 

 



 

81 

 

 
Figure 66: Potential hydropower generation under the eight climate change projections 

averaged over RCP4.5 and RCP8.5. Tamakoshi-III (top) and Khimti (bottom). 

 

 
Figure 67: Potential hydropower generation (sum of Tamakoshi-III and Khimti) under the 

eight climate change projections for the near future (2016-2045). 
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Figure 68: Potential hydropower generation (sum of Tamakoshi-III and Khimti) under the 

eight climate change projections for the distant future (2046-2075). 

 

 

 
Figure 69: Potential hydropower generation under the eight climate change projections 

for the near future (2016-2045). Tamakoshi-III (top) and Khimti (bottom). 
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Figure 70: Potential hydropower generation under the eight climate change projections 

for the distant future (2046-2075). Tamakoshi-III (top) and Khimti (bottom). 

 

 

 
Figure 71: Potential hydropower generation (sum of Tamakoshi-III and Khimti) for the 

near (2016-2045) and distant (2046-2075) future presented as box-whisker plots. 
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10.4 Scenario Analysis of Hydropower Potential 

Results presented in the previous sections are based on the designed hydropower 

specifications and show that climate change will have a limited impact on the forecasted 

hydropower production. Overall, a small increase in hydropower production can be expected in 

the future due to changes in discharge. To explore whether other design capacities of the two 

facilities might impact hydropower production an initial set of scenarios has been analyzed. The 

same modeling approach using WEAP was used and two types of scenarios were evaluated: (i) 

different reservoir capacities of Tamakoshi-III, and (ii) different maximal turbine flows for 

Tamakoshi-III and Khimti. All scenarios were analyzed for the eight set of climate models and 

focus is again on the near-future 2016-2045 and 2046-2075. 

 

Main conclusions regarding the reservoir scenarios is that an increase in reservoir storage 

capacity will benefit hydropower production to a certain extend (Figure 72). For the quite 

extreme increase in reservoir capacity of 2 to 5 times, hydropower generation will increase by 

about 5% to 22% for Tamakoshi-III. An extended benefit-cost analysis could reveal whether 

such an expansion of design reservoir capacity is cost-effective. Likewise, reducing the storage 

capacity by 50% would reduce hydropower projection by about 8%.  These results are all based 

assuming that operational rules for releases from the reservoir will remain unchanged. 

 

 
Figure 72: Potential hydropower generation of Tamakoshi-III for a range of reservoir 

storage capacities (100% is 157 MCM).  

 

For the scenario on changes in design capacity of the maximum turbine flow results 

(Tamakoshi-III and Khimti combined) are shown in Figure 73. Doubling the design capacity will 

increase projected hydropower production by about 20%. For Tamakoshi-III only (Figure 74), 

the proposed design capacity seems to be well planned, as an increase will have only a minor 

impact on hydropower generation. However, for Khimti there seems to be a real potential to 

reevaluate the maximum flow design capacity; doubling the capacity will generate about 55% 

more hydropower.  
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Figure 73: Potential hydropower generation (sum of Tamakoshi-III and Khimti) for a range 

of maximum turbine flow designs.  

 

 

 

 
Figure 74: Potential hydropower generation for a range of maximum turbine flow 

designs. Top: Tamakoshi-III (100% is 306 m3 s-1); bottom: Khimti (100% is 11.65 m3 s-1). 
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11 Conclusions and recommendations 

11.1 Conclusions 

As a result of a changing climate [Immerzeel et al., 2010; Lutz and Immerzeel, 2013; Lutz et al., 

2014b] and growing demand in energy for Nepal [DOED, 2016; Shrestha et al., 2016], 

Statkraft1, as being the largest developer for hydropower in this region, is interested in the 

impact of climate change on the potential for hydropower development in the Tamakoshi River 

Basin, Nepal. The overall objective of this study was therefore to improve the understanding of 

the expected impacts of climate change on water availability in the context of potential 

hydropower development in the Tamakoshi River Basin, with a specific focus on the 

hydropower plants Tamakoshi-III and Khimti. 

 

This objective was achieved by forcing a spatially distributed hydrological model (SPHY, [Terink 

et al., 2015]) with a baseline climate (representing current climate conditions), and an ensemble 

of 8 possible future climates, represented by 8 statistically downscaled GCMs (General 

Circulation Models) of which 4 GCMs were selected from the Representative Concentration 

Pathway (RCP) 4.5  and 4 from RCP 8.5. The change in precipitation, temperature, glacier melt, 

and river discharge between the baseline climate and future climates was evaluated for the 

entire Tamakoshi river basin, and specifically for Tamakoshi-III and Khimti. Simulated river 

discharges from the baseline climate and future climates were used as input in the “Water 

Evaluation and And Planning” (WEAP) system to assess the potential for hydropower under the 

baseline and future climate, whereas for the future climate the potential was evaluated using 

various storage capacities and maximum turbine flow designs. 

 

For the entire basin it can be concluded that we can expect an overall increase in precipitation 

and temperature, and a gradual decrease in glacier melt. Since the change in flow due to the 

increase in precipitation is larger than the decrease in glacier melt, and the contribution of 

glacier melt to the total river discharge in this basin is minor, an increase in river discharge is 

projected for the future. Precipitation is expected to increase with 2-8% for 2016-2045, and with 

12-18% for 2046-2075. This increase is strongest during July-August, with an average of 550 

mm month-1 for the baseline climate increasing towards 650 mm month-1 for 2016-2045, and 

700 mm month-1 for 2046-2075. The average annual basin temperature is expected to increase 

with 0.5-1.4 °C for 2016-2045, and with 1.4-2.9 °C for 2046-2075. The contribution from glacier 

melt to the total discharge is minor, and is on basin average approx. 23 mm month-1 during July-

August for the baseline climate. This may decrease to 18-23 mm month-1 for 2016-2045, and 8-

19 mm month-1 for 2046-2075. For August the average discharge may increase from approx. 

375 to 475 mm month-1 for 2016-2045, and to 500 mm month-1 for 2046-2075. During October-

December no substantial changes in river discharge are expected. 

 

For Tamakoshi-III we may expect average annual discharges varying between 125-225 m3/s in 

the future (currently 130 m3/s on average). This increase is mainly contributed to the increase in 

rainfall, especially during the monsoon season. The current monthly average discharge at 

Tamakoshi-III peaks at 400 m3/s during August, whilst this may increase towards 450-500 m3/s 

for 2016-2045, and 450-550 m3/s for 2046-2075. Extreme analyses showed that the maximum 

annual discharge with a return period of once every 10 years for the baseline climate is approx. 

650 m3/s for Tamakoshi-III. With the same probability (1/10 year), this extreme discharge 

increases to 1000-1100 m3/s for 2016-2045, and 1200-1300 m3/s for 2046-2075. The current 

                                                     
1 http://www.statkraft.com/ 
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maximum annual discharge with 100-year return period is approx. 700 m3/s. These numbers 

are estimated using GEV-fits, and should therefore interpreted with care. As a result of climate 

change, this maximum annual discharge with 100-year return period may increase towards 

1400 m3/s for 2016-2045, and to 1600 m3/s for 2046-2045. 

 

Compared to Tamakoshi-III, Khimti is located in a much smaller tributary and therefore river 

discharge is substantially smaller for Khimti. Also for Khimti we can conclude an increase in 

average annual river discharge. For the baseline climate the average annual discharge is 

approx. 23 m3/s, and this may increase towards 30-35 m3/s. For Khimti this increase is only 

contributed by rainfall, since no glaciers are to be found upstream of Khimti. Same as for 

Tamakoshi-III, monthly discharge at Khimti peaks during August with an average monthly 

discharge of 67 m3/s for the baseline climate. This can be expected to increase towards 65-85 

m3/s during 2016-2045, and 70-95 m3/s during 2046-2075. Extreme analyses showed that the 

maximum annual discharge with a return period of once every 10 years for the baseline climate 

is approx. 110 m3/s for Khimti. With the same probability (1/10 year), this extreme discharge 

increases to 150-160 m3/s for 2016-2045, and 170-190 m3/s for 2046-2075. The current 

maximum annual discharge with 100-year return period is approx. 130 m3/s. The maximum 

annual discharge with 100-year return period may increase towards 190-200 m3/s for 2016-

2045, and to 240-330 m3/s for 2046-2075. 

 

Using the SPHY simulated discharge from the baseline climate as input to the WEAP model, 

the average energy production was estimated to be 2354 and 389 GWh/y for Tamakoshi-III and 

Khimti, respectively. Annual fluctuations in energy production are small with maxima and 

minima ranging between 2540 and 1997 GWh/y for Tamakoshi-III, and 448 and 320 GWh/y for 

Khimti. Seasonal energy production levels differ substantially, with the largest energy production 

during the months June-October.  

 

As a result of the expected increase in river discharge, higher hydropower production can be 

expected in the future. The annual variation for Tamakoshi-III is higher compared to Khimti, 

while Tamakoshi-III has a regulating reservoir. Main reason for this is that the storage capacity 

of Tamakoshi-III is relatively low compared to the high flows during the wet season. Another 

reason is that Khimti’s design capacity is relatively low, so even in years with low flows it still 

operates at its design capacity. The total energy production from both plants is expected to 

increase from 2700-2800 GWh/y to 2750-3050 GWh/y on average. For Tamakoshi-III only, an 

increase is expected from 2350-2400 GWh/y to 2370-2600 GWh/y. The increase for Khimti is 

from 370-400 GWh/y to 390-430 GWh/y. While the increase in discharge is a positive 

development for hydropower generation, the increase in total flow and extremes may have a 

negative impact on floods, the vulnerability of infrastructure, erosion, and the sedimentation of 

reservoirs. 

 

Using WEAP two types of scenarios were evaluated: (i) different reservoir capacities of 

Tamakoshi-III, and (ii) different maximal turbine flows for Tamakoshi-III and Khimti. With an 

increase in reservoir capacity of 2 to 5 times, hydropower generation will increase by about 5% 

to 22% for Tamakoshi-III. Likewise, reducing the storage capacity by 50% would reduce 

hydropower projection by about 8%. For the different maximum turbine flow scenarios, it can be 

concluded that for Tamakoshi-III the maximum turbine flow design capacity is well-planned, as 

an increase will have only a minor impact on hydropower generation. However, for Khimti there 

seems to be a real potential to re-evaluate the maximum flow design capacity; doubling the 

capacity will generate about 55% more hydropower. 

 



 

88  

These projected potential hydropower productions are associated with certain uncertainties. 

Obviously, the most important uncertainty is the projected flows in the rivers at the potential 

hydropower plant locations. This is handled by considering a broad range of climate projections. 

Another important source of uncertainty is the actual configuration of the plant itself with factors 

as maximum turbine flow and generating efficiencies. Finally, operations and maintenance of 

the actual plant once constructed are as usual an important uncertainty factor in terms of 

hydropower production.   

11.2 Recommendations 

The study reveals that the combination of SPHY and WEAP can be a powerful tool to assess 

potential impact of climate change on hydropower generation and a key conclusion is that with 

the next 50 years the hydropower potential is likely to increase as a result of climate change. 

This is the result of the specific hydrological characteristics of the Tama Koshi basin, however it 

is likely that regionally the response is similar. Differences between basins will primarily be 

caused by differences in the extent of glaciers and the hypsometry of the basin. It would be 

recommendable to do a similar assessment with these tools for Nepal as a whole or even for a 

larger region. 

 

In term of specific recommendations, the results could be further improved and detailed if (i) 

results of higher resolution RCMs would be used as a basis for the downscaling, (ii) more 

hydro-meteorological observations are made in particular in the higher parts of the catchment, 

(iii) RCP2.6 and 6.5 could also be included to get a more comprehensive overview of potential 

climate change impacts, (iv) improvement were made to the routing scheme such that peak flow 

simulations are improved and (v) to include and assess the impact of operational rules of those 

plants that run of a reservoir. 

 

This study has tackled the problem from a hydrological perspective, however it would be 

interesting to collaborate with economists and social sciences to take this a step further and 

assess the potential economic revenues versus the potential adverse effects of dam 

construction. Such a cost-benefit analysis could lead to detailed recommendations on where to 

plan which size of power plant while maximizing economic revenue and minimizing any 

negative environmental or social impacts. 
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