
Hydrology and Quantitative Water Management Group

Environmental Sciences Group

Wageningen University and Research Centre

Internship research project:
Implementing advanced routing in the

SPHY model using the convection-diffusion
equation

Author:
Femke Jansen

Supervisors

FutureWater:
Wilco Terink MSc.

Wageningen University:
Drs. Paul Torfs

HWM-70424

March 14, 2017

Abstract

Jansen, F.A. (2017). ’Implementing advanced routing in the SPHY model using the convection-diffusion
equation’ MSc internship, Wageningen University, The Netherlands.

Hydrological models, such as the Spatial Processes in HYdrology (SPHY) model, are often used as a
tool to simulate and predict discharge dynamics by modelling hydrological processes in catchments. This
can be used to address water-related challenges in the area. To accurately simulate discharge in a channel
it is important to implement streamflow routing in the model, which describes the transport of water
through an open-channel network. An advanced routing procedure using the convection-diffusion (cD)
equation has been implemented in the SPHY model. This cD-routing module has been set up outside
the PCRaster environment which is used by the SPHY model. This provides the opportunity to run the
routing module with a different temporal and spatial resolution than the simulation of the SPHY model
itself, contrary to the currently implemented simple routing scheme. The cD-routing procedure has been
tested in the Tamakoshi river basin in Nepal. After calibration of the wave celerity (c) and the diffusion
coefficient (D) the results obtained are comparable to the currently implemented routing scheme in terms
of model performance. NS values of 0.80 and 0.72 were obtained for the two observation stations Busti
and Rasnalu respectively. Computational efforts are comparable for the current simple routing scheme
and for the new implemented cD-routing scheme.

Keywords: SPHY, routing, convection-diffusion, numerical discretization, Tamakoshi, Nepal

III

Contents

Abstract . III

1 Introduction 6
1.1 Problem description . 6
1.2 Objectives and research questions . 7
1.3 Structure of report . 7

2 Application example 8

3 SPHY model 9
3.1 Model structure . 9
3.2 Current routing procedure . 11

3.2.1 Simple routing scheme . 11
3.2.2 Advanced routing scheme . 12

4 Potential routing methods 13
4.1 Dynamic wave equations . 13
4.2 Convection-diffusion approximation . 14
4.3 Kinematic wave approximation . 15
4.4 Selecting a routing method . 15

5 Numerical approximation 16
5.1 Finite-difference schemes . 16

5.1.1 Explicit finite-difference . 16
5.1.2 Implicit finite-difference . 17
5.1.3 Crank-Nicolson . 17

5.2 Boundary conditions . 18
5.3 Numerical discretization of cD-equation . 18

6 Advanced routing module implementation 21
6.1 Preprocessing . 21

6.1.1 Preparing data and maps . 21
6.1.2 Define the stream network . 22
6.1.3 Determine stream order . 24
6.1.4 Identify reaches . 25

6.2 Conservation of mass . 31
6.3 Temporal and spatial grid . 31
6.4 Initial and boundary conditions . 31
6.5 Lateral inflow . 31
6.6 Parameter values to be specified in config-file . 34
6.7 The cD-equation . 36
6.8 Determine downstream hydrographs using cD-equation . 40

6.8.1 Determine locations of inlets and outlets . 40
6.8.2 Determine connecting points . 42
6.8.3 Locate connecting reaches . 43
6.8.4 Accumulated runoff at inlets and outlets . 45

1

CONTENTS

6.8.5 Downstream boundary conditions . 47
6.9 Apply cD-equation for routing . 53
6.10 Visualisation of the results . 59
6.11 Time series at observation stations . 60
6.12 Calibration . 63
6.13 Adjustments made in SPHY script . 64

7 Results and Discussion 66
7.1 Model output and analysis . 66
7.2 Sensitivity analysis . 70

7.2.1 Wave celerity . 70
7.2.2 Diffusion coefficient . 71
7.2.3 Temporal resolution . 71
7.2.4 Spatial resolution . 71

7.3 Computational time . 72

8 Conclusion 77

9 Recommendations 79

A Overview python tables 83

B Reach length based on ldd map 85

C Calibration log-file 86

2

List of Figures

2.1 Tamakoshi river basin . 8

3.1 SPHY model structure. (copied from Terink et al., 2015). 10

5.1 (a) Explicit finite-difference discretization, (b) implicit finite-difference discretization, (c)
Crank-Nicolson finite-difference discretization. 16

6.1 River network demonstrating Strahlers principle to determine the stream order. 23
6.2 Define the stream network using the DEM. 24
6.3 River network where all sub-reaches of stream order 2 are highlighted and numbered. . . . 26
6.4 Determine the streamorder for all reaches and identify all sub-reaches per streamorder. . . 30
6.5 Resulting hydrographs at several distances along the stream channel. 32
6.6 Resulting hydrographs at several distances along the stream channel after adding lateral

inflow at two places along the channel. 32
6.7 Resulting hydrographs at several distances along the stream channel after adding lateral

inflow at two places along the channel. 33
6.8 Components that together form the lateral inflow to be injected to the next reach at the

connection point. 34
6.9 River network with examples of the inlet-, outlet- and connected grid cell visualised. . . . 41
6.10 Codes linked to the local drain direction. 42
6.11 Retrieve ’uphydro’ and ’downhydro’ for the reach of maximum streamorder from the time

series of accumulated runoff (stored in TimeArray inlets and TimeArray pits respectively).
These serve as input for the cD-equation of which the results are stored in ’Q record back’
(Fig.(a)). Determine at which cell number the reaches are connected, in order to retrieve
the time series for ’downhydro’ from ’Q record back’ (Fig.(b)). 47

6.12 Retrieve ’uphydro’ from the time series of accumulated runoff (stored in TimeArray inlets).
’Downhydro’ is retrieved from time series stored in ’Q record back’ of the reach this stream
flows into. These serve as input for the cD-equation of which the results are stored in
’Q record back’ (Fig.(a)). Determine at which cell number the reaches are connected, in
order to retrieve the time series for ’downhydro’ from ’Q record back’ (Fig.(b)). 52

6.13 ’Uphydro’ and ’downhydro’ were stored during the code run in section 6.8.5. These serve
as input for the cD-equation of which the results are stored in ’Q record’ (Fig.(a)). The
results of the outlet cell, as stored in ’Q record’, serves as lateral inflow of the connecting
reach downstream (Fig.(b)). 58

7.1 Daily observed discharge, SPHY simulated discharge using the simple routing procedure
and SPHY simulated discharge using the cD-routing procedure for the streamflow stations
Busti (ID 647) and Rasnalu (ID 650) for 10 years (a & b) and for the year 2004 (c & d).
Values of c and D were calibrated based on the 10 year data series. 67

7.2 Daily observed and SPHY simulated discharge using the cD-routing procedure for the
streamflow stations Busti (ID 647) and Rasnalu (ID 650). Values of c and D were calculated
using equations 6.2 and 6.3. 68

7.3 Example of the visualisation of the simulation results using the cD-routing procedure. Red
colours indicate high streamflow (in m3 s−1) and purple colours low streamflow. 70

3

LIST OF FIGURES

7.4 Sensitivity analysis of wave celerity for 10 consecutive years ((a) and (b)) and for the year
2004 ((c) and (d)). Values of c are given in km hr−1. The diffusion coefficient is kept
constant at 1.0 km2 hr−1. 73

7.5 Sensitivity analysis of the diffusion coefficient for 10 consecutive years ((a) and (b)) and
for the year 2004 ((c) and (d)). Values of D are given in km2 hr−1. The wave celerity is
kept constant at 0.08 km hr−1. 74

7.6 Sensitivity analysis of the temporal resolution for 10 consecutive years ((a) and (b)) and
for the year 2004 ((c) and (d)). Dt is given in hours and spatial resolution is kept constant
at 0.25 km. Values of c and D are kept constant as well at 0.08 km hr−1 and 0.1 km2 hr−1

respectively. 75
7.7 Sensitivity analysis of the spatial resolution for 10 consecutive years ((a) and (b)) and for

the year 2004 ((c) and (d)). Dx is given in metres and temporal resolution is kept constant
at 24 hr. Values of c and D are kept constant as well at 0.08 km hr−1 and 0.1 km2 hr−1

respectively. 76

4

List of Tables

6.1 Example of the resulting ’reachID’ table which stores the locations of the cells belonging
to the specified stream order (r.126–128). 26

6.2 Example of the resulting ’ReachArrayID’ (r.165) and ’SubReachArrayID’ (r.201) tables
which are similar to ’reachID’ but now has been ordered based on the value of Slopelength,
needed to order the cells in downstream direction. 29

6.3 The different ’IDreach’ tables contain information about the locations of e.g. the inlets or
outlets of each reach (r.267–269). The different ’ID’ tables contain similar information as
the ’IDreach’ tables, however now in the order that PCRaster scans the raster (r.287, 290,
294 and 297). ’connectID’ shows the location where a stream flows into the next stream
(r.328). 41

6.4 Example of the resulting table showing which reaches are coupled to each other (r.402). . 44
6.5 The ’TimeArrays’ store for each location of interest the accumulated runoff in m3 s−1 at

that point for every timestep (r.500–503). 46
6.6 ’Q record back’ and ’Q record’ store the results of the cD-equation for each cell of a reach

for every timestep (r.668 & 812). ’ back’ refers to running the cD-equation in upstream
direction in order to provide the best possible estimation of the downstream boundary
hydrographs for the individual reaches (see Sect. 6.8.5). The number of columns equals
the number of cells of the considered reach and the number of rows equals the number of
time steps. 51

6.7 ’Uphydro’ and ’Downhydro’ store the hydrographs at the inlet and outlet of a reach re-
spectively. The number of rows equals the number of time steps. 53

7.1 Overview of the results of the model performance. 69
7.2 Computational time in minutes for a simulation period of 10 years on a daily base with

the original spatial resolution (= 250m) for the two different routing procedures. 72

A.1 . 84

5

1. Introduction

Water shortage, as well as water excess, increase food and drinking water insecurity and additionally
may induce ecological threats. Additionally, hydropower facilities depend on a constant water supply
to produce enough energy. With the intention to develop hydropower in a region, an understanding of
climate change impacts on streamflow and its uncertainty is crucial, as well as to assess the changing
probabilities and magnitudes of extreme events. These emerging challenging situations are expected to in-
crease as a consequence of climate variability and change (Rockström et al., 2012; Vörösmarty et al., 2000;
Terink et al., 2015). Adequate water supply is essential for the well-being of humans and the environment.

Hydrological models, such as the Spatial Processes in HYdrology (SPHY) model (Terink et al., 2015),
are often used as a tool to simulate and predict discharge dynamics by modelling hydrological processes
in catchments. This can be used to address water-related challenges in the area (Terink et al., 2015;
Wagener and Wheater, 2006; Pechlivanidis et al., 2011). To accurately simulate discharge in a channel
it is important to implement streamflow routing in the model, which describes the transport of water
through an open-channel network by simulating the propagation of the magnitude, volume and temporal
pattern of the flow (Terink et al., 2015; Fread, 1985). Routing procedures create the possibility to describe
the hydrograph along the channel network, which provides information about the changes in water flow,
for instance the attenuation (diffusion effect) of peak discharges (Ramı́rez, 2000; O’Sullivan et al., 2012).
In the lower areas of a mountainous catchment that are prone to flooding, this attenuating effect can
reduce the effects of a flood. Therefore assessment of this effect can support decision makers in defining
strategies (Montaldo et al., 2004).

1.1 Problem description

Various types of methods have been developed to apply routing, which can roughly be subdivided into:
i) hydrological routing and ii) hydraulic routing. Currently there are two routing schemes included in
the SPHY model (Terink et al., 2015) that can be assigned to hydrological routing. The first option is a
simple flow accumulation routing scheme, in which for each cell the accumulated amount of water flowing
out of the cell into its neighbouring cell downstream is calculated, which thus comprises the amount of
water in the cell itself plus the amount of water in the cells upstream. The second option is the fractional
accumulation flux routing scheme, which is used in the presence of lakes or reservoirs. In this case part
of the water volume stored will become available for routing depending on the actual lake/reservoir stor-
age. Subsequently, this flux will follow the simple flow accumulation routing scheme. A flow recession
coefficient (kx) has been implemented in SPHY to account for flow delay, which is needed to prevent all
the specific runoff generated within the catchment on one day to end up at the most downstream part of
the catchment on that same day.

The current implemented routing schemes in SPHY have proven its applicability under various conditions
(Terink et al., 2015). However, it has also shown to favour either quick or slow flow routes, reflected in
simulating either simulate peak flows or base flow accurately (p.c. W. Terink), depending on catchment
characteristics. Introducing an advanced routing scheme could improve streamflow simulations, which is
necessary to address water-related challenges in an area.

6

1.2. OBJECTIVES AND RESEARCH QUESTIONS

1.2 Objectives and research questions

The objective of this research project is to explore options and to implement an advanced routing proce-
dure to improve the current routing scheme and therefore streamflow simulations in the SPHY model.

From this objective the following research question has been formulated:

How can the routing procedure and therefore streamflow simulations of the SPHY model be improved?

In order to answer this main research question the following sub-questions are identified:

1. How is the routing procedure currently implemented in the SPHY model?

2. What channel and catchment characteristics are typically available in projects where the SPHY
model is applied?

3. What are potential routing methods, considering available data, and how can these be implemented
in the SPHY model?

4. What is the effect of using these routing methods on model performance in terms of streamflow
simulations and on model computation time?

1.3 Structure of report

A description of the research area will be provided first (Chapter 2), followed by a brief description of the
SPHY model (Chapter 3). Subsequently an overview is provided of potential routing methods (Chap-
ter 4) and in chapter 5 several numerical approximation methods are explained. The implementation
of the advanced routing scheme and the accompanying programming code is presented in chapter 6.
The main results are discussed in chapter 7, and the report ends with the conclusion (Chapter 8) and
recommendations (Chapter 9).

7

2. Application example

This research focuses on the Tamakoshi River Basin in Nepal where FutureWater is performing hydrolog-
ical research. The SPHY model with its current routing module has already been set up and calibrated
for this area. This facilitates comparison of the results with the newly implemented routing module. In
this area catchment response and routing is dependent on natural processes without (too much) human
intervention. The latter is highly likely to be of influence on the routing when considering a catchment
in for instance The Netherlands, which could require additional components to be implemented in the
routing procedure. This lies beyond the scope of this internship research project.

The Tamakoshi river basin is located in the north-east of Nepal and lies partly in China and covers
an area of 2926 km2. The glaciated basin lies between 27◦37′42′′N to 28◦19′23′′N latitude and 86◦0′9′′E
to 86◦34′12′′E longitude in the southern slope of eastern Hindu Kush Himalayan region. Elevation roughly
ranges from 850 masl to 7300 masl. On average 20% of the area is estimated to be covered with snow
and around 80 glaciers are present in the river basin covering a total area of 110.00 km2 (Khadka et al.,
2014).

(a) Location map of Tamakoshi basin in Nepal (b) Digital Elevation Map (DEM)

Figure 2.1: Tamakoshi river basin

8

3. SPHY model

The Spatial Processes in HYdrology (SPHY) model developed by FutureWater is a spatially distributed
leaky bucket type of model that includes the main terrestrial hydrological and glacier processes and has a
flexible spatial resolution (Terink et al., 2015). The SPHY model is written in the Python programming
language and makes use of the PCRaster (Karssenberg et al., 2001) dynamic modelling framework. The
model code has been made freely available (version 2.1) (FutureWater, 2015). During this internship
research project a yet to be released version of the model with improved glacier module has been used.
Below a description of the model based on Terink et al. (2015) will be provided.

3.1 Model structure

SPHY is a spatially distributed leaky bucket type of model and is raster based. This means that changes
in storage and fluxes are simulated on a cell-by-cell basis, which provides the opportunity to evaluate
these changes over time and space. A schematic overview of the model structure is provided in figure
3.1. The soil structure consists of two upper soil reservoirs and a third groundwater reservoir, which
complies with the VIC model structure. Drainage from these reservoirs occurs through surface runoff,
lateral flow and baseflow respectively. The sum of these components, together with snowmelt and glacier
melt if present, is the cell-specific runoff, which forms the water volume available for routing.

Precipitation that falls on a grid cell may be either classified as rain or snow, depending on temper-
ature. Part of the precipitation will be intercepted and evaporated from the land surface, while another
part of the liquid precipitation will become surface runoff or will infiltrate into the soil reservoir. There
the remainder of the water that does not evaporate, either contributes to river discharge through lateral
flow from the first soil layer, or as baseflow after it has percolated to the groundwater. Precipitation in
the form of snow contributes to the snow storage, of which the balance is updated accordingly to the
simulation of snowmelt and snow accumulation amounts.

Some of the hydrological processes incorporated in the model are contained in modules that can be
switched on/off according to the relevance of these processes in the area of interest. This enables to
reduce model run time and decrease the number of required input data. The decision on which modules
to include in the modeling framework requires knowledge about the catchment characteristics and its
relevant processes. The modules present are: glaciers, snow, groundwater, dynamic vegetation, simple
routing, and lake/reservoir routing. A detailed description of all hydrological processes and modules
incorporated in the SPHY model and how they are implemented can be found in Terink et al. (2015). A
more detailed description of the routing procedures as currently implemented in the model will be given
in the next section.

9

CHAPTER 3. SPHY MODEL

Figure 3.1: SPHY model structure. (copied from Terink et al., 2015).

10

3.2. CURRENT ROUTING PROCEDURE

3.2 Current routing procedure

Total cell-specific runoff available for routing through the stream network consists of different runoff
components, namely: rainfall runoff, snow runoff, glacier runoff and baseflow (see Eq. 3.1). Rainfall
runoff consists of surface runoff and lateral flow from the first soil layer. Baseflow is resulting from the
groundwater module, however when this module is switched off, lateral flow from the second soil layer is
considered baseflow.

QTot = RRo + SRo + GRo + BF (3.1)

Where:

QTot : Specific runoff on day t (mm)
RRo : Rainfall runoff (mm)
SRo : Snow runoff (mm)
GRo : Glacier runoff (mm)
BF : Base Flow (mm)

The SPHY user can select a simple routing scheme or a more complex routing scheme in which discharge
from reservoirs/lakes can be included as well through a Q-h relation. From a Digital Elevation Model
(DEM) the flow direction network map is derived, which is used in both routing methods.

3.2.1 Simple routing scheme

Most advanced routing methods, e.g. solving the full dynamic Saint Venant equations and Manning
equation, require data on channel geometry and morphology which are often not available for the spatial
scale that SPHY generally is applied to. Therefore, SPHY uses a simplified routing method in which
the accumulated cell-specific runoff flows into its neighbouring cell. This accumulated cell-specific runoff
comprises the amount of water in the cell itself plus the amount of water in the cells upstream and is
calculated using the PCRaster function accuflux. A flow recession coefficient (kx) has been implemented
in SPHY to account for flow delay, which is needed to prevent all the specific runoff generated within
the catchment on one day to end up at the most downstream part of the catchment on that same day. If
preferred the four streamflow contributors can also be routed separately (Terink et al., 2015).

QTot∗t =
QTott · 0.001 ·A

24 · 3600
(3.2)

QTotaccu,t = accuflux(Fdir,QTot∗t) (3.3)

QTotrout,t = (1− kx) ·QTotaccu,t + kx ·QTotrout,t−1 (3.4)

Where:

QTot∗t : Total cell-specific runoff on day t (m3 s−1)
QTott : Total cell-specific runoff on day t (mm)
A : Grid-cell area (m2)
QTotaccu,t : Accumulated streamflow on day t without flow delay (m3 s−1)
QTotrout,t : Routed streamflow on day t (m3 s−1)
QTotrout,t−1 : Routed streamflow on day t-1 (m3 s−1)
Fdir : Flow direction network
kx : Flow recession coefficient, ranging from 0 (fast) to 1 (slow) (-)

11

CHAPTER 3. SPHY MODEL

3.2.2 Advanced routing scheme

The second more advanced routing option is the fractional accumulation flux routing scheme, which is
used in the presence of lakes or reservoirs. Lakes/reservoirs act as a buffer from which the water is released
delayed. The scheme uses the accufractionflux and accufractionstate PCRaster functions, which calculate
for each cell the fraction of the accumulated water that flows out of the cell and the fraction that is stored
in the cell respectively. The fraction that is transported out of the cell equals 1 for non-lake cells. For
lake-cells however, the volume that becomes available for routing depends on the actual lake storage and
the Q-h relation that is provided. Subsequently, this flux will follow the simple flow accumulation routing
scheme. Specifics on data requirements and how to use this routing method are provided in section 2.8.2
of Terink et al. (2015).

QTotaccu,t = accufractionflux(Fdir,Sact,t,Qfrac,t) (3.5)

Sact,t+1 = accufractionstate(Fdir,Sact,t,Qfrac,t) (3.6)

Where:

Sact,t : Actual storage (m3)
Sact,t+1 : Updated storage to be used in next time step (m3)

12

4. Potential routing methods

The dynamics of water in a channel can be described and approximated at different levels of complexity.
The full dynamic wave equations, consisting of the continuity equation and the momentum equation, are
considered to most accurately describe one-dimensional unsteady flow in open channels (Miller, 1984).
However, depending on the application the importance of the various terms in these equations can reduce,
which allows us to omit them to simplify the problem. These approximations comprise the continuity
equation combined with various simplifications of the momentum equation (Brunner, 1992). This chapter
will provide a short description of the full dynamic wave model and of two approximations, i.e. the
convection-diffusion and kinematic wave approximation.

4.1 Dynamic wave equations

Dynamic wave routing involve solving the complete one-dimensional Saint Venant flow equations, which
consists of the continuity equation (Eq. 4.1) and momentum equation (Eq. 4.2). Assumptions made in
deriving these equations are: 1) hydrostatic pressure distribution prevails, hence vertical accelerations
are negligible, 2) uniformly distributed velocity across any channel section , 3) small channel bed slope,
4) homogeneous and incompressible flow, and 5) momentum resulting from lateral flow is negligible
(Brunner, 1992; Miller, 1984; Litrico and Fromion, 2009; Barati et al., 2012; Shultz, 2007).

∂A

∂t
+
∂Q

∂x
= 0 (4.1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
− gA(S0 − Sf) = 0 (4.2)

Where:

A : Cross-sectional area (m2)
Q : Discharge (m3 s−1)
x : Distance along channel (m)
t : Time (s)
g : Gravitational acceleration (m s−2)
h : Water depth (m)
S0 : Bed slope (m m−1)
Sf : Friction slope (m m−1)

The terms of the equation of momentum can be described as: 1) local acceleration, 2) convective acceler-
ation, 3) pressure gradient and 4) gravitational and frictional forces (Singh, 1996; Brunner, 1992; Miller,
1984; Shultz, 2007).

The dynamic wave equations are used in various applications, such as river flow forecasting, wave routing
in shallow water bodies, dam break flood wave routing, sewer modelling and more in general when a sys-
tem is subjected to backwater effects due to restrictions downstream such as weirs (Litrico and Fromion,

13

CHAPTER 4. POTENTIAL ROUTING METHODS

2009; Brunner, 1992). Since the equations have no general analytical solution it requires numerical tech-
niques, such as the finite element method, finite volume method and finite difference method to solve the
non-linear unsteady flow equations (Barati et al., 2012). Models such as HEC-RAS and MIKE 11 solve
the full dynamic Saint Venant equations using an implicit finite difference method (Brunner, 2010; MIKE
by DHI, 2009). To solve the Saint Venant equations a lot of data is required related to channel geometry
and morphology (Barati et al., 2012; Litrico and Fromion, 2009). This data is not always available, which
requires simplification of the equations in which some terms of the momentum equation are neglected.

4.2 Convection-diffusion approximation

The convection-diffusion wave (cD-wave) or diffusion wave is based on the continuity equation and a
simplification of the momentum equation, in which the acceleration terms have been omitted. This
assumption is made since the two acceleration terms counterbalance each other during rising and recession
limbs of a flood wave. Furthermore, in most cases the acceleration terms are significantly smaller than the
pressure gradient term (Singh, 1996; Shultz, 2007; Torfs, 2002). In most real world cases flood waves are
diffusion waves. Equation 4.2 therefore reduces to equation 4.3, in which the pressure term is responsible
for describing physical diffusion of the flood wave (Brunner, 1992; Shultz, 2007).

∂h

∂x
− (S0 − Sf) = 0 (4.3)

The continuity equation can be expressed as:

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (4.4)

Where:

u : velocity (m s−1)

Combining equations 4.3 and 4.4 the linearized form of the cD-equation can be written as (Lighthill and
Whitham, 1955; Torfs, 2002; Singh, 1996; Hayami, 1951):

∂Q

∂t
+ c

∂Q

∂x
−D∂

2Q

∂x2
= 0 (4.5)

Where:

c : wave celerity (m s−1)
D : diffusion coefficient (m2 s−1)

The cD-equation is able to describe the translation (c) and the attenuation (D) of a wave as it propagates
through the channel (Singh, 1996; Torfs, 2002). However, the cD-equation is not suitable to apply when
the cross-sectional geometry of a river changes considerably or when the slope increases largely, as the
acceleration terms would not be negligible in those cases. An advantage of this approximation is that
it needs less hydro-morphological data and most natural slow to moderately rising flood waves can be
described using this approximation (Brunner, 1992). Implicit numerical schemes to solve the cD-equation
require boundary conditions both upstream and downstream, implying that the downstream boundary
condition should be known or can be estimated (Singh, 1996).

In literature little can be found on typical values for c and D. Vakgroep Hydraulica en Afvoerhydrologie
(Year unknown) found values for c ranging from 1.1 – 2.2 m s−1 and D values ranging from 10.000 –
40.000 m2 s−1 for different sections of the Rhine near Lobith. Although the conditions of the Rhine river
and the Tamakoshi river are far from similar, these values give a sense of the order of magnitude of these
parameters.

14

4.3. KINEMATIC WAVE APPROXIMATION

4.3 Kinematic wave approximation

An even more simplified approximation of the full dynamic wave model is the kinematic wave model,
which additionally omits the pressure gradient term. A kinematic wave develops when gravitational
and frictional forces approach equilibrium. This is achieved when changes in depth and velocity with
respect to distance and change in velocity with respect to time are small compared to channel bed slope.
Therefore equation 4.2 reduces further to equation 4.6 (Torfs, 2002; Brunner, 1992; Singh, 1996; Miller,
1984).

S0 = Sf (4.6)

The kinematic wave model does not allow for wave attenuation following the assumption that the pressure
gradient term is negligible. Therefore the kinematic wave model is most accurate in urban environments
where channels are fairly steep and that there is a relationship between discharge, flow depth and position
along the channel (Lighthill and Whitham, 1955; Singh, 1996; Shultz, 2007). The linearized form of the
kinematic wave equation can be written as:

∂Q

∂t
+ c

∂Q

∂x
= 0 (4.7)

This equation describes the translation of a wave through a channel without hydrograph diffusion. How-
ever, depending on the numerical scheme used to solve this equation numerical diffusion can be intro-
duced. Furthermore, backwater effects cannot be simulated using the kinematic wave equations because
the model allows disturbances only to travel in downstream direction (Singh, 1996; Brunner, 1992; Miller,
1984).

4.4 Selecting a routing method

The appropriate routing method should be selected depending on the characteristics of a hydrological
system, the characteristics of the flood wave, data availability, required computational efficiency and the
degree of influence of backwater effects.

Comparing the three methods it can be concluded that the cD-wave equations provide a solid approxi-
mation of the full dynamic wave equations. It balances between the accuracy and high data demanding
dynamic wave model and the simplicity of the kinematic wave model (Shultz, 2007). Because there is
no data on channel geometry and discharge data is scarce for the Tamakoshi river the cD-equation is
selected as most suitable routing method for the aims of this research project. Further analysis in this
report will therefore focus on applying the cD-equation as a routing method.

Additionally, the routing procedure will be executed in a vector layer that is decoupled from the PCRas-
ter environment. This will enable us to execute the dynamic routing procedure on a different temporal
and spatial scale than the model simulation that is performed in the raster grid of PCRaster. The aim
is therefore also not necessarily to exactly understand and calculate the dynamics of the open water
using the full Saint Venant equations, rather than to analyse the pragmatic feasibility of implementing a
routing procedure using a vector layer.

15

5. Numerical approximation

Non-linear partial differential equations have no general analytical solution, which is why numerical
discretization techniques are employed to solve them (Miller, 1984). Examples of numerical discretization
techniques to solve unsteady flow equations are the finite element method (FEM), finite volume method
(FVM) and finite difference method (FDM). The FDM is appropriate when no complex geometries such
as uniform grids need to be handled. Mass is more rigorously conserved using a FVM, and its accuracy
and computational times is comparable to FDMs. The FEM is more complex to implement and would
require more computational effort. When a problem can be solved with a regularly structured grid,
FDM can be more efficient to use (Botte et al., 2000; Chung, 2010; Shukla et al., 2011). We consider
the assumption of applying a regular structured grid to be appropriate for routing purposes, especially
considering the lack of information and data about channel geometry. Therefore we will focus on FDMs.

5.1 Finite-difference schemes

The FDM is based on applying a local Taylor expansion to approximate the derivatives. It uses a regular
network of nodes separated by distance dx to discretize a continuous model domain. In a similar way
the time domain is discretized using a time step dt (Shultz, 2007; Koohafkan, 2016). There are many
choices that can be made selecting an appropriate numerical scheme. Most FDMs will introduce artificial
diffusion when applied to the convection part of the cD-equation, which might be larger than the actual
physical diffusion (Verma et al., 2012; Chung, 2010). Space derivatives are approximated using central
difference, but temporal derivatives can be approximated using three different basic schemes: explicit,
implicit and using Crank-Nicolson schemes which combines the two (see Fig. 5.1).

Figure 5.1: (a) Explicit finite-difference discretization, (b) implicit finite-difference discretization, (c)
Crank-Nicolson finite-difference discretization.

5.1.1 Explicit finite-difference

A finite-difference scheme is said to be explicit when the value of a variable is computed forward in
time explicitly depending on the value of the previous time step (see Fig. 5.1a). An explicit method
is advantageous over an implicit method considering the ease of programming and the requirements
for computer resources as it does not use iterative computations, however a disadvantage is that this
method is subject to numerical stability constraints, and should therefore meet the requirements defined
by the Courant condition (Equation 5.1) (Koohafkan, 2016). For numerically stable solutions C should

16

5.1. FINITE-DIFFERENCE SCHEMES

be smaller than 1. Therefore the size of the temporal resolution dt is restricted, assuming a predefined
spatial resolution dx and a known wave celerity c.

C =
∆t

∆x
c (5.1)

Where:

C : Courant number (-)
∆t : Time step (s)
∆x : Spatial step (m)
c : Wave celerity (m s−1)

The MacCormack scheme is an example of a 2-step explicit FDM which uses a backwards-looking predictor
step, followed by a forward-looking corrector step. This order can also be reversed for each time step. This
scheme is easier to apply and it provides more accurate results at coarser spatial and temporal resolutions
compared to the Lax diffusive scheme. It has been widely used to solve non-linear equations (Hoffman
and Frankel, 2001; Pletcher et al., 2012). The MacCormack scheme is one of the options provided in
the rivr -package for the programming language R to solve the full Saint Venant equations (Koohafkan,
2016).

5.1.2 Implicit finite-difference

An implicit finite-difference scheme numerically solves the equations iteratively as the value for the next
time step depends on itself (see Fig. 5.1b). It is unconditionally numerically stable with no restrictions
on the size of dt and dx (Barati et al., 2012). However, to achieve high accuracy for a solution, dt should
approach the time step determined from the Courant condition.

5.1.3 Crank-Nicolson

A third basic finite-difference scheme is the Crank-Nicolson scheme (see Fig. 5.1c). Suppose a one-
dimensional partial differential equation of the form:

∂u

∂t
= f

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
(5.2)

The Crank-Nicolson method combines the fully explicit (forward Euler) and fully implicit (backward
Euler) schemes by computing the average of those:

ut+1
x − utx

∆t
= f tx

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
(Explicit) (5.3)

ut+1
x − utx

∆t
= f t+1

x

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
(Implicit) (5.4)

ut+1
x − utx

∆t
=

1

2

[
f t+1
x

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
+ f tx

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)]
(Crank-Nicolson) (5.5)

Since it is an implicit method because the solution does not explicitly depend on the value of the previous
time step, it is numerically stable. However, it is prone to oscillations if the time step relative to the
spatial step becomes large. It is a second order method because it is centered in time. For one-dimensional
(convection-) diffusion problems this method is often resorted to and it generally yields accurate results
(Crank and Nicolson, 1947; Smith, 1985).

17

CHAPTER 5. NUMERICAL APPROXIMATION

5.2 Boundary conditions

To find a numerical solution for a differential equation, initial conditions and boundary conditions need
to be specified. There are three commonly used types of boundary conditions. A Dirichlet boundary con-
dition specifies that the state of the dependent variable at the boundary is a known function of time, i.e.
in hydraulics this can be defined as fixed head. This boundary condition is relatively easy to implement
(Singh, 1996; Shahedi, 2008). Neumann boundary condition constitute the case in which the derivative
of the dependent variable is specified, i.e. in hydraulics a fixed flux. When a head-dependent flux is
specified at the boundary this is called a mixed boundary condition or Robins boundary condition. It is
a linear combination of the Dirichlet and Neumann boundary conditions and specifies a known total flux
over the boundary which comprises a diffusion and convection component.

Upstream typically a stage or flow hydrograph is provided, while downstream also a rating curve (Q-h
relation) or normal depth (the depth of flow when the slope of the water surface equals the slope of
the channel bottom (Singh, 1996)) can be specified to define the boundary condition (Brunner, 2010).
The downstream boundary should be chosen such that the backwater effect is minimal. Assuming that
backwater effect can be neglected in case of a situation like Tamakoshi river is valid because of the to-
pographical height differences. For a case in The Netherlands this assumption might not hold because of
artificial constructions that regulate water levels. Minimizing the influence of backwater can be done in
different ways for example: 1) let the river widen dramatically at the downstream point, i.e. artificially
creating a situation that simulates conditions in which all water drains into a sea, 2) artificially extend
the length of the river such that the possible backwater effect caused by errors in boundary specification
will have minimal effect on the actual end of the river, or 3) Provide a Q-h relation when data is available.

The SPHY model simulates the specific runoff for each cell in the raster. This specific runoff consists
of surface runoff, lateral flow, baseflow, snowmelt and glacier melt. From this the accumulated runoff
for the upstream location of every reach of the steam network has been calculated. This hydrograph is
used as the upstream boundary condition. Since there is no data available from which a Q-h relation
could be determined the same method has been used for the outlet of the entire stream network. The
downstream hydrographs for the smaller individual reaches are derived from results obtained by applying
the cD-equation from down- to upstream as a preprocessing step (for further explanation see section 6.8)

5.3 Numerical discretization of cD-equation

The convection-diffusion equation is discretized using the Crank-Nicolson method. Consider the cD-
equation:

∂Q

∂t
= D

∂2Q

∂x2
− c∂Q

∂x
+ f(Q) (5.6)

Where:

f : Reaction term, e.g. lateral flow

Applying the Crank-Nicolson method to the cD-equation, and adding the option to shift between pre-
dominantly implicit or explicit (i.e. ω = 1 → fully implicit, ω = 0 → fully explicit) yields:

Qt+1
x −Qtx

∆t
=

D

2∆x2

(
(1− ω)

(
Qtx+1 − 2Qtx +Qtx−1

)
+ ω

(
Qt+1
x+1 − 2Qt+1

x +Qt+1
x+1

))
− c

4∆x

(
(1− ω)

(
Qtx+1 −Qtx−1

)
+ ω

(
Qt+1
x+1 −Q

t+1
x−1

))
+ f

(
Qtx
) (5.7)

18

5.3. NUMERICAL DISCRETIZATION OF CD-EQUATION

Multiplying with ∆t and defining σ = D∆t
2∆x2 and ρ = − c∆t

4∆x yields:

ω
(
Qt+1
x + 2σQt+1

x − σQt+1
x−1 + ρQt+1

x−1 − σQ
t+1
x+1 − ρQ

t+1
x+1

)
=

(1− ω)
(
Qtx − 2σQtx + σQtx−1 − ρQtx−1 + σQtx+1 + ρQtx+1

)
+ ∆tf

(
Qtx
) (5.8)

After reordering the equation becomes:

(−σ + ρ)ωQt+1
x−1+(1 + 2σω)Qt+1

x − (σ + ρ)ωQt+1
x+1 =

(σ − ρ)(1− ω)Qtx−1 + (1− 2σ(1− ω))Qtx + (σ + ρ)(1− ω)Qtx+1 + ∆tf
(
Qtx
) (5.9)

This equation is valid for spatial indices x=1, ..., X-2, in which X is the number of discrete spatial points
in the grid. However, for the points at the boundaries, i.e. x=0 and x=X-1 the equation makes no sense
because Qt−1 and QtX are located outside the grid:

x = 0 :(−σ + ρ)ωQt+1
−1 + (1 + 2σω)Qt+1

0 − (σ + ρ)ωQt+1
1 =

(σ − ρ)(1− ω)Qt−1 + (1− 2σ(1− ω))Qt0 + (σ + ρ)(1− ω)Qt1 + ∆tf
(
Qt0
) (5.10)

x = X-1 : (−σ + ρ)ωQt+1
X−2+(1 + 2σω)Qt+1

X−1 − (σ + ρ)ωQt+1
X =

(σ − ρ)(1− ω)QtX−2 + (1− 2σ(1− ω))QtX−1 + (σ + ρ)(1− ω)QtX + ∆tf
(
QtX−1

)
(5.11)

However, by providing at both the upstream and downstream boundaries a specified flow hydrograph,
which can be interpreted as a Dirichlet boundary as a function of time, the numerical approximation can
be written compactly in a linear system using vector notation that looks like:

A * Q[t+1] = B * Q[t] + f[t]

in which:

A =

1 0 0 0 · · · 0
(−σ + ρ)ω 1 + 2σω (−(σ + ρ))ω 0 · · · 0

0 (−σ + ρ)ω 1 + 2σω (−(σ + ρ))ω · · · 0
...

. . .
. . .

. . .
...

0 · · · (−σ + ρ)ω 1 + 2σω (−(σ + ρ))ω 0
0 · · · 0 (−σ + ρ)ω 1 + 2σω (−(σ + ρ))ω
0 · · · 0 0 0 1

, Qt+1 =

Qt+1
1

Qt+1
2

Qt+1
3
...

Qt+1
X−2

Qt+1
X−1

Qt+1
X

B =

0 0 0 0 · · · 0
(σ − ρ)(1− ω) 1− 2σ(1− ω) (σ + ρ)(1− ω) 0 · · · 0

0 (σ − ρ)(1− ω) 1− 2σ(1− ω) (σ + ρ)(1− ω) · · · 0
...

. . .
. . .

. . .
...

0 · · · (σ − ρ)(1− ω) 1− 2σ(1− ω) (σ + ρ)(1− ω) 0
0 · · · 0 (σ − ρ)(1− ω) 1− 2σ(1− ω) (σ + ρ)(1− ω)
0 · · · 0 0 0 0

Qt =

, Qt1
Qt2
Qt3
...

QtX−2

QtX−1

QtX

, ft =

∆tf(Qt1)
∆tf(Qt2)
∆tf(Qt3)

...
∆tf(QtJ−2)
∆tf(QtJ−1)
∆tf(QtJ)

19

CHAPTER 5. NUMERICAL APPROXIMATION

When enough data is available a Q-h relation could be implemented at the downstream boundary. A Q-h
relation can be described by a linear combination of the Dirichlet and Neumann boundary condition:

α ∗Neumann + β ∗Dirichlet = γ (5.12)

α · ∂Q

∂x
(X-1,t) + β ·Q(X-1,t) = γ (5.13)

Discretization of equation 5.13 using centered difference for x = X-1 (i.e. boundary node), gives:

α ·
Qt
X −Qt

X−2

2∆x
+ β ·Qt

X−1 = γ (5.14)

−Qt
X−2 +

2β∆x

α
Qt
X−1 + Qt

X =
2∆xγ

α
(5.15)

Following equation 5.15 the last three terms of the last row in matrix A and matrix B should be changed
to -1, 2β∆x

α , and 1 from left to right respectively and the last term of vector f should become 2∆xγ
α for

a Robin boundary condition. Due to the low data availability a Q-h relation could not be determined
for the Tamakoshi river basin. Therefore we are restricted to use the flow hydrograph that could be
constructed from the accumulated discharge produced in each cell as simulated by SPHY. However,
to make the solution numerically more stable, the linear combination of the Dirichlet and Neumann
boundary condition as described in equation 5.15 can be used. For this β will be chosen 1.0 and γ
will be the ’observed’ flow hydrograph, which in this case is the accumulated discharge simulated by
SPHY. By also giving some weight to α (e.g. α = 0.2), and thus including the gradient of discharge (i.e.
Neumann boundary condition), the solution will numerically become more stable because the gradient
of the discharge will not take unrealistic values at the boundary.

20

6. Advanced routing module implementa-
tion

The advanced routing procedure comprises the use of the convection-diffusion equation (cD-equation)
for channel flow routing through a drainage network. This method will allow to simulate the shift and
attenuation of a wave as it propagates through the stream network. The cD-equation needs to be applied
to every reach of the stream network using appropriate initial and boundary conditions. The simulated
hydrograph at the outlet of each reach will act as lateral inflow into the connected next reach of a higher
stream order. The implementation of this procedure will be described in this chapter. All programming
code in this chapter is included in the python script ’CDrouting.py ’, unless stated otherwise.

6.1 Preprocessing

6.1.1 Preparing data and maps

Several preparatory steps needs to be performed before the routing procedure can be started. The pro-
gramming code for this is provided below (r.27–73). The command lines within the code explain which
step is performed.

27 # Read the input and output directories from the configuration file

28 inpath = config.get(’DIRS’, ’inputdir’)

29 outpath = config.get(’DIRS’, ’outputdir’)

31 # Missing value definition

32 MV= -9999

34 # Set the timing criteria

35 import datetime

36 datetime = datetime

38 sy = config.getint(’TIMING’, ’startyear’)

39 sm = config.getint(’TIMING’, ’startmonth’)

40 sd = config.getint(’TIMING’, ’startday’)

41 ey = config.getint(’TIMING’, ’endyear’)

42 em = config.getint(’TIMING’, ’endmonth’)

43 ed = config.getint(’TIMING’, ’endday’)

44 startdate = datetime.datetime(sy,sm,sd)

45 enddate = datetime.datetime(ey,em,ed)

47 # Visualisation of results in maps

48 visFLAG = config.getint(’CDROUTING’,’VisualisationFLAG’)

50 # Set clonemap

51 clonemap = inpath + config.get(’GENERAL’,’mask’)

52 pcr.setclone(clonemap)

21

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

53 clone = pcr.ifthen(pcr.readmap(clonemap), pcr.boolean(1))

54 pcr.report(clone, outpath+’clone.map’)

56 # Adjusted DEM based on the created ldd map

57 DEMadj = pcr.lddcreatedem(pcr.readmap(inpath +

config.get(’GENERAL’, ’dem’)), 1e31, 1e31, 1e31, 1e31)

58 pcr.report(DEMadj, outpath+’demadj.map’)

59 DEM = pcr.readmap(outpath + ’demadj.map’)

61 # Load locations map where time-series will be recorded and determine row and

column of the locations.

62 stations = pcr.readmap(inpath + config.get(’GENERAL’,’locations’))

63 stations2 = pcr.ifthenelse(stations!=MV, pcr.boolean(1), pcr.boolean(0))

64 stations3 = pcr.ifthen(stations2,DEM)

65 stations loc = numpy.argwhere(pcr.pcr2numpy(stations3, MV)!=MV)

66 stations loc = numpy.hstack((stations loc, numpy.zeros((stations loc.shape[0], 3))))

67 # Read station names

68 names table = inpath + config.get(’GENERAL’,’names’)

69 stations name = pcr.lookupscalar(names table, stations)

70 names = pcr.pcr2numpy(stations name, MV)

72 # Read and set runoff forcing

73 Runoff = outpath + config.get(’CDROUTING’,’totrun’)

6.1.2 Define the stream network

A map containing the local drain direction is calculated based on the Digital Elevation Model (DEM)
using PCRaster in order to define the stream network of the basin (r.75–76). The PCRaster map of the
local drain direction is converted into a numpy array (r.81). In this way the values can be adjusted such
that pits are created at the inlets of the reaches of the smallest streamorder, and additionally at the outlets
of all reaches in the stream network. This will be performed at a later stage (see Sect. 6.1.4). Every
cell in the raster will be assigned a flow direction, and therefore every cell is considered to be part of the
stream network. To reduce the refinement of the network and to create a network of well-defined streams
in which not all cells are assigned to the stream network, a threshold needs to be specified in the SPHY
config-file (r.83–85). This threshold specifies the minimal area upstream of a cell (in km2) required for this
cell to be assigned to the stream network. Using the spatial resolution of the raster (r.138–141) this area
is converted into number of cells using equation 6.1 (r.91). To determine the number of cells upstream
of a cell the ’accuflux’ function as incorporated in PCRaster has been used (r.89–90). This function
calculates the accumulated amount of material flowing out of a cell, which consists of the accumulated
material produced upstream of the cell added to the material in the cell itself (Karssenberg et al., 2001).
Using the number ’1’ as material, will provide the number of cells upstream of a cell (including the cell
itself). If this number is larger than the threshold value, the cell will be assigned to the stream network
(r.92–93).

Threshold Number of cells =
Threshold Area

(Spatial resolution)2 (6.1)

Where:

Threshold Number of cells : Threshold defining number of cells upstream of cell for this cell
to be assigned to stream network (-)

Threshold Area : Minimal area required upstream of a cell for this cell to be assigned
to stream network (km2)

Spatial resolution : Spatial resolution of the raster (km)

22

6.1. PREPROCESSING

Figure 6.1: River network demonstrating Strahlers principle to determine the stream order.

75 # Calculate local drain direction using Digital Elevation Model (DEM)

76 FlowDir ini = pcr.lddcreate(DEM, 1e31, 1e31, 1e31, 1e31)

77 # Convert the PCRmap into numpy array ’ldd inout’.

78 # This array will be used to create pits at the inlets of the reaches of

79 # the smallest streamorder and additionally pits at all outlets.

80 # This is needed to substract the water from the system at these points.

81 ldd inout = pcr.pcr2numpy(FlowDir ini, MV)

83 # Threshold specifies the minimum area (in km2) required upstream of a cell,

84 # for this cell to be assigned to the stream network.

85 threshold area = config.getfloat(’CDROUTING’, ’threshold’)

FROM SCRIPT ’sphy.py’

138 # Spatial resolution of PCRaster grid

139 self.SpaceRes = pcr.cellarea()

140 self.SpaceRes = pcr.pcr2numpy(self.SpaceRes,self.MV)

141 self.SpaceRes = self.SpaceRes[0][0]**0.5/1000

####

87 # Determine stream network (if more than #...cells upstream, then it is considered)

88 # a stream). Assign ’1’ to streams and ’0’ to non-streams.

89 accuflux = pcr.accuflux(FlowDir ini,1)

90 pcr.report(accuflux, outpath + ’accuflux.map’)

91 threshold cells = int(threshold area/((SpaceRes/1000)∗∗2))

92 network = pcr.ifthenelse(accuflux > threshold cells, pcr.nominal(1), pcr.nominal(0)

93 pcr.report(network, outpath + ’network.map’)

23

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

(a) Clone map indicating the area of interest
(r.48)

(b) Digital Elevation Model (DEM) (r.52)

(c) Accuflux.map (r.82) (d) Stream network.map based on threshold
value (r.85)

Figure 6.2: Define the stream network using the DEM.

6.1.3 Determine stream order

Once the stream network has been defined the stream order of all reaches belonging to the stream net-
work are specified using the function ’streamorder’ as implemented in PCRaster (r.99–101). This function
again requires the local drain direction map as input, and therefore will use the map in which the ldd has
been determined for all cells belonging to the stream network (r.95–97). To obtain the stream order solely
for the defined stream network, the two maps are multiplied (r.103–105). The minimum and maximum
stream order are retrieved from the resulting map (r.107–110).

95 # Determine flow direction only for stream network

96 FlowDir network = pcr.ldd(pcr.scalar(network)*pcr.scalar(FlowDir ini))

97 pcr.report(FlowDir network, outpath + ’FlowDir network.map’)

99 # Determine the streamorder map from the FlowDir map

100 streamorder = pcr.streamorder(FlowDir ini)

101 pcr.report(streamorder, outpath+’streamorder.map’)

24

6.1. PREPROCESSING

103 # Determine for the defined network what the streamorder is

104 orderNetwork = pcr.nominal(pcr.scalar(streamorder)*pcr.scalar(network))

105 pcr.report(orderNetwork, outpath + ’orderNetwork.map’)

107 # Determine the minimum and maximum streamorder. For this convert to numpy array,

make all missing values 0 and flatten it (hstack)

108 orders = numpy.hstack(pcr.pcr2numpy(orderNetwork, 0))

109 strordmin = int(min(i for i in orders if i > 0))

110 strordmax = int(max(i for i in orders if i > 0))

6.1.4 Identify reaches

From the ’orderNetwork ’ map all reaches per stream order are retrieved and saved in a separate map,
containing all reaches for the regarded stream order (r.119 & 122). Additionally, the location (x,y) of all
cells belonging to that stream order are stored in table reachID (r.126–128).

In general when performing a function using PCRaster, it will scan the raster row by row. This therefore
determines the order in which cells are stored when they meet a certain criteria. Since this order does not
necessarily coincide with downstream neighbouring cells another method was founded to determine neigh-
bouring cells. For this all cells belonging to a reach the value of the DEM (r.120 & 123) and Slopelength
are calculated (r.121 & 124). At first it was expected that DEM values would systematically decrease in
downstream direction, however due to some small inconsistencies in the map this is not always the case.
Slopelength is a function in PCRaster that calculates the accumulative-friction-distance of the longest
path upstream (r.112–115), which from a pragmatic point of view, means that this value systematically
increases in downstream direction.

112 # Calculate slopelength - calculates the accumulative friction-distance of the

113 # longest path upstream.Needed to sort the cells of a reach in downstream direction.

114 slopelength = pcr.slopelength(FlowDir network,1)

115 pcr.report(slopelength, outpath+’slopelength.map’)

117 # Determine the reaches and its indices on the map,

as well as for these reaches subtract DEM and SlopeLength values.

118 for order in range(strordmin,strordmax+1):

119 reach = pcr.ifthenelse(orderNetwork==order, pcr.boolean(1), pcr.boolean(0))

120 demreach = pcr.ifthen(reach,DEM)# if part of the reach, then give DEM value

121 SLreach = pcr.ifthen(reach,slopelength)

122 pcr.report(reach, outpath + ’reach ’ + str(order) + ’.map’)

123 pcr.report(demreach, outpath + ’demreach ’ + str(order) + ’.map’)

124 pcr.report(SLreach, outpath + ’SLreach ’ + str(order) + ’.map’)

126 # Convert PCRmap to numpy array and determine for the reach the location

(row and col), and store this.

127 reachID = numpy.argwhere(pcr.pcr2numpy(SLreach, MV)!=MV)

128 numpy.savetxt(outpath+’reachid ’+str(order)+’.txt’, reachID, delimiter=’,’)

The next step is to separate the individual reaches per stream order. First a matrix consisting of 5
columns is created ’ArrayID’ (r.163–164). The first column is reserved to assign an ID number to each
cell. The second and third column contain the row and the column of the cells of all reaches respectively,
indicating their location in the raster (r.167–168). The fourth and fifth column are filled with the DEM
and Slopelength values respectively (r.153–161 + 169–170). Subsequently the matrix is sorted from low to
high based on Slopelength values (r.172–173), which means that the cells are now ordered in downstream
direction. The table is saved as ’ReachArrayID order ’ (r.177). Now everything is prepared to retrieve
the individual reaches per stream order (r.179–260).

25

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

Table 6.1: Example of the resulting ’reachID’ table which stores the locations of the cells belonging to
the specified stream order (r.126–128).

x y

350 156
360 157
370 157

...
...

420 650
421 660

For this purpose the outlet of one reach is found and reported (r.186–187) by determining the maximum
of the Slopelength map (i.e. the maximum slopelength will be found at the most downstream point
of a reach), which is then assigned TRUE (r.182–183). In case there are more than one cells with the
same maximum Slopelength value, then also the DEM value will be considered in order to find a just
one unique outlet (r.184–185). For this outlet its catchment is determined using the function ’catch-
ment’ in PCRaster (r.189–191). This is a sub-catchment of the total considered area. By combining the
map of the sub-catchment and the map containing all the reaches of the stream order (r.192–195), the
cells of the reach that are located within the sub-catchment are retrieved (r.196) and its locations are
saved in a matrix, which again is ordered in downstream direction using Slopelength values and saved
in a table named ’SubReachArrayID’ (r.198–213). Subsequently these cells are removed from the ma-
trix (r.228–232) that contains all reaches of the regarded stream order so a new maximum can be found
and therefore the outlet of the next sub-reach, repeating this procedure until all sub-reaches are identified.

In between it is determined in which specific reach the observation stations are located (r.215–226).
At a later stage this allows us to retrieve time series of the routing results at these locations in order to
compare these simulations to observations.

Furthermore, the array of the local drain direction map ldd inout is changed into the number ’5’ for
every outlet and for all inlets of reaches with the smallest stream order, as this creates a pit (r.237 &
247). A pit in the local drain direction map will prevent water to flow past this point (see next Section
(Sect. 6.2)). The location of the outlets, together with the stream order and sub-reach number are stored
in the array ’outIDreach’ (r.238–241). The next section will discuss on the need to create these pits.
Furthermore a map is created in which only the outlets are given ldd out (r.133 & 236), and similarly a
map containing only the inlets of reaches of the smallest stream order ldd in (r.132 & 246). These maps
are needed to inject the water, either retrieved from the system or through the open channel routing, to
the right locations. In addition a map is created containing only the inlets of reaches with a stream order
> 1 ldd ups (r.134 & 250). The latter is used to determine the upstream boundary of each reach when
running the cD-equation backwards which is needed to determine the downstream boundary conditions
for each reach (see Sect. 6.8).

Figure 6.3: River network where all sub-reaches of stream order 2 are highlighted and numbered.

26

6.1. PREPROCESSING

130 # Preparation for inlet map (only inlets of smallest streamorder), outlet map and

131 # a map with inlets of all reaches with streamorder>1

132 ldd in = pcr.pcr2numpy(pcr.ifthen(clone==1, pcr.boolean(0)), MV)

133 ldd out = pcr.pcr2numpy(pcr.ifthen(clone==1, pcr.boolean(0)), MV)

134 ldd ups = pcr.pcr2numpy(pcr.ifthen(clone==1, pcr.boolean(0)), MV)

136 # Create empty arrays to store the ID’s, ’order’ and ’sub’ of the outlets,

137 # inlets and inlets of all reaches with streamorder>1 respectively.

138 outIDreach = []

139 inIDreach = []

140 upsIDreach = []

142 ##########

143 # For each stream order order the cells in downstream direction.

144 # An array is produced which contains: 1)Unique ID, 2)row, 3)col, 4)Elevation,

145 # 5)Slopelength (this is used to sort the cells in downstream direction)

146 ##########

147 for order in range(strordmin,strordmax+1):

148 reach = pcr.readmap(outpath + ’reach ’ + str(order) + ’.map’)

150 # Read file containing the indices of the reach

151 reachID = numpy.loadtxt(outpath+’reachid ’+str(order)+’.txt’, delimiter=’,’)

153 # Determine DEM value for each cell of the reach and convert to array

154 dem = pcr.readmap(outpath + ’demreach ’ + str(order) + ’.map’)

155 runoffDEM = pcr.ifthen(reach, dem)

156 DEMArray = pcr.pcr2numpy(runoffDEM,MV)

158 # Determine SlopeLength value for each cell of the reach and convert to array

159 SL = pcr.readmap(outpath + ’SLreach ’ + str(order) + ’.map’)

160 runoffSL = pcr.ifthen(reach, SL)

161 SLArray = pcr.pcr2numpy(runoffSL,MV)

163 # Create empty array with 5 columns and length equal to number of cells

in the reach.

164 ArrayID = numpy.zeros((len(reachID),5))

165 # Fill the array:

166 for cell in range(0,len(reachID)):

167 ArrayID[cell,1]=int(reachID[cell,0])

168 ArrayID[cell,2]=int(reachID[cell,1])

169 ArrayID[cell,3]=DEMArray[int(reachID[cell,0]),int(reachID[cell,1])]

170 ArrayID[cell,4]=SLArray[int(reachID[cell,0]),int(reachID[cell,1])]

172 # Sort the array according to SlopeLength

173 ArrIDSorted=ArrayID[numpy.argsort(ArrayID[:,4])]

174 # After sorting add ID value to the cells. Now the cells are ordered in

a downstream way.

175 for ID in range(0,len(reachID)):

176 ArrIDSorted[ID,0]=ID+1

177 numpy.savetxt(outpath + ’ReachArrayID ’ + str(order) + ’.txt’,

ArrIDSorted, delimiter=’,’)

179 # Identify and subtract individual sub-reaches within each stream order

180 sub=0

181 while max(ArrIDSorted[:,4])!=MV:

182 # Find the outlet of one of the sub-reaches and make it ’TRUE’

27

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

183 SLoutlet = pcr.boolean(SL == max(ArrIDSorted[:,4]))

184 # Needed in case there are more points with the same maximum value

185 DEMoutlet = pcr.ifthen(SLoutlet,dem)

186 outlet = pcr.boolean(DEMoutlet == (ArrIDSorted[ArrIDSorted[:,4]==

max(ArrIDSorted[:,4])][0,3]))

187 pcr.report(outlet, outpath + ’outlet’ + str(order) + ’ ’ +

+ str(sub+1) + ’.map’)

189 # Determine for point ’1’ its catchment

190 subcatch = pcr.catchment(FlowDir ini,outlet)

191 pcr.report(subcatch, outpath + ’subcatch’ + str(order) + ’ ’ +

str(sub+1) + ’.map’)

192 # Select from the reaches within this stream order the cells that lie within

the defined catchment of the accompanying outlet point

193 subreach=pcr.ifthen(subcatch,reach)

194 subreach2 = pcr.ifthen(subreach,SL)

195 pcr.report(subreach2, outpath + ’subreach’ + str(order) + ’ ’ +

str(sub+1) + ’.map’)

196 subreachID = numpy.argwhere(pcr.pcr2numpy(subreach2, MV)!=MV)

198 # Create empty array with 6 columns and length equal to number of cells

in the reach.

199 subarrayID = numpy.zeros((len(subreachID),6))

200 # Fill the array:

201 for cell in range(0,len(subreachID)):

202 subarrayID[cell,1]=int(subreachID[cell,0])

203 subarrayID[cell,2]=int(subreachID[cell,1])

204 subarrayID[cell,3]=SLArray[int(subreachID[cell,0]),int(subreachID[cell,1])]

205 subarrayID[cell,4]=int(order)

206 subarrayID[cell,5]=int(sub+1)

208 # Sort the array according to SlopeLength

209 subarrIDSorted=subarrayID[numpy.argsort(subarrayID[:,3])]

210 # After sorting add ID value to the cells.

Now the cells are ordered in a downstream way.

211 for ID in range(0,len(subreachID)):

212 subarrIDSorted[ID,0]=ID+1

213 numpy.savetxt(outpath + ’SubReachArrayID ’ + str(order) + ’ ’ +

str(sub+1) + ’.txt’, subarrIDSorted, delimiter=’,’)

215 # Find in which reach (i.e. order and sub) the stations are located

216 # and store this in ’stations loc’.

217 for loc in range(len(stations loc)):

218 # Exclude streams comprising 1 cell

219 # (assuming that this will not be the location of a station)

220 if numpy.size(subarrIDSorted)>6:

221 if stations loc[loc,0] in subarrIDSorted[:,1]:

222 index = numpy.where(subarrIDSorted[:,1]==stations loc[loc,0])

223 if subarrIDSorted[index[0][0],2]==stations loc[loc,1]:

224 stations loc[loc,2]=order

225 stations loc[loc,3]=sub+1

226 stations loc[loc,4]=index[0][0]

228 # Remove (=set to MV) the cells of the subreach regarded from

the array ’ArrIDSorted’ in order to find the next max SL

229 for subID in range(0,len(subreachID)):

28

6.1. PREPROCESSING

230 x=ArrIDSorted[ArrIDSorted[:,1]==subreachID[subID,0]]

231 y=x[x[:,2]==subreachID[subID,1]]

232 ArrIDSorted[int(y[0,0])-1,:]=MV

234 # Create a pit (cell value is 5) in the ldd inout at the outlet points of

235 # each subreach. Outlets are the last value of the ’sub array sorted’.

236 ldd out[int(subarrIDSorted[-1][1]),int(subarrIDSorted[-1][2])]=1

237 ldd inout[int(subarrIDSorted[-1][1]),int(subarrIDSorted[-1][2])]=5

238 outIDreach.append(int(order))

239 outIDreach.append(int(sub+1))

240 outIDreach.append(int(subarrIDSorted[-1][1]))

241 outIDreach.append(int(subarrIDSorted[-1][2]))

242 # Find index of the most upstream cell of each subreach

243 # and change this in the map to value ’1’

244 # Make inlets also pits in ldd inout array.

245 if order==strordmin:

246 ldd in[int(subarrIDSorted[0][1]),int(subarrIDSorted[0][2])]=1

247 ldd inout[int(subarrIDSorted[0][1]),int(subarrIDSorted[0][2])]=5

248 # Change the location of the inlets of reaches with streamorder>1 to ’1’

249 if order>strordmin:

250 ldd ups[int(subarrIDSorted[0][1]),int(subarrIDSorted[0][2])]=1

251 upsIDreach.append(int(order))

252 upsIDreach.append(int(sub+1))

253 upsIDreach.append(int(subarrIDSorted[0][1]))

254 upsIDreach.append(int(subarrIDSorted[0][2]))

255 inIDreach.append(int(order))

256 inIDreach.append(int(sub+1))

257 inIDreach.append(int(subarrIDSorted[0][1]))

258 inIDreach.append(int(subarrIDSorted[0][2]))

260 sub+=1

Table 6.2: Example of the resulting ’ReachArrayID’ (r.165) and ’SubReachArrayID’ (r.201) tables which
are similar to ’reachID’ but now has been ordered based on the value of Slopelength, needed to order the
cells in downstream direction.

(a) ReachArrayID

ID x y DEM Slopelength

1 350 156 4959.8 0.0
2 397 32 707.0 0.0
3 365 67 826.0 0.0
...

665 377 87 616.1 38541.6
666 377 86 600.4 38791.6

(b) SubReachArrayID

ID x y Slopelength #order #sub

1 280 180 0.0 1 1
2 281 179 353.6 1 1
3 282 178 707.1 1 1
...

127 377 87 38541.6 1 1
128 377 86 38791.6 1 1

29

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

(a) Streamorder determined based on Strahler. (b) All sub-reaches of order 1

(c) Slopelength of these sub-reaches. (d) DEM of these sub-reaches

Figure 6.4: Determine the streamorder for all reaches and identify all sub-reaches per streamorder.

30

6.2. CONSERVATION OF MASS

6.2 Conservation of mass

So-called ’pits’ are created at every outlet and inlet of a reach to withdraw water from the system in order
to prevent accounting for the volume of water twice through routing as open water ánd as groundwater
through the soil system. With this pit the water is forced out of the system and cannot flow beyond
this point. A pit is created by adjusting the local drain direction map at this point, i.e. it is changed
into number ’5’ as this creates a pit by definition. This way the total amount of water in the system is
preserved. For a more elaborate explanation consult section 6.5 and see figure 6.8.

6.3 Temporal and spatial grid

The routing module is set up outside the PCRaster environment which provides the opportunity to run
the routing module with a different temporal and spatial resolution than the simulation of the SPHY
model itself. An advantage of this is that when preferred a finer resolution can be chosen, which im-
proves the quality of the numerical solution. By specifying a smaller time step the numerical solution
will approach the analytical solution, however this will increase computational time. Choosing a time
step that is significantly larger than the system time scale may lead to instabilities or oscillations. It is
therefore a balance between the quality of the numerical approximation and computational time. The
temporal scale should also be in balance with the spatial scale to avoid instabilities and to limit excessive
numerical diffusion. Time and space problems are coupled through the Courant number (see Eq. 5.1).
This number should be smaller than 1 to limit the numerical diffusion. The user receives a warning when
the Courant number exceeds 1.

The routing can be calculated on a different temporal resolution than on which the visualisation of
the result are done. They are independent of each other, i.e. the routing calculations can be done on an
hourly base, while the visualisation can be given on a daily base.

6.4 Initial and boundary conditions

A spatially constant discharge of 25.0 m3 s−1 has been specified as initial condition for all reaches. This
has been calculated from rough estimations of width, depth and flow velocity in the Tamakoshi river.
At the upstream boundary a flow hydrograph needs to be specified. This comprises the accumulated
discharge of the area upstream of this point. At the downstream boundary preferably a known Q-h
relation is provided, however in data-scarce areas such as the Tamakoshi river basin this relation is
unknown. Therefore, another option is to provide a flow hydrograph as well, similarly to the upstream
boundary. However, to strengthen the numerical stability of the system, it was chosen to use a linear
combination of the Dirichlet and Neumann boundary conditions as was explained in section 5.3. The flow
hydrograph of the outlet of the entire basin comprises the accumulated discharge of the whole catchment
as simulated by SPHY. The downstream flow hydrographs of all the other individual reaches of the
stream network are determined by applying the cD-equation from downstream to upstream direction.
This method will be explained more elaborately in section 6.8.

6.5 Lateral inflow

An artificial experiment has been done to demonstrate the effect of adding lateral inflow at a certain
position along a stream. Figure 6.5 shows how an initial impulse to the stream system shifts and at-
tenuates as the wave travels through the channel. Time is depicted along the x-axis time and the three
coloured lines correspond to hydrographs simulated at distance 1/4th, 2/4th and 3/4th along the stream
respectively.

31

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

0 10 20 30 40 50

t

0

1

2

3

4

5

sp
e
ci

fi
c

ru
n
o
ff

initial hydrograph upstream

hydrograph at 1/4 of stream

hydrograph at 2/4 of stream

hydrograph at 3/4 of stream

Figure 6.5: Resulting hydrographs at several distances along the stream channel.

Figure 6.6 is the result of adding lateral flow at both 1/4th and 2/4th of the channel. This affects the
hydrographs at these locations instantly.

0 10 20 30 40 50

t

0

1

2

3

4

5

sp
e
ci

fi
c

ru
n
o
ff

initial hydrograph upstream

hydrograph at 1/4 of stream

hydrograph at 2/4 of stream

hydrograph at 3/4 of stream

lateral inflow at 1/4 and 2/4 of stream

Figure 6.6: Resulting hydrographs at several distances along the stream channel after adding lateral
inflow at two places along the channel.

The same has been done in figure 6.7, but now the timing of the impulse of lateral flow at a distance of
2/4th of the channel is shifted.

32

6.5. LATERAL INFLOW

0 10 20 30 40 50

t

0

1

2

3

4

5

sp
e
ci

fi
c

ru
n
o
ff

initial hydrograph upstream

hydrograph at 1/4 of stream

hydrograph at 2/4 of stream

lateral inflow at 1/4 of stream

lateral inflow at 2/4 of stream

Figure 6.7: Resulting hydrographs at several distances along the stream channel after adding lateral
inflow at two places along the channel.

There are two sources of water that together form the lateral inflow for the next reach (see Fig.6.8). The
accumulated specific runoff produced by the cells upstream of the inlet of the reach is routed through the
channel (dashed blue area). The amount at the outlet of this reach after routing is one source of lateral
flow for the next downstream reach (Waterrouted). Besides the injection of lateral flow originating from
the open channel, an additional flow is added as lateral flow to this point. This water originates from the
system and has not been routed yet. This is the total amount of accumulated specific runoff of the cells
upstream of the point of injection minus the blue area (i.e. the red area).

Adding the outflow from one reach into the next as lateral inflow can be done using different meth-
ods. It can be injected at one single point or it can be divided along a transect. Although knowing that
by adding a large volume of water at a single point it can lead to numerical unstable conditions, it has
been chosen from a pragmatic point of view to use the point injection here. Choosing a smaller threshold
value, and thereby refining the stream network, will decrease the effect of the point injection.

If the threshold to determine the stream network is relatively high, i.e. less cells are assigned to the
stream network, the water from the system that is added as lateral flow at one point to the next stream
can become considerable large (see Fig.6.8). As a result a large amount of water that has not been routed
yet will suddenly be added to the channel at a single point.

33

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

Figure 6.8: Components that together form the lateral inflow to be injected to the next reach at the
connection point.

6.6 Parameter values to be specified in config-file

There are several parameters that need to be specified by the user in the SPHY config-file. First the user
should specify a threshold value that specifies the minimal area upstream of a cell required for this cell
to be assigned to the stream network. This should be provided in km2. Values for α and β should be
provided to specify the weight to be given to the Neumann and Dirichlet part of the boundary condition
respectively. A value for ω should be given to specify the Crank-Nicolson scheme to be more implicit or
explicit (i.e. ω = 1 → fully implicit, ω = 0 → fully explicit).

Furthermore, as was explained in section 6.3 the calculations in the routing module can be done on
a different temporal and spatial resolution. Therefore the user must specify the time step at which the
routing calculations are performed, i.e. dt, as well as the time step at which the results are provided and
visualised, i.e. dt visualize. The user can opt for 1/24, 3/24, 6/24, 12/24 or 24/24 daily time steps. The
spatial step dx should be chosen such that the result of the division: dxclonemap/dx is an integer number,
i.e. dx can be larger or smaller than the spatial resolution of the clone map that is used. If the user does
not specify a value dx will equal the spatial resolution of the clone map.

In addition, values for the wave celerity (c) and diffusion coefficient (D) should be provided. The user
can opt to directly provide a value for both parameters. The other option is to calculate c and D starting
from the linearised convection convection-diffusion equation (see Eq. 6.2 and 6.3). For the latter option
a representative width and depth of the river should be provided, as well as the roughness coefficient and
bottom slope. For further elaboration on the derivation of the equations consult Torfs (2002). Estimation
of these parameters are subject to a number of uncertainties and the results of the calculations of c and D
are sensitive to slight changes of these parameters. Therefore most probably better results are obtained
when c and D are calibrated.

c =
3

2
S

1/2
0 C h1/2 (6.2)

D =
C h3/2

2 S
1/2
0

(6.3)

34

6.6. PARAMETER VALUES TO BE SPECIFIED IN CONFIG-FILE

Where:

c : wave celerity (m s−1)
D : diffusion coefficient (m2 s−1)
C : Chézy coefficient (m1/2 s−1)
S0 : Bed slope (m m−1)
h : Water depth (m)

These calculations are programmed in the script cD :

8 def calcCD(self, width, depth, roughness, slope):

10 # Cross sectional area (m2)

11 A=float(width)*float(depth)

12 # Wetted perimeter (m)

13 P=2*depth+width

14 # Hydraulic radius (m)

15 R=A/P

17 # Chezy coefficient (m(1/2)*s-1)

18 Chezy = (1/float(roughness))*(R**(1/6))

20 # Wave celerity

21 c=(3/2.)*(float(slope)**0.5)*Chezy*(float(depth)**0.5) # m s-1

22 c = c * 60*60) # m hr-1

23 c = c /1e3) # km hr-1

25 # Diffusion coefficient

26 D=(Chezy*(float(depth)**(3/2.)))/(2*(float(slope)**0.5)) # m2 s-1

27 D = D * 60*60 # m2 hr-1

28 D = D /1e6 # km2 hr-1

30 return c,D

35

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

6.7 The cD-equation

The following functions are used to solve the cD-equation (see Sect. 5.3). The former function runCDback
is called upon first in order to determine the downstream boundary conditions for all individual reaches
(see Sect. 6.8) (r.28–103). The latter function runCD is used for the main routing loop (see Sect. 6.9)
(r.106–189). They are similar except for the fact that in the function runCD lateral flow is included
and that the reaches are artificially elongated in order to decrease the effect of the imposed downstream
boundary conditions (see Sect. 5.2).

32 def runCDback(up, down, init, length, dx, dt, c, D):

34 # Length of reach in km

35 L = length

37 # Number of spatial steps

38 Nx = int((L/dx)+1)

40 # Divide the volume of water over smaller time steps when the chosen temporal

41 # step is smaller than 24 hours.

42 if dt < 24:

43 up smalldt = []

44 for i in range(len(up)-1):

45 t up = (up[i+1]-up[i])/(24/dt)

46 for j in range(1,(24/dt)+1):

47 up smalldt.append(up[i]+t up*j)

48 up = up smalldt

50 # Number of time steps

51 Nt=len(up)

53 # Define sigma and rho in the context of numerical discretization

54 sigma = float(D*dt)/float(2.*dx*dx)

55 rho = float(-c*dt)/float(4.*dx)

56 print ’Courant [-] = ’ + str(4*-rho)

57 print ’Peclet [-] = ’ + str(dx*c/D)

58 print ’100 numerical time steps [hr] = ’ + str(100*dt)

59 print ’Travel distance in 100 numerical time steps [km] = ’ + str(c*100*dt)

60 print ’100 numerical spatial steps [km] = ’ + str(100*dx)

61 print ’Travel time over 100 numerical spatial steps [hr] = ’ + str(100*dx/c)

62 print ’Travel time over 50 km [hr] = ’ + str(50./c)

64 # Specify the weight given to Neumann and Dirichlet part of the Robin b.c.

65 alpha = config.getfloat(’CDROUTING’,’alpha’)

66 beta = config.getfloat(’CDROUTING’,’beta’)

68 # Implicit/explicit (omega=1 --> fully implicit, omega=0 --> fully explicit)

69 omega = config.getfloat(’CDROUTING’,’omega’)

71 # Create tridiagonal matrices

72 A = np.diagflat([(-sigma+rho)*omega for i in range(Nx-1)], -1) +

73 np.diagflat([1.+2.*sigma*omega for i in range(Nx)]) +

74 np.diagflat([(-(sigma+rho))*omega for i in range(Nx-1)], 1)

75 A[0,:] = np.array([1] + [0 for i in range(0,Nx-1)])

76 # If reach is shorter than 4 cells:

77 if Nx<4:

78 A[-1,:] = np.array([0 for i in range(0,Nx-1)] + [1])

36

6.7. THE CD-EQUATION

79 # In all other cases:

80 else:

81 A[-1,:] = np.array([0 for i in range(0,Nx-3)] + [-1] +

[(2*beta*dx)/alpha] + [1])

83 B = np.diagflat([(sigma-rho)*(1-omega) for i in range(Nx-1)], -1) +

84 np.diagflat([1.-2.*sigma*(1-omega) for i in range(Nx)]) +

85 np.diagflat([(sigma+rho)*(1-omega) for i in range(Nx-1)], 1)

86 B[0,:] = np.array([0 for i in range(0,Nx)])

87 B[-1,:] = np.array([0 for i in range(0,Nx)])

89 # Create vector F

90 f vec = np.array([0 for i in range(0,Nx)])

92 # Specify initial condition

93 Q = init

95 # Create empty list to store the results

96 Q record = []

98 # First create a stationary solution which is subsequently provided to the

99 # main loop. To create this stationarity no impulse is given upstream.

100 for ti in range(1,100):

101 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

102 Q = Q new

103 Q record.append(Q)

105 # Main loop to solve the system iteratively

106 for ti in range(1,Nt):

107 # Provide upstream hydrograph

108 f vec[0] = up[ti]*dt

109 # Provide downstream hydrograph

110 f vec[-1] = (2*dx*down[ti])/alpha*dt

111 # Solve the system

112 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

113 Q = Q new

114 Q record.append(Q)

115 Q record = np.array(Q record)

117 return Q record

120 def runCD(up, down, init, lat, check lat, lat distr, length, dx, dt, c, D):

122 # Length of reach in km

123 L = length

124 # Artificially elongate the reach for the downstream b.c. to have less influence

125 L long = length *1.2

127 # Number of spatial steps

128 Nx = int((L/dx)+1)

129 Nx long = int((L long/dx)+1)

131 # Divide the volume of water over smaller time steps when the chosen temporal

37

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

132 # step is smaller than 24 hours.

133 if dt < 24:

134 up smalldt = []

135 for i in range(len(up)-1):

136 t up = (up[i+1]-up[i])/(24/dt)

137 for j in range(1,(24/dt)+1):

138 up smalldt.append(up[i]+t up*j)

139 up = up smalldt

141 # Number of time steps

142 Nt=len(up)

144 # Define sigma and rho in the context of numerical discretization

145 sigma = float(D*dt)/float(2.*dx*dx)

146 rho = float(-c*dt)/float(4.*dx)

147 print ’Courant [-] = ’ + str(4*-rho)

148 print ’Peclet [-] = ’ + str(dx*c/D)

149 print ’100 numerical time steps [hr] = ’ + str(100*dt)

150 print ’Travel distance in 100 numerical time steps [km] = ’ + str(c*100*dt)

151 print ’100 numerical spatial steps [km] = ’ + str(100*dx)

152 print ’Travel time over 100 numerical spatial steps [hr] = ’ + str(100*dx/c)

153 print ’Travel time over 50 km [hr] = ’ + str(50./c)

155 # Specify the weight given to Neumann and Dirichlet part of the Robin b.c.

156 alpha = config.getfloat(’CDROUTING’,’alpha’)

157 beta = config.getfloat(’CDROUTING’,’beta’)

159 # Implicit/explicit (omega=1 --> fully implicit, omega=0 --> fully explicit)

160 omega = config.getfloat(’CDROUTING’,’omega’)

162 # Create tridiagonal matrices

163 A = np.diagflat([(-sigma+rho)*omega for i in range(Nx long-1)], -1) +

164 np.diagflat([1.+2.*sigma*omega for i in range(Nx long)]) +

165 np.diagflat([(-(sigma+rho))*omega for i in range(Nx long-1)], 1)

166 A[0,:] = np.array([1] + [0 for i in range(0,Nx long-1)])

167 # If reach is shorter than 4 cells:

168 if Nx long<4:

169 A[-1,:] = np.array([0 for i in range(0,Nx long-1)] + [1])

170 # In all other cases:

171 else:

172 A[-1,:] = np.array([0 for i in range(0,Nx-3)] + [-1] +

[(2*beta*dx)/alpha] + [1])

174 B = np.diagflat([(sigma-rho)*(1-omega) for i in range(Nx long-1)], -1) +

175 np.diagflat([1.-2.*sigma*(1-omega) for i in range(Nx long)]) +

176 np.diagflat([(sigma+rho)*(1-omega) for i in range(Nx long-1)], 1)

177 B[0,:] = np.array([0 for i in range(0,Nx long)])

178 B[-1,:] = np.array([0 for i in range(0,Nx long)])

180 # Create vector F

181 f vec = np.array([0 for i in range(0,Nx long)])

183 # Specify initial condition

184 Q = init

186 # Create empty list to store the results

38

6.7. THE CD-EQUATION

187 Q record = []

189 # First create a stationary solution which is subsequently provided to the

190 # main loop. To create this stationarity no impulse is given upstream.

191 for ti in range(1,100):

192 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

193 Q = Q new

194 Q record.append(Q)

196 # Main loop to solve the system iteratively

197 for ti in range(1,Nt):

198 # Provide upstream hydrograph

199 f vec[0] = up[ti]*dt

200 # Add lateral inflows

201 for i in range(len(check lat)):

202 f vec[int(lat[i][0])-1] = (lat[i][ti] + lat[i][ti+Nt])*dt

203 # Provide downstream hydrograph

204 f vec[-1] = (2*dx*down[ti])/alpha*dt

205 # Solve the system

206 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

207 Q = Q new

208 Q record.append(Q)

209 Q record long = np.array(Q record)

210 # Cut of the elongated part of the reach

211 Q record = Q record long[:,0:Nx]

213 return Q record

39

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

6.8 Determine downstream hydrographs using cD-equation

The cD-equation is applied to every individual reach of the stream network, for which initial and boundary
conditions should be provided. For the inlet of a reach the hydrograph that acts as upstream boundary
condition is obtained from the table containing total accumulated runoff (see Sect. 6.8.4). This time series
is based on simulations of the SPHY model. However, the downstream boundary conditions for each reach
are not explicitly specified. In order to define the hydrograph downstream, the best approximation is to
use the hydrograph of the cell of the next stream order to which the outlet is connected to. An iterative
process is started in which the cD-equation firstly is applied to the highest stream order, coinciding with
the main stream. From this the hydrograph of the connecting points to its sub-reaches is retrieved,
which act as downstream boundary conditions for the sub-reaches. Subsequently, the cD-equation will
be applied to these sub-reaches, from which the hydrograph of the subsub-reaches are obtained. This
process continues until all reaches are included. For this process the locations of the inlets and outlets
need to be know, as well as the connecting points and which reaches are connecting to each other.

6.8.1 Determine locations of inlets and outlets

In section 6.1 the inlets and outlets of all reaches were determined. Continuing on that, the locations (i.e.
row and column in the raster) of all outlets and all inlets are stored in ’pitID’ and ’inID’ respectively.
In addition ’uphydroID’ contains the locations of the inlets of all reaches with stream order > 1, and in
’inoutID’ the locations of all the outlets together with the inlets of the reaches of the smallest stream
order are stored. For further analysis it is needed to convert the array of the adjusted local drain direc-
tion (i.e. containing pits) back to a PCRmap, as well as converting the array with the inlets to a PCRmap.

262 # Reshape the arrays to 4 columns.

263 # Save the arrays containing ’order’, ’sub’ and ’x and y’

264 outIDreach=numpy.reshape(outIDreach, (len(outIDreach)/4,4))

265 inIDreach=numpy.reshape(inIDreach, (len(inIDreach)/4,4))

266 upsIDreach=numpy.reshape(upsIDreach, (len(upsIDreach)/4,4))

267 numpy.savetxt(outpath + ’outIDreach.txt’, outIDreach, delimiter=’,’)

268 numpy.savetxt(outpath + ’inIDreach.txt’, inIDreach, delimiter=’,’)

269 numpy.savetxt(outpath + ’upsIDreach.txt’, upsIDreach, delimiter=’,’)

271 # Convert ldd array ’ldd inout’ back to pcr-map. This map contains pits at the

272 # inlets of the reaches of the smallest streamorder and additionally pits at all outlets.

273 ldd upd = pcr.numpy2pcr(Ldd, ldd inout, MV)

274 pcr.report(ldd upd, outpath + ’ldd upd.map’)

275 # Convert inlet array to pcr-map (inlets of streamorder 1)

276 inlets = pcr.numpy2pcr(Boolean, ldd in, MV))

277 pcr.report(inlets, outpath + ’inlets.map’)

278 # Convert outlet array to pcr-map (outlets of all streamorders)

279 outlets = pcr.numpy2pcr(Boolean, ldd out, MV)

280 pcr.report(outlets, outpath + ’outlets.map’)

281 # Convert inlets of streamorder>1 array to pcr-map

282 ups = pcr.numpy2pcr(Boolean, ldd ups, MV)

283 pcr.report(ups, outpath + ’ups.map’)

285 # Determine locations of only all the outlets

286 pitID = numpy.argwhere(ldd out==1)

287 numpy.savetxt(outpath + ’pitID.txt’, pitID, delimiter=’,’)

288 # Determine locations of only all the inlets of streamorder 1

289 inID = numpy.argwhere(ldd in==1)

290 numpy.savetxt(outpath + ’inID.txt’, inID, delimiter=’,’)

291 # Determine locations of inlets of all stream orders > 1

292 # Needed to have a first estimation of the upstream b.c. when runCDback.

293 uphydroID = numpy.argwhere(ldd ups==1)

40

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

294 numpy.savetxt(outpath + ’uphydroID.txt’, uphydroID, delimiter=’,’)

295 # Determine locations of only all the outlets plus inlets of streamorder 1

296 inoutID = numpy.argwhere(ldd inout==5)

297 numpy.savetxt(outpath + ’inoutID.txt’, inoutID, delimiter=’,’)

Table 6.3: The different ’IDreach’ tables contain information about the locations of e.g. the inlets or
outlets of each reach (r.267–269). The different ’ID’ tables contain similar information as the ’IDreach’
tables, however now in the order that PCRaster scans the raster (r.287, 290, 294 and 297). ’connectID’
shows the location where a stream flows into the next stream (r.328).

(a) out/in/upsIDreach

#order #sub x y

1 1 280 180
1 2 214 237
1 3 222 178
...
2 2 58 150
3 1 165 123

(b) pit/in/uphydro/inoutID

x y

35 156
45 197
56 227
...

397 32
421 66

(c) connectID

x y

58 150
58 150
65 225
...

419 58
421 48

Figure 6.9: River network with examples of the inlet-, outlet- and connected grid cell visualised.

41

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

6.8.2 Determine connecting points

To find the points where two reaches are connected to each other the local drain direction code has
been used. For every cell the local drain direction map assigns an arrow pointing to its downstream
neighbouring cell, which is linked to a value from 1 to 9 according to figure 6.10. Starting from the
location of the outlet the connecting point can be determined using this local drain direction by adding
or subtracting a row and/or column.

Figure 6.10: Codes linked to the local drain direction.

299 # Finding the connecting point to the stream of the next order using ldd-direction

300 ldd array = pcr.pcr2numpy(FlowDir ini, MV)

301 connectID=numpy.zeros((len(pitID),2)) # Create empty array with 2 columns

302 for i in range(0,len(pitID)):

303 direction = ldd array[pitID[i][0]][pitID[i][1]]

304 if direction == 1:

305 connectID[i,0] = pitID[i][0]+1

306 connectID[i,1] = pitID[i][1]-1

307 if direction == 2:

308 connectID[i,0] = pitID[i][0]+1

309 connectID[i,1] = pitID[i][1]

310 if direction == 3:

311 connectID[i,0] = pitID[i][0]+1

312 connectID[i,1] = pitID[i][1]+1

313 if direction == 4:

314 connectID[i,0] = pitID[i][0]

315 connectID[i,1] = pitID[i][1]-1

316 if direction == 6:

317 connectID[i,0] = pitID[i][0]

318 connectID[i,1] = pitID[i][1]+1

319 if direction == 7:

320 connectID[i,0] = pitID[i][0]-1

321 connectID[i,1] = pitID[i][1]-1

322 if direction == 8:

323 connectID[i,0] = pitID[i][0]-1

324 connectID[i,1] = pitID[i][1]

325 if direction == 9:

326 connectID[i,0] = pitID[i][0]-1

327 connectID[i,1] = pitID[i][1]+1

328 numpy.savetxt(outpath + ’connectID.txt’, connectID, delimiter=’,’)

42

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

6.8.3 Locate connecting reaches

The following programming code is used to determine which reaches are connecting to each other:

333 # Create empty list.

334 coupled reaches=[]

335 for i in range(0,len(outIDreach)):

336 # Find where in pitID the first entry of outIDreach is located

337 index = numpy.where(numpy.logical and(pitID[:,0]==outIDreach[i,2],

pitID[:,1]==outIDreach[i,3]))[0][0]

338 # At this same index in connectID the corresponding connecting point to

this pit can be found

339 row=connectID[index][0]

340 col=connectID[index][1]

341 # Find the order that is one higher than the one considered

342 order=outIDreach[i,0]+1

343 # Determine the number of sub-reaches that order has

344 Nreaches=inIDreach[:,0].tolist().count(float(order))

346 # Continue this loop until the corresponding connecting reach is found

347 # or when all reaches have been regarded

348 sub=1

349 found=’false’

350 while found!=’true’:

351 if order>strordmax:

352 found=’true’

353 else:

354 # Read file containing the locations of the sub-reaches

of the higher order

355 reachIDs = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order)

+ ’ ’ + str(sub) + ’.txt’, delimiter=’,’)

356 # If reach consists of only 1 cell

357 if len(reachIDs)/6.==1:

358 # Check whether reachIDs contains the connecting cell that is considered

359 # If that is TRUE, then store the number of the order and the sub-reach

360 # of the reaches that are connected to each other

361 # If FALSE, check the next sub-reach

362 a = (numpy.logical and(reachIDs[1]==float(row),

reachIDs[2]==float(col))).tolist()

363 if a:

364 found = ’true’

365 coupled reaches.append(int(outIDreach[i,0]))

366 coupled reaches.append(int(outIDreach[i,1]))

367 coupled reaches.append(int(order))

368 coupled reaches.append(int(sub))

368 else:

370 found=’false’

371 sub+=1

372 if sub==Nreaches+1:

373 order+=1

374 sub=1

375 Nreaches=inIDreach[:,0].tolist().count(float(order))

377 # If reach consists of more than 1 cell

378 else:

379 # Check whether reachIDs contains the connecting cell that is considered

43

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

380 # If that is TRUE, then store the number of the order and the sub-reach

381 # of the reaches that are connected to each other

382 # If FALSE, check the next sub-reach

383 a = (numpy.logical and(reachIDs[:,1]==float(row),

reachIDs[:,2]==float(col))).tolist()

384 if a.count(True)==1:

385 found = ’true’

386 coupled reaches.append(int(outIDreach[i,0]))

387 coupled reaches.append(int(outIDreach[i,1]))

388 coupled reaches.append(int(order))

389 coupled reaches.append(int(sub))

390 else:

391 found=’false’

392 sub+=1

393 if sub==Nreaches+1:

394 order+=1

395 sub=1

396 Nreaches=inIDreach[:,0].tolist().count(float(order))

398 # Reshape the list.

399 # 1st column:order of sub-reach, 2nd column:sub of sub-reach,

400 # 3rd column:order to which sub-reach drains (=order of reach), 4th column:sub of reach

401 coupled reaches=numpy.reshape(coupled reaches, (len(coupled reaches)/4,4))

402 numpy.savetxt(outpath + ’coupled reaches.txt’, coupled reaches, delimiter=’,’)

An example of the format of the resulting table is shown in table 6.4:

Table 6.4: Example of the resulting table showing which reaches are coupled to each other (r.402).

Order Sub-reach Order Sub-reach

upstream upstream downstream downstream

1 1 2 1
...
1 4 2 2
1 5 2 1
...
2 1 3 1
2 2 3 2
2 3 4 1
2 4 3 1
2 5 3 2
3 1 4 1
3 2 4 1

44

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

6.8.4 Accumulated runoff at inlets and outlets

The following code is used to determine the flow hydrograph for each pit (TimeArrayPit) and inlet of
stream order 1 (TimeArrayIn) as simulated by the SPHY model without routing. A separate table is
created to store these hydrographs of only the inlets of all reaches with stream order > 1 (TimeArrayU-
phydro), as well as for the hydrograph of the outlet of the entire catchment (TimeArrayOutlet). Discharge
is given in m3 s−1.

435 ##########

436 # Determine daily accumulated runoff for each pit and inlet for all timesteps

437 ##########

438 timestep = (enddate-startdate).days+1

439 # Create empty arrays that have a number of rows equal to the number of timesteps,

440 # and have a number of columns equal to the amount of outlets/inlets respectively

441 TimeArrayPit = numpy.zeros(((timestep+1),(len(pitID)+1)))

442 TimeArrayIn = numpy.zeros(((timestep+1),(len(inID)+1)))

443 TimeArrayUphydro = numpy.zeros(((timestep+1),(len(uphydroID)+1)))

444 TimeArrayOutlet = []

446 # For-loop over all timesteps

447 for time in range(1,timestep+1):

448 # Read the runoff time-series

449 runoff = pcr.readmap(pcrm.generateNameT(Runoff, time))

450 runoff = pcr.ifthen(clone, runoff*0.001*pcr.cellarea()/(24*3600.))

452 # Create map

453 pcr.report(runoff, outpath + ’runoff ’ + str(time) + ’.map’)

455 # Calculate the accuflux of runoff for each pit and inlet and

write it to numpy array

456 accu pit = pcr.ifthen(ldd upd==5,pcr.accuflux(ldd upd,runoff))

457 pcr.report(accu pit, outpath + ’accu pit.map’)

458 accu in = pcr.ifthen(inlets==1, pcr.accuflux(ldd upd,runoff))

459 pcr.report(accu in, outpath + ’accu in.map’)

460 accu up = pcr.ifthen(ups==1, pcr.accuflux(FlowDir ini,runoff))

462 # Convert PCRmap to numpy array

463 runoff array pit = pcr.pcr2numpy(accu pit,MV)

464 runoff array in = pcr.pcr2numpy(accu in,MV)

465 runoff array ups = pcr.pcr2numpy(accu up,MV)

467 # Fill the time array with time series of the accuflux of runoff for all pits

468 for j in range(0,len(pitID)):

469 TimeArrayPit[0,0] = MV

470 TimeArrayPit[0,j+1] = j+1 # first row shows the pit number

471 TimeArrayPit[time,0] = time # first column shows timestep

472 # find amount of total runoff per pit

473 TimeArrayPit[time,j+1] = runoff array pit[pitID[j][0]][pitID[j][1]]

475 # Fill the time array with time series of the accuflux of runoff for all inlets

of streamorder 1

476 for j in range(0,len(inID)):

477 TimeArrayIn[0,0] = MV

478 TimeArrayIn[0,j+1] = j+1 # first row shows the inlet number

479 TimeArrayIn[time,0] = time # first column shows timestep

480 # find amount of total runoff per inlet

481 TimeArrayIn[time,j+1] = runoff array in[inID[j][0]][inID[j][1]]

45

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

483 # Fill the time array with time series of the accuflux of runoff for all inlets

484 for j in range(0,len(uphydroID)):

485 TimeArrayUphydro[0,0] = MV

486 TimeArrayUphydro[0,j+1] = j+1 # first row shows the inlet number

487 TimeArrayUphydro[time,0] = time # first column shows timestep

488 # Find amount of total runoff per inlet

489 TimeArrayUphydro[time,j+1] = runoff array ups[uphydroID[j][0]][uphydroID[j][1]]

491 # Calculate the accuflux of the runoff for the outlet of the total area

492 # using the original ldd-map

493 accu outlet = pcr.accuflux(FlowDir ini,runoff)

494 runoff outlet = pcr.mapmaximum(accu outlet)

495 runoff outlet = pcr.pcr2numpy(runoff outlet,MV)

496 runoff outlet = runoff outlet[0][0]

497 TimeArrayOutlet.append(runoff outlet)

499 # Save the time arrays

500 numpy.savetxt(outpath + ’TimeArray pits.txt’, TimeArrayPit, delimiter=’,’)

501 numpy.savetxt(outpath + ’TimeArray inlets.txt’, TimeArrayIn, delimiter=’,’)

502 numpy.savetxt(outpath + ’TimeArray ups.txt’, TimeArrayUphydro, delimiter=’,’)

503 numpy.savetxt(outpath + ’TimeArray outlet.txt’, TimeArrayOutlet, delimiter=’,’)

Table 6.5: The ’TimeArrays’ store for each location of interest the accumulated runoff in m3 s−1 at that
point for every timestep (r.500–503).

Timestep location 1 location 2 . . . location N

1 0 0 . . . 0.010
2 0.034 0.028 . . . 0.304
3 0.052 0.044 . . . 0.328
...

T-1 1.813 2.045 . . . 0.741
T 0.943 1.215 . . . 0.636

46

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

(a) Run cD-equation for most downstream reach (highest stream order).

(b) Retrieve ’downhydro’ from ’Q record’ for connecting upstream reaches.

Figure 6.11: Retrieve ’uphydro’ and ’downhydro’ for the reach of maximum streamorder from the time
series of accumulated runoff (stored in TimeArray inlets and TimeArray pits respectively). These serve
as input for the cD-equation of which the results are stored in ’Q record back’ (Fig.(a)). Determine at
which cell number the reaches are connected, in order to retrieve the time series for ’downhydro’ from
’Q record back’ (Fig.(b)).

6.8.5 Downstream boundary conditions

Now the iterative process is started in which the cD-equation is applied to all reaches (r.667), starting at
the main stream (Fig. 6.11) and working in upstream direction (Fig. 6.12). This is done to approximate
the downstream boundary condition of each reach since this is the best approximation that can be done
with the information available.

516 # Calculate cD-equation for every reach of the stream network to determine downstream

517 # boundary conditions, starting at the main reach (highest stream order), and continue

518 # the calculation towards the smaller branches.

519 print ’Starting cD-equation from down- to upstream to determine the conditions

at the downstream point of each reach.’

520 for order in range(strordmax,strordmin-1,-1):

521 # Number of sub-reaches of the order (by counting the number of rows that

522 # have the same order)

523 Nsubs this=inIDreach[:,0].tolist().count(float(order))

47

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

525 # Determine Q record back for the highest streamorder

526 if order==strordmax:

527 print order

528 # Determine location of inlet

529 rowIDin = upsIDreach[numpy.where(numpy.logical and(upsIDreach[:,0]==float(order),

upsIDreach[:,1]==float(1)))[0][0]][2]

530 colIDin = upsIDreach[numpy.where(numpy.logical and(upsIDreach[:,0]==float(order),

upsIDreach[:,1]==float(1)))[0][0]][3]

531 # Find where in uphydroID (= which row) the regarded inlet is located

532 indexIN = numpy.where(numpy.logical and(uphydroID[:,0]==rowIDin,

uphydroID[:,1]==colIDin))[0][0]

533 # Select the timeseries from TimeArrayUphydro

534 uphydro maxorder = TimeArrayUphydro[1:,indexIN+1]

535 numpy.savetxt(outpath + ’uphydro ’ + str(order) + ’ ’ + str(1)+’.txt’,

uphydro maxorder, delimiter=’,’)

537 # Determine location of outlets/pits

538 rowIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]==float(order),

outIDreach[:,1]==float(1)))[0][0]][2]

539 colIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]==float(order),

outIDreach[:,1]==float(1)))[0][0]][3]

540 # Find where in pitID (= which row) the regarded pit is located

541 indexOUT = numpy.where(numpy.logical and(pitID[:,0]==rowIDout,

pitID[:,1]==colIDout))[0][0]

542 # Select the timeseries from TimeArrayOutlet

543 downhydro maxorder = TimeArrayOutlet

544 # If dt<24: divide every timestep by 24/dt

545 if dt < 24:

546 down smalldt = []

547 for i in range(len(downhydro maxorder)-1):

548 t down = (downhydro maxorder[i+1]-downhydro maxorder[i])/(24/dt)

549 for j in range(1,(24/dt)+1):

550 down smalldt.append(downhydro maxorder[i]+t down*j)

551 downhydro maxorder = down smalldt

552 numpy.savetxt(outpath + ’downhydro ’ + str(order) + ’ ’ + str(1)+’.txt’,

downhydro maxorder, delimiter=’,’)

554 # Determine number of timesteps

555 Nt = len(downhydro maxorder)

557 # Read the locations of the cells belonging to the main reach

558 reachIDs = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order) +

’ ’ + str(1) + ’.txt’, delimiter=’,’)

559 # Length of stream in km (= number of cells * spatial resolution [m])

560 if dx>SpaceRes:

561 if len(reachIDs)%2==0:

562 length = (len(reachIDs)*grid res)

563 else:

564 # Artificially elongate reach

565 length = ((len(reachIDs)+1)*grid res)

566 else:

567 length = (len(reachIDs)*grid res)

568 Nx = int((length/dx)+1)

569 init = numpy.array([base for i in range(0,Nx)])

48

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

571 # Run cD-equation for reach of highest stream order and store this as Q record back

572 Q record back maxorder = cD(uphydro maxorder, downhydro maxorder,

init, length, dx, dt, c, D)

573 numpy.savetxt(outpath + ’Q record back ’+str(order) + ’ ’ + str(1)+

’.txt’, Q record back maxorder, delimiter=’,’)

575 # Consider all sub-reaches that flow into this orders reach

576 for sub in range(1,Nsubs this+1):

577 # Keeping track which reach is considered during the loop

578 print ’order: ’ + str(order)

579 print ’sub: ’ + str(sub)

581 # Find in ’coupled reaches’ which sub-reaches flow into this orders reach

582 subs upstream = numpy.where(numpy.logical and(coupled reaches[:,2]==order,

coupled reaches[:,3]==sub))[0]

583 # Stop in case the reach has no sub-reaches

584 if len(subs upstream)==0:

585 print ’reach has no reaches draining into it.’

586 else:

587 # Special case when regarding the main stream (highest stream order)

588 if order==strordmax:

589 Q record back order = Q record back maxorder

590 # In all other cases:

591 else:

592 Q record back order = numpy.loadtxt(outpath + ’Q record back ’ +

str(order) + ’ ’ + str(sub) + ’.txt’, delimiter=’,’)

594 # Read the locations of the cells belonging to the reach that is considered

595 reachIDs = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order) +

’ ’ + str(sub) + ’.txt’, delimiter=’,’)

597 # For-loop over all sub-reaches of this order

598 for i in subs upstream:

599 # Find the order- and sub number of the sub-reach upstream of the

considered reach

600 subsub order = coupled reaches[i,0]

601 subsub sub = coupled reaches[i,1]

602 print ’sub-reach order: ’ + str(subsub order),

’, sub-reach sub: ’+ str(subsub sub)

604 # Calculate the following as long as order is not equal to the

smallest stream order

605 if order!=strordmin:

606 if subsub order==strordmin:

607 # Determine location of inlets

608 rowIDin = inIDreach[numpy.where(numpy.logical and(inIDreach[:,0]==

float(subsub order), inIDreach[:,1]==float(subsub sub)))[0][0]][2]

609 colIDin = inIDreach[numpy.where(numpy.logical and(inIDreach[:,0]==

float(subsub order), inIDreach[:,1]==float(subsub sub)))[0][0]][3]

610 # Find where in inID (= which row) the

regarded inlet is located

611 indexIN = numpy.where(numpy.logical and(inID[:,0]==rowIDin,

inID[:,1]==colIDin))[0][0]

612 # Select the timeseries from TimeArrayIn

613 uphydro = TimeArrayIn[1:,indexIN+1]

614 numpy.savetxt(outpath + ’uphydro ’ + str(subsub order) + ’ ’

49

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

+ str(subsub sub)+’.txt’, uphydro, delimiter=’,’)

615 else:

616 # Determine location of inlets

617 rowIDin = upsIDreach[numpy.where(numpy.logical and(upsIDreach[:,0]==

float(subsub order), upsIDreach[:,1]==float(subsub sub)))[0][0]][2]

618 colIDin = upsIDreach[numpy.where(numpy.logical and(upsIDreach[:,0]==

float(subsub order), upsIDreach[:,1]==float(subsub sub)))[0][0]][3]

619 # Find where in uphydroID (= which row) the

regarded inlet is located

620 indexIN = numpy.where(numpy.logical and(uphydroID[:,0]==rowIDin,

uphydroID[:,1]==colIDin))[0][0]

621 # Select the timeseries from TimeArrayUphydro

622 uphydro = TimeArrayUphydro[1:,indexIN+1]

623 numpy.savetxt(outpath + ’uphydro ’ + str(subsub order) + ’ ’

+ str(subsub sub)+’.txt’, uphydro, delimiter=’,’)

625 # Determine location of outlets/pits of the ’smaller’-order reaches

--> needed to determine connectID

626 rowIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]==

float(subsub order), outIDreach[:,1]==float(subsub sub)))[0][0]][2]

627 colIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]==

float(subsub order), outIDreach[:,1]==float(subsub sub)))[0][0]][3]

628 # Find where in pitID (= which row) the regarded pit is located

629 indexOUT = numpy.where(numpy.logical and(pitID[:,0]==rowIDout,

pitID[:,1]==colIDout))[0][0]

631 # Find the how many’d cell (from upstream) of the reach forms

632 # the connecting cell to the other reach. This is necessary

633 # to know from which cell of Q record back as calculated

634 # in cD-equation to get the flow hydrograph

635 index streamcell = numpy.where(numpy.logical and(reachIDs[:,1]==

connectID[indexOUT][0], reachIDs[:,2]==connectID[indexOUT][1]))

636 cellnumber = index streamcell[0][0] + 1

637 # Determine cell number when original spatial resolution of the

model differs from spatial resolution used in cD-equation

638 cellnumber = cellnumber * (grid res/dx)

639 numpy.save(outpath + ’cellnumber ’ + str(subsub order) +

str(subsub sub) + str(order) + str(sub), cellnumber)

640 # Get flow hydrograph of the connecting point and use that as

641 # downstream b.c. of the reach of the stream order more upstream

when running the cD-equation for that reach

642 connecthydro=[]

643 for i in range(len(Q record back order)):

644 connecthydro.append(Q record back order[i][cellnumber])

645 numpy.savetxt(outpath + ’downhydro ’ + str(subsub order) +

’ ’ + str(subsub sub)+’.txt’, connecthydro, delimiter=’,’)

647 # Determine length of the regarded subreach of the ’smaller’

order

648 # Length of stream in km (= number of cells * spatial resolution

[m])

649 lengthsubsub = numpy.loadtxt(outpath + ’SubReachArrayID ’ +

str(subsub order) + ’ ’ + str(subsub sub) + ’.txt’, delimiter=’,’)

650 if numpy.size(lengthsubsub)==6:

651 length = grid res

50

6.8. DETERMINE DOWNSTREAM HYDROGRAPHS USING CD-EQUATION

652 if dx>SpaceRes:

653 # Artificially elongating a 1-cell reach

654 length = grid res*(dx/SpaceRes)

655 else:

656 if dx>SpaceRes:

657 if len(lengthsubsub)%2==0:

658 length = (len(lengthsubsub)*grid res)

659 else:

660 length = ((len(lengthsubsub)+1)*grid res)

661 else:

662 length = (len(lengthsubsub)*grid res)

663 Nx = int((length/dx)+1)

664 init = numpy.array([base for i in range(0,Nx)])

666 # Run cD-equation for the subreach and save the results in Q record back

667 Q record back sub = cD(uphydro, connecthydro, init,

length, dx, dt, c, D)

668 numpy.savetxt(outpath + ’Q record back ’+str(subsub order) +

’ ’ + str(subsub sub)+’.txt’, Q record back sub, delimiter=’,’)

670 else: print ’end’

Table 6.6: ’Q record back’ and ’Q record’ store the results of the cD-equation for each cell of a reach for
every timestep (r.668 & 812). ’ back’ refers to running the cD-equation in upstream direction in order to
provide the best possible estimation of the downstream boundary hydrographs for the individual reaches
(see Sect. 6.8.5). The number of columns equals the number of cells of the considered reach and the
number of rows equals the number of time steps.

(a) Q record back

Timestep cell 1 cell 2 . . . cell N

1 0.025 0.004 . . . 0.652
2 0.034 0.052 . . . 0.158
3 0.138 0.253 . . . 0.089
...

T-1 0.338 2.442 . . . 0.677
T 0.502 2.021 . . . 0.824

(b) Q record

Timestep cell 1 cell 2 . . . cell N

1 0.520 0 . . . 0.520
2 0.682 0.038 . . . 0.601
3 0.692 0.021 . . . 0.639
...

T-1 0.891 2.852 . . . 0.474
T 0.744 2.954 . . . 0.487

51

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

(a) Run cD-equation for the reaches of second highest stream order. Continue this
process in upstream direction.

(b) Retrieve ’downhydro’ from ’Q record’ for connecting upstream reaches.

Figure 6.12: Retrieve ’uphydro’ from the time series of accumulated runoff (stored in TimeArray inlets).
’Downhydro’ is retrieved from time series stored in ’Q record back’ of the reach this stream flows into.
These serve as input for the cD-equation of which the results are stored in ’Q record back’ (Fig.(a)).
Determine at which cell number the reaches are connected, in order to retrieve the time series for ’down-
hydro’ from ’Q record back’ (Fig.(b)).

52

6.9. APPLY CD-EQUATION FOR ROUTING

Table 6.7: ’Uphydro’ and ’Downhydro’ store the hydrographs at the inlet and outlet of a reach respec-
tively. The number of rows equals the number of time steps.

(a) Uphydro

Timestep inlet

1 0.125
2 0.0
3 0.018
...

T-1 1.122
T 1.284

(b) Downhydro

Timestep outlet

1 1.839
2 1.758
3 1.615
...

T-1 0.625
T 0.784

6.9 Apply cD-equation for routing

Now the final iterative process is started in which the cD-equation is applied to all reaches (r.811), start-
ing at the smallest branches and working in downstream direction. Using this flow routing sequence we
assume no backwater effects, which is a valid assumption in an area with substantial elevation differ-
ences. The outflow of an upstream reach is injected as lateral flow all at one point where the reach is
connected to its downstream branch (r.728–798). Additionally, the accumulated runoff produced in the
sub-catchment of the main outlet only (i.e. the runoff produced in the sub-catchments of all other reaches
are subtracted) is added as distributed lateral inflow to the main stream (r.800–808). If visualisation of
the results are preferred all data is stored in one table Qall which is a preparatory step for creating maps
of the results (see Sect. 6.10) (r.821–874).

675 # Finally calculate cD-equation for every reach of the stream network, starting at

676 # the smallest reaches and working towards the main reach

677 print ’Starting cD-equation from up- to downstream for the entire stream network.’

678 print ’This is the main routing loop.’

679 # Create empty array to which Q record is concatenated

680 Qall=numpy.empty([len(downhydro maxorder),0])

681 # Start main loop

682 for order in range(strordmin,strordmax+1):

683 print ’order: ’ + str(order)

684 # Number of sub-reaches of the order (by counting the number of rows that have

685 # the same order)

686 Nsubs this=inIDreach[:,0].tolist().count(float(order))

688 # Consider all sub-reaches that flow into this orders reach)

689 for sub in range(1,Nsubs this+1):

690 # Keeping track which reach is considered during the loop

691 print ’sub: ’ + str(sub)

693 # Find in ’coupled reaches’ to which this reach drains

694 sub downstream = numpy.where(numpy.logical and(coupled reaches[:,0]==order,

coupled reaches[:,1]==sub))[0]

695 if len(sub downstream)>0:

696 order drain = coupled reaches[sub downstream[0],2]

697 sub drain = coupled reaches[sub downstream[0],3]

699 # Read the locations of the cells belonging to the reach that is considered

700 reachIDs = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order)

+ ’ ’ + str(sub) + ’.txt’, delimiter=’,’)

53

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

702 # Determine length of the regarded subreach of the ’smaller’ order

703 # Length of stream in km (= number of cells * spatial resolution [m])

704 if numpy.size(reachIDs)==6:

705 length = grid res

706 if dx>SpaceRes:

707 # Artificially elongating a 1-cell reach

708 length = grid res*(dx/SpaceRes)

709 else:

710 if dx>SpaceRes:

711 if len(reachIDs)%2==0:

712 length = (len(reachIDs)*grid res)

713 else:

714 length = ((len(reachIDs)+1)*grid res)

715 else:

716 length = (len(reachIDs)*grid res)

718 # For streams of the lowest streamorder: Read upstream hydrograph.

719 uphydro = numpy.loadtxt(outpath + ’uphydro ’ + str(order)

+ ’ ’ + str(sub)+’.txt’, delimiter=’,’)

720 # Read downstream hydrograph

721 downhydro = numpy.loadtxt(outpath + ’downhydro ’ + str(order)

+ ’ ’ + str(sub)+’.txt’, delimiter=’,’)

722 # Artificially elongate the streams (*1.2) and there place

the downstream b.c.

723 # This way the b.c. will have less effect on the actual end of the reach.

724 L long=length*1.2

725 Nx long = int((L long/dx)+1)

726 init = numpy.array([base for i in range(0,Nx long)])

728 # Check if a reach drains into the considered reach. This is done by checking

729 # if the reach appears in column 2 and 3 of coupled reaches

730 check lateral = numpy.where(numpy.logical and(coupled reaches[:,2]==order,

coupled reaches[:,3]==sub))[0]

732 if len(check lateral)==0:

733 print ’reach ’ + str(order) + ’ ’ + str(sub) + ’ has no sub-reaches’

734 laterals=[]

735 else:

736 lateral=[]

737 for i in check lateral:

738 # Append the cellnumber where the lateral flow should be added

739 connect = numpy.load(outpath + ’cellnumber ’ + str(coupled reaches[i,0])

+ str(coupled reaches[i,1]) + str(order) + str(sub) + ’.npy’)

740 lateral.append(int(connect))

742 # Append the lateral flow originating from the routing through

the channel -> Water routed

743 lat = numpy.loadtxt(outpath + ’lateral ’ + str(coupled reaches[i,0])

+ str(coupled reaches[i,1]) + str(order) + str(sub)+’.txt’, delimiter=’,’)

744 for j in range(len(lat)):

745 lateral.append(lat[j])

747 # Append the lateral flow originating from the runoff produced in

748 # the cells (TotR as stored in TimeArrayPit) -> Water system.

749 # Determine location of outlets/pits of the reach that drains

750 # into the regarded reach.

54

6.9. APPLY CD-EQUATION FOR ROUTING

751 rowIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]

==float(order), outIDreach[:,1]==float(1)))[0][0]][2]

752 colIDout = outIDreach[numpy.where(numpy.logical and(outIDreach[:,0]

==float(order), outIDreach[:,1]==float(1)))[0][0]][3]

753 # Find where in pitID (= which row) the regarded pit is located

754 indexOUT = numpy.where(numpy.logical and(pitID[:,0]==rowIDout,

pitID[:,1]==colIDout))[0][0]

755 latTotR = TimeArrayPit[1:,indexOUT+1]

756 # If dt<24: divide every timestep by 24/dt

757 if dt < 24:

758 latTotR smalldt = []

759 for i in range(len(latTotR)-1):

760 t lat = (latTotR[i+1]-latTotR[i])/(24/dt)

761 for j in range(1,(24/dt)+1):

762 latTotR smalldt.append(latTotR[i]+t lat*j)

763 latTotR = latTotR smalldt

764 for k in range(len(latTotR)):

765 lateral.append(latTotR[k])

767 # Every row in laterals covers the lateral hydrograph of one sub-reach

768 # that drains into the considered reach. The first column of laterals

769 # is the cellnumber where the lateral flow enters the considered reach.

770 laterals=numpy.reshape(lateral, (len(check lateral),len(lat)+1))

771 # Find whether there are multiple reaches flowing into the same cell of

772 # the next reach. In that case these flows should be summed.

773 duplicates = [item for item, count in Counter(laterals[:,0]).iteritems()

if count > 1]

774 # Find which rows in laterals have the same connect cell

775 for items in duplicates:

776 index = numpy.argwhere(laterals[:,0]==items)

777 # Add the time series of these lateral flows to ’temp’

778 temp=[]

779 for same in range(len(index)):

780 temp.append(laterals[index[same][0],:])

781 # Create empty array

782 summed=numpy.zeros([len(temp[0]),0]).tolist()

783 # Fill the list with zeros

784 for j in range(1,len(temp[0])):

785 summed[j]=0.

786 # Add as first row the connectID cellnumber

787 summed[0]=temp[0][0]

788 # Add the summed time series to ’summed’

789 for i in range(len(temp)):

790 for j in range(1,len(temp[0])):

791 summed[j]+=temp[i][j]

792 summed=numpy.reshape(summed, (1,len(summed)))

793 # Remove the individual time series of those that were just summed

794 laterals = numpy.delete(laterals, index.tolist(), axis=0)

795 # Add the summed time series

796 laterals = numpy.concatenate([laterals,summed])

797 # Update ’check lateral’

798 check lateral = laterals[:,0]

800 # Prepare the distributed lateral inflow of the main stream.

801 # This comprises the accumulated runoff produced in the sub-catchment

802 # of the main outlet only, i.e. the sub-catchments of all other reaches

55

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

803 # are substracted from this. If not added laterally this volume of water

804 # would not be accounted for.

805 if order==strordmax:

806 lat distr maxorder = downhydro/len(reachIDs)

807 else:

808 lat distr maxorder = downhydro*0.

810 #### Apply cD-equation to the reach ####

811 Q record = cD(uphydro, downhydro, init, laterals, check lateral,

lat distr maxorder, length, dx, dt, c, D)

812 numpy.savetxt(outpath + ’Q record ’ + str(order) + ’ ’ + str(sub)

+ ’.txt’, Q record, delimiter=’,’)

814 # The hydrograph of the last cell becomes the lateral flow for the reach

it drains into

815 if len(sub downstream)>0:

816 lateral=[]

817 for i in range(len(Q record)):

818 lateral.append(Q record[i][-1])

819 numpy.savetxt(outpath + ’lateral ’ + str(order) + str(sub) + str(order drain)

+ str(sub drain)+’.txt’, lateral, delimiter=’,’)

821 # Visualisation of the results?

822 if visFLAG==1:

823 # 3 options to add values to ’Qall’ depending on relation dx:SpaceRes

824 # In the end the length of ’Qall’ should be the same for the 3 options

825 # in order to visualize the results on a map with its

original spatial resolution

826 if dx == SpaceRes:

827 Qall=numpy.concatenate([Qall,Q record[:,1:]],axis=1)

828 else:

829 Qtemp=[]

830 if dx < SpaceRes:

831 for times in range(len(Q record)):

832 Q record temp = Q record[times,1:]

833 # Take mean of every (SpaceRes/dx) cells

834 means = numpy.mean(Q record temp.reshape(-1,int(SpaceRes/dx)),

axis=1)

835 for cell in range(len(means)):

836 Qtemp.append(means[cell])

837 # In case the reach comprises only 1 cell

838 if len(Q record[0,:])==6 and len(reachIDs)==6:

839 Qtemp=numpy.reshape(Qtemp, (len(Q record),1))

840 # In other cases

841 else:

842 Qtemp=numpy.reshape(Qtemp, (len(Q record),len(reachIDs)))

843 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

845 if dx > SpaceRes:

846 # In case the reach comprises only 1 cell

847 if len(Q record[0,:])==2 and len(reachIDs)==6:

848 Qtemp=numpy.reshape(Q record[:,1], (len(Q record),1))

849 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

851 # In other cases duplicate each cell (dx/SpaceRes) times

852 else:

56

6.9. APPLY CD-EQUATION FOR ROUTING

853 for times in range(len(Q record)):

854 Q record temp = Q record[times,1:]

855 # Repeat the value of a cell dx/SpaceRes times

856 rep = numpy.repeat(Q record temp, int(dx/SpaceRes))

857 # Remove at the beginning of the reach the number

858 # of cells that there are too many

859 if len(rep)>len(reachIDs):

860 rep = rep[(len(rep)-len(reachIDs)):]

861 # Repeat at the beginning of the reach the first value

862 # len(SubreachID)-len(rep)-times (pragmatic solution)

863 if len(rep)<len(reachIDs):

864 for i in range(len(reachIDs)-len(rep)):

865 rep=numpy.insert(rep, 0, rep[0])

866 # Add all values contained in rep to Qall

867 for cell in range(len(rep)):

868 Qtemp.append(rep[cell])

869 Qtemp=numpy.reshape(Qtemp, (len(Q record),len(reachIDs)))

870 # Add all values contained in rep to Qall

871 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

873 if visFLAG==1:

874 numpy.savetxt(outpath + ’Qall.txt’, Qall, delimiter=’,’)

57

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

(a) Run cD-equation for the reaches most upstream (smallest stream order). Con-
tinue this process in downstream direction.

(b) Retrieve ’lateral’ from ’Q record’ for connecting downstream reaches.

Figure 6.13: ’Uphydro’ and ’downhydro’ were stored during the code run in section 6.8.5. These serve
as input for the cD-equation of which the results are stored in ’Q record’ (Fig.(a)). The results of the
outlet cell, as stored in ’Q record’, serves as lateral inflow of the connecting reach downstream (Fig.(b)).

58

6.10. VISUALISATION OF THE RESULTS

6.10 Visualisation of the results

The results of the cD-equation are visualised using again the original PCRaster environment. For every
time-step a map of the stream network will be created providing the output of the cD-equation for each
cell. For this purpose the matrix ’networkID’ is created in which the locations of all the cells of the whole
stream network are stored.

407 # Put the locations of all cells of the network in table ’networkID’.

408 # Starting with the smallest stream order and per reach in downstream direction.

409 # This way the order will comply with the order as the values are stored in ’Q record’

410 # after applying the cD-equation.

411 networkID = []

412 for order in range(strordmin,strordmax+1):

413 # Number of sub-reaches of the order (by counting the number of rows that have

414 # the same order)

415 Nsubs this=inIDreach[:,0].tolist().count(float(order))

416 # Consider all sub-reaches that flow into this orders reach)

417 for sub in range(1,Nsubs this+1):

418 # Read the table in which row and column for each cell are stored

419 # (column ’1’ and ’2’)

420 SubreachID = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order) +

’ ’ + str(sub) + ’.txt’, delimiter=’,’)

421 # Add row and column (= location of cell) to ’networkID’

422 # Special case when reach comprises only 1 cell

423 if numpy.size(SubreachID)==6:

424 networkID.append(SubreachID[1])

425 networkID.append(SubreachID[2])

426 # All other cases

427 else:

428 for ID in range(len(SubreachID)):

429 networkID.append(SubreachID[ID,1])

430 networkID.append(SubreachID[ID,2])

432 # Reshape the whole list into an matrix of 2 columns. Column ’0’ = row,

433 # column ’1’ = column

434 networkID=numpy.reshape(networkID, (len(networkID)/2,2))

435 numpy.savetxt(outpath + ’networkID.txt’, networkID, delimiter=’,’)

The last step in the visualisation consists of combining ’networkID’ and ’Qall’ and create for each time
step a map.

879 if visFLAG==1:

880 # Use ’Qall’ to visualise the results by creating maps with original

881 # spatial resolution. Create a map that only contains the stream network

and convert it to a numpy array (float).

882 network solely = pcr.ifthen(network,clone)

883 pcr.report(network solely, outpath + ’network solely.map’)

884 output array = pcr.pcr2numpy(network solely, MV).astype(numpy.float)

885 # Set initials for dynamically naming the files

886 Q=0

887 count=0

888 pcrcounter=0.

889 endcount=dt visualize/dt

890 # For each timestep create a map

891 for times in range(len(Qall)):

892 count+=1

59

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

893 Q+=Qall[times]

894 if count == endcount:

895 count=0

896 Qall vis=Q/(dt visualize/dt)

897 Q=0

898 # Consider all cells of the stream network and put the accompanying

899 # value of ’Qall’ at the right location in the numpy array. Then convert

900 # the resulting array back to a PCRaster map

901 for ID in range(len(networkID)):

902 output array[int(networkID[ID,0]),int(networkID[ID,1])]= Qall vis[ID]

903 result = pcr.numpy2pcr(Scalar, output array, output array[0,0])

904 pcrcounter+=1

905 pcrstr = ’%011.3f’ %(pcrcounter/1000)

906 pcr.report(result,outpath + ’Q’ + pcrstr)

6.11 Time series at observation stations

For calibration purposes time series of the simulated results at the observation stations are provided
at a daily base (r.932–947) in the original spatial resolution (r.949–997). Discharge observations and
simulated discharge using the cD-routing procedure are plotted, as well as discharge simulated with the
current simple routing scheme are plotted for comparison (r.1012–1050). Nash-Sutcliffe values are dis-
played as an indication of model performance (r.1052–1064).

912 # Time series of specified locations, e.g. streamflow locations

913 for loc in range(len(stations loc)-1): # -1 to discard the outlet of the total area

914 # Determine in which reach the station is located

915 order = int(stations loc[loc,2])

916 sub = int(stations loc[loc,3])

917 index = int(stations loc[loc,4])

918 index = int(index * (grid res/dx))

920 # Determine nameID of the station

921 name = int(names[int(stations loc[loc,0]),int(stations loc[loc,1])])

922 if name == 999:

923 name = ’outlet’

924 name = str(name)

926 # Read the locations of the cells belonging to the reach that is considered

927 reachIDs = numpy.loadtxt(outpath + ’SubReachArrayID ’ + str(order) +

’ ’ + str(sub) + ’.txt’, delimiter=’,’)

929 #### Handling Q station files when dt != 24 ####

930 # Read simulated Q of the reach

931 Q station = numpy.loadtxt(outpath + ’Q record ’ + str(order) + ’ ’ +

str(sub) + ’.txt’, delimiter=’,’)

932 if dt<24:

933 Qstation dt = []

934 Q=0

935 count=0

936 endcount=24/dt

937 # For each timestep create a map

938 for times in range(len(Q station)):

939 count+=1

940 Q+=Q station[times]

60

6.11. TIME SERIES AT OBSERVATION STATIONS

941 if count == endcount:

942 count=0

943 Qstation graph=Q/(24/dt)

944 Q=0

945 Qstation dt.append(Qstation graph)

946 Qstation dt=numpy.reshape(Qstation dt, (len(Q station)/(24/dt),len(Q station[0])))

947 Q station = Qstation dt

949 #### Handling Q station files when dx != SpaceRes ####

950 Qall=numpy.empty([len(downhydro maxorder),0])

951 if dx != SpaceRes:

952 Qtemp=[]

953 if dx < SpaceRes:

954 for times in range(len(Q station)):

955 Q record temp = Q station[times,1:]

956 # Take mean of every (SpaceRes/dx) cells

957 means = numpy.mean(Q record temp.reshape(-1,int(SpaceRes/dx)), axis=1)

958 for cell in range(len(means)):

959 Qtemp.append(means[cell])

960 # In case the reach comprises only 1 cell

961 if len(Q station[0,:])==6 and len(reachIDs)==6:

962 Qtemp=numpy.reshape(Qtemp, (len(Q station),1))

963 # In other cases

964 else:

965 Qtemp=numpy.reshape(Qtemp, (len(Q record),len(reachIDs)))

966 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

967 Q station=Qall

969 if dx > SpaceRes:

970 # In case the reach comprises only 1 cell

971 if len(Q station[0,:])==2 and len(reachIDs)==6:

972 Qtemp=numpy.reshape(Q station[:,1], (len(Q station),1))

973 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

974 Q station=Qall

976 # In other cases duplicate each cell (dx/SpaceRes) times

977 else:

978 for times in range(len(Q station)):

979 Q record temp = Q station[times,1:]

980 # Repeat the value of a cell dx/SpaceRes times

981 rep = numpy.repeat(Q record temp, int(dx/SpaceRes))

982 # Remove at the beginning of the reach the number of cells

983 # that there are too many

984 if len(rep)>len(reachIDs):

985 rep = rep[(len(rep)-len(reachIDs)):]

986 # Repeat at the beginning of the reach the first value

987 # len(SubreachID)-len(rep)-times (pragmatic solution)

988 if len(rep)<len(reachIDs):

989 for i in range(len(reachIDs)-len(rep)):

990 rep=numpy.insert(rep, 0, rep[0])

991 # Add all values contained in rep to Qall

992 for cell in range(len(rep)):

993 Qtemp.append(rep[cell])

994 Qtemp=numpy.reshape(Qtemp, (len(Q record),len(reachIDs)))

995 # Add all values contained in rep to Qall

996 Qall=numpy.concatenate([Qall,Qtemp],axis=1)

61

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

997 Q station=Qall

999 # Read observed Q and Q simulated using the old routing procedure

1000 Q obs sim = PlottingObsSim.ObsSim(name,inpath,sy,sm,sd)

1002 # Create array containing dates.

1003 date = numpy.arange(datetime.date(sy,sm,sd), datetime.date(ey,em,ed),

datetime.timedelta(days=1)).astype(datetime.date)

1004 # Date formatter

1005 years = mdates.YearLocator()

1006 months = mdates.MonthLocator()

1007 if len(date)>365:

1008 Fmt = mdates.DateFormatter(’%Y’)

1009 if len(date)<366:

1010 Fmt = mdates.DateFormatter(’%m-%Y’)

1012 # Create plots

1013 fig, ax = pyplot.subplots()

1014 ax.plot(date, Q obs sim[0][Q obs sim[1]:(Q obs sim[1]+len(date))],

color=’grey’, label=’Observed’)

1015 ax.plot(date, Q obs sim[2][Q obs sim[3]:(Q obs sim[1]+len(date))],

color=’dodgerblue’, label=’Simple routing’)

1016 if len(Q station)>len(date):

1017 diff = abs(len(Q station)-len(date))

1018 ax.plot(date, Q station[diff:,index],color=’darkorange’, label=’cD-routing’)

1019 else:

1020 ax.plot(date, Q station[:,index],color=’darkorange’, label=’cD-routing’)

1022 # Add label and legend

1023 pyplot.ylabel(’Discharge [m3 s−1]’)

1024 pyplot.legend(fontsize=9,frameon=False)

1026 # format the ticks

1027 if len(date)>365:

1028 ax.xaxis.set major locator(years)

1029 ax.xaxis.set major formatter(Fmt)

1030 ax.xaxis.set minor locator(months)

1032 if len(date)>365:

1033 ax.xaxis.set major locator(months)

1034 ax.xaxis.set major formatter(Fmt)

1036 datemin = datetime.date(date.min().year, 1, 1)

1037 datemax = datetime.date(date.max().year + 1, 1, 1)

1038 ax.set xlim(datemin, datemax)

1040 # rotates and right aligns the x labels, and moves the bottom of the

1041 # axes up to make room for them

1042 for ax in fig.get axes():

1043 if ax.is last row():

1044 for label in ax.get xticklabels():

1045 label.set ha(’right’)

1046 label.set rotation(30.)

1047 else:

1048 for label in ax.get xticklabels():

1049 label.set visible(False)

62

6.12. CALIBRATION

1050 ax.set xlabel(’’)

1052 # Prepare to calculate Nash-Sutcliffe value

1053 old = pd.DataFrame(’obs’:Q obs sim[0][Q obs sim[1]:(Q obs sim[1]+len(date))],

’sim old’:Q obs sim[2][Q obs sim[3]:(Q obs sim[1]+len(date))])

1054 if len(Q station)>len(date):

1055 diff = abs(len(Q station)-len(date))

1056 new = pd.DataFrame(’obs’:Q obs sim[0][Q obs sim[1]:(Q obs sim[1]+len(date))],

’sim new’:Q station[diff:,index])

1057 else:

1058 new = pd.DataFrame(’obs’:Q obs sim[0][Q obs sim[1]:(Q obs sim[1]+len(date))],

’sim new’:Q station[:,index])

1059 # Calculate NS values

1060 optFunctions.NS(old.obs,old.sim old)

1061 optFunctions.NS(new.obs,new.sim new)

1062 # Plot NS values in graphs

1063 pyplot.text(0.25,0.92,"NScD = " + "%.2f" % optFunctions.NS(new.obs,new.sim new),

transform=ax.transAxes,fontsize=9)

1064 pyplot.text(0.25,0.85,"NSsimple = " + "%.2f" % optFunctions.NS(old.obs,old.sim old),

transform=ax.transAxes,fontsize=9)

1066 # Save the results

1067 pyplot.savefig(outpath + ’Q loc ’+name+’ c’ + str(c) + ’ D’ + str(D) +

’ dt’ + str(dt) + ’ dx’ + str(dx) + ’.pdf’)

1068 numpy.savetxt(outpath + ’Q loc ’+name+’ c’ + str(c) + ’ D’ + str(D) +

’ dt’ + str(dt) + ’ dx’ + str(dx) +’.txt’, Q station[1:,index], delimiter=’,’)

6.12 Calibration

Apart from SPHY parameters that need to be calibrated (i.e. they are influencing simulated specific
runoff as used by the routing module), there are two parameters in the routing module that need to be
calibrated: wave celerity (c) and diffusion coefficient (D). Both can also be calculated from the linearised
cD-equation (see Eq.6.2 and 6.3). However, this may not always yield good results as was explained in
section 6.6, e.g. erratic behaviour of discharge or too steep recession curves, resulting in low Nash-Sutcliffe
values (Nash and Sutcliffe, 1970). Therefore for this application example both values have been calibrated
manually. To evaluate the performance of the routing procedure in the SPHY model, the Nash-Sutcliffe
efficience (NS) of the discharge is computed as a measure of goodness of fit.

Values of these calibration parameters depend on the period of time that is simulated, as well as the
selected spatial and temporal resolution. Changes made in one of these three variables require recalibra-
tion of the parameters.

Currently the parameters c and D are spatially constant for the entire basin, while spatially depen-
dent values for these parameters may yield different and better results. However, this requires calibration
of these parameters for each reach in the stream network or at locations in which the characteristics of
the stream change substantial.

To test several combinations of parameters before running the whole routing module, the user can opt to
run the script ’cD test.py ’ (see Appendix C). For this the user needs to specify ranges for the parameters
c, D, dt and dx and provide an estimation of the expected maximum and minimum discharge. The code
will provide a log-file with the parameter values, Courant number, Peclet number, maximum and mini-
mum simulated discharge, total discharge upstream and downstream and it will raise a warning if large
oscillations occurred. The latter is an indication that the parameter combination should be changed.

63

CHAPTER 6. ADVANCED ROUTING MODULE IMPLEMENTATION

6.13 Adjustments made in SPHY script

This whole routing procedure is applied at the end of the SPHY model when the total specific runoff for
each cell has been determined. The following code has been added to the SPHY programming code:

1303 #-cD-routing module

1304 if self.curdate == self.enddate:

1305 if self.CDRoutFLAG == 1:

1307 #-spatial step (in km)

1308 try:

1309 self.dx = config.getfloat(’CDROUTING’, ’dx’)

1310 except:

1311 self.dx = self.SpaceRes

1318 # Check the ratio between dx and SpaceRes

1314 if self.dx > self.SpaceRes:

1315 test = self.dx/self.SpaceRes

1316 # Check if the float number is a whole number

1317 if test.is integer():

1318 print ’’

1319 else:

1320 sys.exit(’ERROR: dx/SpaceRes is not an integer: Change dx’)

1321 if self.dx < self.SpaceRes:

1322 test = self.SpaceRes/self.dx

1323 if test.is integer():

1324 print ’’

1325 else:

1326 sys.exit(’ERROR: SpaceRes/dx is not an integer: Change dx’)

1328 #-time step (in hours)

1329 self.dt = config.getint(’CDROUTING’, ’dt’)

1330 dt options = [1,3,6,12,24]

1331 if self.dt not in dt options:

1332 sys.exit(’ERROR: chosen dt does not correspond to the options

provided: change dt to 1, 3, 6, 12 or 24.’)

1334 #-visualization time step (in hours)

1335 self.dt visualize = config.getint(’CDROUTING’, ’dt visualize’)

1336 dt options = [1,3,6,12,24]

1337 if self.dt visualize not in dt options:

1338 sys.exit(’ERROR: chosen dt visualize does not correspond to the options

provided: change dt to 1, 3, 6, 12 or 24.’)

1340 #-check if dt visualize is larger than dt

1341 if self.dt visualize < self.dt:

1342 sys.exit(’ERROR: dt visualize is smaller than dt: choose a value for

dt visualize equal to or larger than dt’)

1344 #-wave celerity and diffusion coefficient

1345 try:

1346 self.c = config.getfloat(’CDROUTING’, ’c’)

1347 self.D = config.getfloat(’CDROUTING’, ’D’)

1348 except:

1349 self.width = config.getfloat(’CDROUTING’,’width’)

1350 self.depth = config.getfloat(’CDROUTING’,’depth’)

64

6.13. ADJUSTMENTS MADE IN SPHY SCRIPT

1351 self.roughness = config.getfloat(’CDROUTING’,’roughness’)

1352 self.slope = config.getfloat(’CDROUTING’,’slope’)

1353 self.c = self.cD.calcCD(self,self.width,self.depth,

self.roughness,self.slope)[0]

1354 self.D = self.cD.calcCD(self,self.width,self.depth,

self.roughness,self.slope)[1]

1355 print ’c and D are calculated’

1356 if self.c*(self.dt*60*60)/(self.dx*1000) > 1:

1357 print ’WARNING: Courant number is larger than 1, this could lead to

numerical instability: Decrease time step, or increase spatial step’

1359 self.CDrouting.CDrouting(self,self.dx,self.dt,self.SpaceRes,

self.dt visualize,self.c,self.D)

65

7. Results and Discussion

7.1 Model output and analysis

Figures 7.1a and 7.1b show daily observed and SPHY simulated discharge using the current simple rout-
ing scheme and using the newly implemented cD-routing procedure. The flow hydrographs are shown
for 10 consecutive years at the streamflow stations Busti (ID 647) and Rasnalu (ID 650), that both are
located in the Tamakoshi river basin. Values of c (= 0.08 km hr−1) and D (= 1.0 km2 hr−1) were
manually calibrated. However, these values make no sense physically as they are relatively low and as
they are not comparable to values found in literature (Vakgroep Hydraulica en Afvoerhydrologie, Year
unknown) and when calculated using equations 6.2 and 6.3. Despite this the model performs well given
a NS value of 0.80 and 0.72 for stations Busti and Rasnalu respectively for both routing procedures. In
general the average simulated discharge corresponds to the observed discharge. However, peak discharges
are frequently underestimated, as well as the low flows during the months December – May.

During this application example the settings of the SPHY model, as have been provided from a pre-
vious study, have not been changed. Recalibration of the SPHY model could change the simulated
specific runoff for each cell, which is used as input for the cD-routing module, could further improve the
results of the cD-routing module.

Comparing the new cD-routing procedure to the current implemented simple routing scheme in SPHY it
can be seen in figures 7.1a and 7.1b that the results of both simulations are comparable. Both yield the
same NS value when considering the 10 years data series. The strong seasonality has strong influence on
the resulting reasonably high NS value of 0.80. This however, does not necessarily mean that the model
performs well. In general the simple routing scheme simulates higher peaks than using the cD-routing.
Low flows during the months December – May are better simulated by the simple routing. Zooming into
the year 2004 it is demonstrated that the observed streamflow is more erratic than both simulated runs
(see Fig. 7.1c and 7.1d).

Figure 7.2 demonstrates the results of daily observed and SPHY simulated discharge for the same lo-
cations after calculating the values of c (= 18.5 km hr−1) and D (= 0.18 km2 hr−1) using equations
6.2 and 6.3. It can be seen that simulated discharge behaves erratic and the average discharge is too
low, resulting in a bad model performance with NS values of -0.13 and -0.31 for stations Busti and Ras-
nalu respectively. The erratic behaviour is most probably due to the high wave celerity causing a wave to
pass through the channels fast. This will result in a steep rising limb and recession limb of the hydrograph.

An example of the visualisation of the simulation results is shown in figure 7.3. It displays the streamflow
for each cell of the stream network at a certain timestep. By displaying a number maps of consecutive
time-steps after each other a movie can be created in which the propagation of a wave can be visualised
as it travels through the stream network.

66

7.1. MODEL OUTPUT AND ANALYSIS

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Discharge [m
3
 s−1

]

N
S
cD

 =
 0

.8
0

N
S
si
m
p
le
 =

 0
.8

0

O
b
se

rv
e
d

S
im

p
le

 r
o
u
ti

n
g

cD
-r

o
u
ti

n
g

(a
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Discharge [m
3
 s−1

]

N
S
cD

 =
 0

.7
2

N
S
si
m
p
le
 =

 0
.7

2

O
b
se

rv
e
d

S
im

p
le

 r
o
u
ti

n
g

cD
-r

o
u
ti

n
g

(b
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

Discharge [m
3
 s−1

]

N
S
cD

 =
 0

.8
0

N
S
si
m
p
le
 =

 0
.7

4

O
b
se

rv
e
d

S
im

p
le

 r
o
u
ti

n
g

cD
-r

o
u
ti

n
g

(c
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

Discharge [m
3
 s−1

]

N
S
cD

 =
 0

.7
9

N
S
si
m
p
le
 =

 0
.8

0

O
b
se

rv
e
d

S
im

p
le

 r
o
u
ti

n
g

cD
-r

o
u
ti

n
g

(d
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

F
ig
u
re

7
.1
:

D
ai

ly
ob

se
rv

ed
d
is

ch
ar

ge
,

S
P

H
Y

si
m

u
la

te
d

d
is

ch
a
rg

e
u

si
n

g
th

e
si

m
p

le
ro

u
ti

n
g

p
ro

ce
d

u
re

a
n

d
S

P
H

Y
si

m
u

la
te

d
d

is
ch

a
rg

e
u

si
n

g
th

e
cD

-r
o
u

ti
n

g
p

ro
ce

d
u

re
fo

r
th

e
st

re
am

fl
ow

st
at

io
n

s
B

u
st

i
(I

D
64

7)
an

d
R

a
sn

a
lu

(I
D

6
5
0
)

fo
r

1
0

ye
a
rs

(a
&

b
)

a
n

d
fo

r
th

e
ye

a
r

2
0
0
4

(c
&

d
).

V
a
lu

es
o
f

c
a
n

d
D

w
er

e
ca

li
b

ra
te

d
b

as
ed

on
th

e
10

ye
ar

d
at

a
se

ri
es

.

67

CHAPTER 7. RESULTS AND DISCUSSION

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
200

0

200

400

600

800

1000

1200

1400

D
is

ch
a
rg

e
 [

m
3
 s
−

1
]

NScD = -0.13 Observed

cD-routing

(a) Station Busti (ID 647)

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
50

0

50

100

150

200

250

D
is

ch
a
rg

e
 [

m
3
 s
−

1
]

NScD = -0.31 Observed

cD-routing

(b) Station Rasnalu (ID 650)

Figure 7.2: Daily observed and SPHY simulated discharge using the cD-routing procedure for the
streamflow stations Busti (ID 647) and Rasnalu (ID 650). Values of c and D were calculated using
equations 6.2 and 6.3.

68

7.1. MODEL OUTPUT AND ANALYSIS

T
a
b
le

7
.1
:

O
ve

rv
ie

w
o
f

th
e

re
su

lt
s

o
f

th
e

m
o
d

el
p

er
fo

rm
a
n

ce
.

(a
)

O
ve

rv
ie

w
of

th
e

re
su

lt
s

of
th

e
m

o
d

el
p

er
fo

rm
an

ce
w

it
h

ch
a
n

g
in

g
te

m
p

o
ra

l
re

so
lu

ti
o
n

.
T

h
e

p
a
ra

m
et

er
s

c,
D

a
n

d
d

x
a
re

ke
p

t
co

n
st

an
t

at
0.

08
[k

m
h

r−
1
],

0.
1

[k
m

2
h

r−
1
]

an
d

0.
25

0
k
m

re
sp

ec
ti

ve
ly

.

S
ta

ti
on

B
u

st
i

S
ta

ti
o
n

R
a
sn

a
lu

2
0
0
0

–
2
0
1
0

Y
e
a
r

2
0
0
4

2
0
0
0

–
2
0
1
0

Y
e
a
r

2
0
0
4

S
im

p
le

S
im

p
le

S
im

p
le

S
im

p
le

ro
u

ti
n

g
cD

-r
ou

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g

d
t

[h
r]

24
12

24
24

1
1
2

2
4

2
4

1
2

2
4

2
4

1
1
2

2
4

N
S

[–
]

0.
80

0.
74

0.
80

0.
74

-4
2

0
.7

0
0
.8

0
0
.7

2
0
.7

2
0
.7

2
0
.8

0
0
.7

9
0
.7

9
0
.7

9
C

o
m

p
u

ta
ti

o
n

a
l

–
7

4
–

8
1

0
.5

–
7

4
–

8
1

0
.5

ti
m

e
[m

in
]

(b
)

O
ve

rv
ie

w
of

th
e

re
su

lt
s

of
th

e
m

o
d

el
p

er
fo

rm
a
n
ce

w
it

h
ch

a
n

g
in

g
sp

a
ti

a
l

re
so

lu
ti

o
n

.
T

h
e

p
a
ra

m
et

er
s

c,
D

a
n

d
d

t
a
re

ke
p

t
co

n
st

an
t

at
0.

08
[k

m
h
r−

1
],

0.
1

[k
m

2
h

r−
1
]

an
d

24
h

r
re

sp
ec

ti
ve

ly
.

S
ta

ti
on

B
u

st
i

S
ta

ti
o
n

R
a
sn

a
lu

2
0
0
0

–
2
0
1
0

Y
e
a
r

2
0
0
4

2
0
0
0

–
2
0
1
0

Y
e
a
r

2
0
0
4

S
im

p
le

S
im

p
le

S
im

p
le

S
im

p
le

ro
u

ti
n

g
cD

-r
ou

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g
ro

u
ti

n
g

cD
-r

o
u

ti
n

g

d
x

[k
m

]
0.

25
0.

25
0.

50
0.

25
0
.0

5
0
.2

5
0
.5

0
0
.2

5
0
.2

5
0
.5

0
0
.2

5
0
.0

5
0
.2

5
0
.5

0
N

S
[–

]
0.

80
0.

80
0.

79
0.

74
0
.4

7
0
.8

0
0
.7

9
0
.7

2
0
.7

2
0
.7

1
0
.8

0
0
.7

9
0
.7

9
0
.7

8
C

o
m

p
u

ta
ti

o
n

a
l

–
4

2
–

1
3

0
.5

0
.2

5
–

4
2

–
1
3

0
.5

0
.2

5
ti

m
e

[m
in

]

69

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.3: Example of the visualisation of the simulation results using the cD-routing procedure. Red
colours indicate high streamflow (in m3 s−1) and purple colours low streamflow.

7.2 Sensitivity analysis

A sensitivity analysis has been performed to assess the sensitivity of the routing module to changes in the
parameters c and D, as well as changes in the temporal and spatial resolution, i.e. dt and dx respectively.

7.2.1 Wave celerity

Figures 7.4a and 7.4b display the results of the sensitivity analysis of parameter c for a period of 10 years
for both stations respectively. In orange the default simulation with c = 0.08 km hr−1 is depicted. The
other lines demonstrate the results of decreasing and increasing the value of c with 25% and 50%. A
higher value of c results in lower simulated discharges and a more erratic hydrograph. It was expected,
supported by performed artificial examples, that discharge peaks would be higher with higher values of
c, because the wave would arrive at the location sooner with less time for the development of diffusive
effects. A small shift can be seen in the arrival of the peak with changing wave celerity. This effect might
become more clearly visible when displaying over a shorter period of time of for instance a week. The
peaks simulated with higher wave celerity are sharper as expected, because the wave takes less time to
pass the station. Moreover, it becomes clear that mass is not preserved and this seems to be the largest
issue here. No cause could be found yet to explain this strange and unexpected behaviour.

Zooming in to the year 2004 (Fig. 7.4c and 7.4d) it becomes visible for station Busti that during
the recession limb the lines start to differ more than during the rising limb. This implies that at the
arrival of peak discharges the routing module is less sensitive to changes in c than during the recession
limb. This makes it more difficult to calibrate c such that it simulates the peaks well at this station.
Station Rasnalu shows more sensitivity at the rising limb compared to the other station. This might be
attributable to the size of the area upstream of the location, which is much smaller for Rasnalu than for
Busti. Further analysis is required to assess this assumption.

70

7.2. SENSITIVITY ANALYSIS

7.2.2 Diffusion coefficient

Figures 7.5a and 7.5b display the results of the sensitivity analysis of parameter D for a period of 10
years for both stations respectively. In orange the default simulation with D = 0.1 km2 hr−1 is depicted.
The other lines demonstrate the results of decreasing and increasing the value of D with 25% and 50%.
Higher values of D result in smoother hydrographs and in higher simulated discharges. The latter is
opposite to what is expected, namely higher values of D leading to more attenuated waves and therefore
lower peaks. This might be a result of the numerical scale chosen too large with respect to the system
time scale. Further analysis is needed to assess this. Again it is visible that mass is not preserved and
this needs further exploration to be able to explain and solve this problem. From a pragmatic point of
view the value of D can be seen as a parameter that can be used to calibrate the routing module.

Zooming in to the year 2004 (Fig. 7.5c and 7.5d) it can be seen that with higher D the total increase
and decrease of discharge during peaks is higher. Peaks are therefore simulated higher, but the recession
after is larger as well. Similar as to the parameter c, discharge at station Busti is less sensitive to changes
in the parameter D than at station Rasnalu.

Considering the period of 10 years from 2000 – 2010 as a reference it can be seen that the cD-routing
module is more sensitive to the wave celerity compared to the diffusion coefficient.

7.2.3 Temporal resolution

Sensitivity to changes in the temporal resolution is displayed in figure 7.6. Dt is given in hours and is
indicating the temporal resolution on which the calculation of the routing is performed (i.e. visualisation
is performed on a daily base). In orange the default simulation at dt = 24 hr is shown. An hourly
temporal resolution is not included in the analysis over the period 2000 – 2010 since it required more
storage memory (RAM memory) than available.

The routing module appears to be very sensitive to the temporal resolution at station Busti (Fig. 7.6c),
where a finer temporal resolution results in significantly higher simulated discharge. It is not fully under-
stood why calculations performed on an hourly base lead to rather different results than coarser temporal
resolutions. Therefore it would require recalibration of the parameters c and D when changing the tempo-
ral resolution. Due to time restrictions it was not possible to assess the results of such a recalibration. In
addition, the higher sensitivity to the temporal resolution at station Busti compared to station Rasnalu
might partly be attributed to the size of the catchment upstream as this is the main difference between
the two stations. This needs further exploration. And again there is the issue of the mass that is not
conserved with changing temporal resolution.

7.2.4 Spatial resolution

In figure 7.7 the sensitivity of the routing module to changes in the spatial resolution are shown. Dx is
given in metres and the temporal resolution is kept constant at 24 hours. Values of c and D are kept
constant as well at 0.08 km hr−1 and 0.1 km2 hr−1 respectively. In orange the default simulation at
dx = 250 m is depicted. A spatial resolution of 50 m is not included in the analysis over the period
2000 – 2010 since it required more storage memory than available.

A finer spatial resolution results in substantial lower simulated discharges at station Busti, while discharge
simulated at station Rasnalu is insensitive such a change. And here as well mass is not preserved with
changing spatial resolution. Simulating discharge at a larger spatial resolution for both stations does not
significantly change the results. Again there is no explanation for this phenomenon yet and therefore
needs further assessment. Again the size of the upstream catchment is a possible factor that could explain
these results, or a mistake made in the programming code could be the explanation. Another difference
between these stations is the stream order of the reach in which it is located. Station Busti is located
in the main stream of the stream network, while station Rasnalu is located in a reach of a lower stream
order. Only in the main stream the lateral inflow is added in a distributed way instead of point injection
(see Sect. 6.5). Further analysis is needed to assess whether this interferes with the code for running the
routing module on a smaller spatial resolution. In addition due to time restrictions it was not possible

71

CHAPTER 7. RESULTS AND DISCUSSION

Table 7.2: Computational time in minutes for a simulation period of 10 years on a daily base with the
original spatial resolution (= 250m) for the two different routing procedures.

Simple routing cD-routing

Preprocessing – 0.2
Calculating accumulated runoff – 18
Routing without/with visualisation – 4/7
Total ≈ 20 22/25

to assess the results of recalibration of the model with changing spatial resolutions.

7.3 Computational time

Preferably the computational time of the new cD-routing module does not exceed much the more simple
current routing scheme. In table 7.1 the computational time for different scenarios is depicted. Note that
these number indicate the time it takes to run only the routing part (i.e. applying the cD-equation) of
the routing module (r.516 – r.1068) (without creating maps). This is the most relevant as this part will
be used when calibrating the routing parameters. The computational time of all the preprocessing steps
in which the stream network is defined and all the individual reaches are retrieved (r.27 – r.402) is 10
seconds. The time to compute and prepare the tables containing the accumulated runoff for all time-steps
for several points (r.435 – r.503) depends on the period of time considered: for a period of 1 year this
takes 1.5 minutes, while for a period of 10 years it takes 18 minutes. In table 7.2 an overview is provided
of these computational times for a simulation period of 10 years on a daily base with a spatial resolution
of 250m. Furthermore, the total computational time of the two routing procedures is provided.

In addition it should be noted that the routing module can be run independently of the SPHY model.
Therefore the SPHY model should be run once to calculate and create the maps containing the total
accumulated specific runoff for each cell. Subsequently the routing module can be run several times with
different settings without having to run the whole SPHY model again.

72

7.3. COMPUTATIONAL TIME

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

Discharge [m
3
 s−1

]

c
=

 -
5
0
%

c
=

 -
2
5
%

c
=

 0
.0

8

c
=

 +
2
5
%

c
=

 +
5
0
%

(a
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

5
0

1
0
0

1
5
0

2
0
0

Discharge [m
3
 s−1

]

c
=

 -
5
0
%

c
=

 -
2
5
%

c
=

 0
.0

8

c
=

 +
2
5
%

c
=

 +
5
0
%

(b
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Discharge [m
3
 s−1

]

c
=

 -
5
0
%

c
=

 -
2
5
%

c
=

 0
.0

8

c
=

 +
2
5
%

c
=

 +
5
0
%

(c
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Discharge [m
3
 s−1

]

c
=

 -
5
0
%

c
=

 -
2
5
%

c
=

 0
.0

8

c
=

 +
2
5
%

c
=

 +
5
0
%

(d
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

F
ig
u
re

7
.4
:

S
en

si
ti

v
it

y
an

al
y
si

s
of

w
av

e
ce

le
ri

ty
fo

r
10

co
n

se
cu

ti
ve

y
ea

rs
((

a
)

a
n

d
(b

))
a
n

d
fo

r
th

e
ye

a
r

2
0
0
4

((
c)

a
n

d
(d

))
.

V
a
lu

es
o
f

c
a
re

g
iv

en
in

k
m

h
r−

1
.

T
h

e
d

iff
u

si
on

co
effi

ci
en

t
is

k
ep

t
co

n
st

an
t

at
1.

0
k
m

2
h

r−
1
.

73

CHAPTER 7. RESULTS AND DISCUSSION

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Discharge [m3 s−1]

D
 =

 -5
0
%

D
 =

 -2
5
%

D
 =

 1
.0

D
 =

 +
2
5
%

D
 =

 +
5
0
%

(a
)

S
ta

tion
B

u
sti

(ID
6
4
7
)

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
0

5
0

1
0
0

1
5
0

2
0
0

Discharge [m3 s−1]

D
 =

 -5
0
%

D
 =

 -2
5
%

D
 =

 1
.0

D
 =

 +
2
5
%

D
 =

 +
5
0
%

(b
)

S
tation

R
asn

alu
(ID

650)

01-200402-200403-200404-200405-200406-200407-200408-200409-200410-200411-200412-200401-2005
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Discharge [m3 s−1]

D
 =

 -5
0
%

D
 =

 -2
5
%

D
 =

 1
.0

D
 =

 +
2
5
%

D
 =

 +
5
0
%

(c
)

S
tatio

n
B

u
sti

(ID
6
4
7
)

01-200402-200403-200404-200405-200406-200407-200408-200409-200410-200411-200412-200401-2005
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

Discharge [m3 s−1]

D
 =

 -5
0
%

D
 =

 -2
5
%

D
 =

 1
.0

D
 =

 +
2
5
%

D
 =

 +
5
0
%

(d
)

S
tation

R
asn

alu
(ID

650)

F
ig
u
re

7
.5
:

S
en

sitiv
ity

an
aly

sis
o
f

th
e

d
iff

u
sion

co
effi

cien
t

fo
r

1
0

co
n

secu
tive

yea
rs

((a
)

a
n

d
(b

))
a
n

d
for

th
e

y
ear

2004
((c)

an
d

(d
)).

V
alu

es
of

D
are

given
in

k
m

2
h

r −
1.

T
h

e
w

ave
celerity

is
kep

t
con

sta
n
t

a
t

0
.0

8
k
m

h
r −

1.

74

7.3. COMPUTATIONAL TIME

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Discharge [m
3
 s−1

]

N
S
d
t
=

24
 =

 0
.8

0

N
S
d
t
=

12
 =

 0
.7

4

d
t

=
 2

4

d
t

=
 1

2

(a
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

2
0

4
0

6
0

8
0

1
0
0

Discharge [m
3
 s−1

]

N
S
d
t
=

24
 =

 0
.7

2

N
S
d
t
=

12
 =

 0
.7

2

d
t

=
 2

4

d
t

=
 1

2

(b
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Discharge [m
3
 s−1

]

N
S
d
t
=

24
 =

 0
.7

9

N
S
d
t
=

12
 =

 0
.7

0

N
S
d
t
=

1
 =

 -
4

2
.3

3

d
t

=
 2

4

d
t

=
 1

2

d
t

=
 1

(c
)

S
ta

ti
on

B
u

st
i

(I
D

64
7)

01
-2

00
4 02

-2
00

4 03
-2

00
4 04

-2
00

4 05
-2

00
4 06

-2
00

4 07
-2

00
4 08

-2
00

4 09
-2

00
4 10

-2
00

4 11
-2

00
4 12

-2
00

4 01
-2

00
5

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Discharge [m
3
 s−1

]

N
S
d
t
=

24
 =

 0
.7

9

N
S
d
t
=

12
 =

 0
.7

9

N
S
d
t
=

1
 =

 0
.7

9

d
t

=
 2

4

d
t

=
 1

2

d
t

=
 1

(d
)

S
ta

ti
o
n

R
a
sn

a
lu

(I
D

6
5
0
)

F
ig
u
re

7
.6
:

S
en

si
ti

v
it

y
an

al
y
si

s
of

th
e

te
m

p
or

al
re

so
lu

ti
o
n

fo
r

1
0

co
n

se
cu

ti
ve

ye
a
rs

((
a
)

a
n

d
(b

))
a
n

d
fo

r
th

e
ye

a
r

2
0
0
4

((
c)

a
n

d
(d

))
.

D
t

is
g
iv

en
in

h
o
u

rs
an

d
sp

at
ia

l
re

so
lu

ti
on

is
ke

p
t

co
n

st
an

t
at

0.
25

k
m

.
V

al
u

es
o
f

c
a
n

d
D

a
re

ke
p

t
co

n
st

a
n
t

a
s

w
el

l
a
t

0
.0

8
k
m

h
r−

1
a
n

d
0
.1

k
m

2
h

r−
1

re
sp

ec
ti

ve
ly

.

75

CHAPTER 7. RESULTS AND DISCUSSION

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Discharge [m3 s−1]

N
S
d
x

=
0.25 =

 0
.8

0

N
S
d
x

=
0.50 =

 0
.7

9

d
x
 =

 2
5
0

d
x
 =

 5
0
0

(a
)

S
ta

tion
B

u
sti

(ID
6
4
7
)

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
0

2
0

4
0

6
0

8
0

1
0
0

Discharge [m3 s−1]

N
S
d
x

=
0.25 =

 0
.7

2

N
S
d
x

=
0.50 =

 0
.7

1

d
x
 =

 2
5
0

d
x
 =

 5
0
0

(b
)

S
tation

R
asn

alu
(ID

650)

01-200402-200403-200404-200405-200406-200407-200408-200409-200410-200411-200412-200401-2005
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Discharge [m3 s−1]

N
S
d
x

=
0.25 =

 0
.8

0

N
S
d
x

=
0.50 =

 0
.7

9

N
S
d
x

=
0.05 =

 0
.4

7

d
x
 =

 2
5
0

d
x
 =

 5
0
0

d
x
 =

 5
0

(c
)

S
tatio

n
B

u
sti

(ID
6
4
7
)

01-200402-200403-200404-200405-200406-200407-200408-200409-200410-200411-200412-200401-2005
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Discharge [m3 s−1]

N
S
d
x

=
0.25 =

 0
.7

9

N
S
d
x

=
0.50 =

 0
.7

8

N
S
d
x

=
0.05 =

 0
.7

9

d
x
 =

 2
5
0

d
x
 =

 5
0
0

d
x
 =

 5
0

(d
)

S
tation

R
asn

alu
(ID

650)

F
ig
u
re

7
.7
:

S
en

sitiv
ity

an
aly

sis
o
f

th
e

sp
atia

l
reso

lu
tio

n
fo

r
1
0

co
n

secu
tive

yea
rs

((a
)

a
n

d
(b

))
a
n

d
for

th
e

year
2004

((c)
an

d
(d

)).
D

x
is

given
in

m
etres

an
d

tem
p

o
ra

l
resolu

tio
n

is
kep

t
con

sta
n
t

at
2
4

h
r.

V
a
lu

es
o
f

c
a
n

d
D

a
re

kep
t

co
n

sta
n
t

a
s

w
ell

a
t

0
.08

k
m

h
r −

1
an

d
0.1

k
m

2
h

r −
1

resp
ectively.

76

8. Conclusion

In this internship research project alternative routing procedure options were explored with the aim to
improve the current routing scheme and therefore streamflow simulations in the SPHY model. Given the
fact that SPHY is regularly applied in data-scarce research areas, it is concluded that the convection-
diffusion (cD) approach is the most suitable routing method. The cD-wave equations provide a solid
approximation of the full dynamic wave equations as is balances between the accuracy and high data
demanding dynamic wave model and the simplicity of the kinematic wave model. The cD-equation was
numerically discretized using the Crank-Nicolson scheme.

The cD-routing module is set up outside the PCRaster environment. This provides the opportunity
to run the routing module with a different temporal and spatial resolution than the simulation of the
SPHY model itself. Furthermore, visualisation of the results can be done on a different time-step than
the routing calculations. These settings need to be specified by the user in the accompanying SPHY
configuration file.

For the implementation of the cD-routing procedure it was necessary to first define the stream net-
work and to identify all individual reaches of the different stream orders. In addition, it was determined
which reaches are connecting to each other, since the output of one stream is added as lateral inflow into
the next. Furthermore, time series containing the accumulated runoff for specified points (e.g. inlets and
outlets of reaches) were stored in tables. After determining the downstream hydrographs for all reaches
by applying the cD-routing procedure to all individual reaches starting at the downstream point and
proceeding in upstream direction, the main loop starts. In final part the actual routing is performed,
for which the cD-equation was applied to all reaches starting upstream and proceeding in downstream
direction.

After manual calibration of the wave celerity (c) and the diffusion coefficient (D) the results obtained
are comparable to the currently implemented simple routing scheme in terms of NS values. NS values
are 0.80 and 0.72 for the stations Busti and Rasnalu respectively for the period 2000 – 2010. In general
the average simulated discharge corresponds to the observed discharge. However, peak discharges are
frequently underestimated, as well as the low flows during the months December – May.

The routing procedure is sensitive to changes in c and D, as well as to changes in the temporal and
spatial resolution. Focussing on the latter two, it is not fully understood why a finer temporal and spatial
resolution lead to substantial different results in simulated discharge for station Busti. Changes in c result
in a slight shift in the arrival of a peak discharge as was expected. It was expected that higher values of
D would lead to more attenuated waves and therefore lower peaks. However, the results of changes in
D demonstrated the opposite. Further analysis is needed to explore this, especially focussing on the fact
that mass is not preserved with changing parameter values.

Comparing computational time between the two routing schemes, it can be concluded that they are
comparable. Depending on whether the user wants a visualisation of the results the cD-routing proce-
dure takes 2 or 5 minutes longer than the currently implemented simple routing scheme.

It can be concluded that the newly implemented advanced cD-routing procedure performs well in terms
of streamflow simulations and the results are comparable to the currently implemented simple routing
scheme. Furthermore the cD-routing procedure has the advantage that it has the possibility to run the

77

CHAPTER 8. CONCLUSION

routing on a different temporal and spatial resolution than the simulation of the SPHY model itself.
It should be noted that currently the cD-routing procedure has only been applied to an area which is
minimally regulated by humans and has substantial elevation differences. Further analyses should be
done to test the routing procedure in different settings.

78

9. Recommendations

At this stage wave celerity (c) and diffusion coefficient (D) values were assumed to be constant over the
whole research area. However, in reality these values will vary spatially depending on local channel geom-
etry and characteristics. For instance lakes, reservoirs, channel contractions and structures like bridges,
weirs and dams will influence these values. Making the c and D value spatial dependent could further
improve the channel routing.

The sensitivity of the routing module to changes in c and D should be analysed further. This can
be done by evaluating the effect of one parameter with the other parameter switched off. Furthermore,
it would be interesting to take a closer look at a shorter time period to be able to analyse the response
of the model to individual precipitation events and whether c and D can be calibrated to optimize the
simulation for such individual events.

Calibration of the c and D values are done manually, but preferably this should be done in a consistent
manner using a robust calibration method. Levenberg-Marquardt or HydroPSO are potential calibration
methods to be used.

Adding the outflow from one reach to the next reach is done by injecting this as lateral inflow at one
single point. However, another option that could still be implemented is to distribute this water along a
transect of the next reach, rather than inject the whole volume of water at one point, because this might
cause some disruptive effects on the routing in the next reach. These effects will become smaller when
choosing a smaller threshold value.

Currently the length of the reaches are determined based on the number of cells of that reach multi-
plied with the length of one cell, i.e. the spatial resolution of the grid. This calculation is valid in the
case when the water flows straight through the cell. However, water could also flow diagonally through
a cell depending on the local drain direction, which would increase the flow path of the water. Tak-
ing this into account new calculations were performed based on the local drain direction (ldd) map,
improving the estimation of the true length of the flow path that the water takes. However, the visu-
alisation of the results were already programmed in such a way that it requires the length calculated
based on the number of cells multiplied with the length of one cell. Due to time limitations it was not
able to implement the improvement in calculations of the flow path length to the visualisation of the
results and therefore the former, less accurate calculations were adopted again. Appendix B provides
the programming code to calculate the length the water has to travel in every reach based on the ldd map.

Some pragmatic choices were made during the programming. For instance a reach is artificially elongated
when it happens to consist of only one cell. This is needed for the calculations of the cD-equation among
others. However, the effects of adding one cell is small in comparison with for instance the way the length
of a reach is determined without considering the local drain direction.

Currently the downstream boundary condition is chosen to be the flow hydrograph of the accumulated
runoff of the entire catchment. However, with this we force an amount of discharge at timestep t at the
boundary that produced at that same timestep t, while in reality this runoff would arrive later at the
outlet. Considering this, the flow hydrograph at the downstream boundary preferably should be shifted.

Currently there is no option available to include lakes and reservoirs in the routing procedure. Like

79

CHAPTER 9. RECOMMENDATIONS

in HEC-RAS there is an option to include a storage area to simulate a reservoir or a dam breach (Brun-
ner, 2010). Using the vector layer as is used now in this new routing procedure, a reservoir could become
a point in the vector, for which this cell would be assigned different characteristics (e.g. a larger width
and lower c) than a normal river cell. How this can be executed exactly needs to be explored further.

PCRaster itself also has the option to solve the dynamic wave equation, as well as the kinematic wave
equation. However, the latter concerns an experimental implementation, and stability and accuracy can-
not be guarenteed. Furthermore, to solve the dynamic wave equations substantial data and information
is required as was concluded earlier as well (Sect. 4.1). In addition, working outside the PCRaster en-
vironment, as is done with the implementation of the cD-routing scheme, enables us to choose different
temporal and spatial resolution used for the routing calculations.

80

Bibliography

Barati, R., Rahimi, S., Akbari, G. H., 2012. Analysis of dynamic wave model for flood routing in natural
rriver. Water Science and Engineering 5, 243–258.

Botte, G. G., Ritter, J. A., White, R. E., 2000. Comparison of finite difference and control volume
methods for solving differential eequation. Computers & Chemical Engineering 24, 2633–2654.

Brunner, 1992. Overview of channel routing techniques.

Brunner, G. W., 2010. HEC-RAS, River analysis system hydraulic reference manual. Version 4.1.

Chung, T. J., 2010. Computational Fluid Dynamics. Cambridge University Press.

Crank, J., Nicolson, P., 1947. A practical method for numerical evaluation of ssolution of partial differ-
ential equations of the het-conduction type. Proceedings Cambridge Philosophical Society 43, 50–67.

Fread, D. L., 1985. Hydrological Forecasting. John Wiley and Sons Ltd., Ch. Channel routing, pp. 437–
503.

FutureWater, 2015. SPHY.
URL https://github.com/FutureWater/SPHY

Hayami, S., 1951. On the propagation of flood waves., bulletin 1, Disaster Prevention Research Institute,
Kyoto University, Kyoto, Japan.

HI-AWARE, 2016. Hi-aware.
URL http://www.hi-aware.org/

Hoffman, J. D., Frankel, S., 2001. Numerical Methods for Engineers and Scientists. CRC Press, second
Edition.

Karssenberg, D., Burrough, P. A., Sluiter, R., de Jong, K., 2001. The pcraster software and course
materials for teaching numerical modelling in the environmental sciences. Transactions in GIS 5 (2),
99–110.

Khadka, D., Babel, M. S., Shrestha, S., Tripathi, N. K., 2014. Climate change impact on glacier and snow
melt and runoff in tamakoshi basin in the hindu kush himalayan (hkh) region. Journal of Hydrology.

Koohafkan, M. C., 2016. Technical vignette for rivr. Accessed 10 dec 2016.
URL https://cran.r-project.org/web/packages/rivr/vignettes/technical-vignette.html

Lighthill, M. J., Whitham, G. B., 1955. On kinematic wwave. i. flood movement in long rriver. Proceedings
of The Royal Society 229, 281–316.

Litrico, X., Fromion, V., 2009. Model and control of hydrosystems. Springer-Verlag London, Ch. 2.
Modeling of open channel flow, pp. 17–41.

MIKE by DHI, 2009. MIKE 11- A modelling system for rriver and channels - Reference manual.

Miller, J. E., 1984. Basic concepts of kinematic-wave models. U.S. Geological survey professional paper.

Montaldo, N., Mancini, M., Rosso, R., 2004. Flood hydrograph attenuation induced by a reservoir system:
analysis with a distributed rainfall-runoff model. Hydrological Processes 18, 545–563.

81

https://github.com/FutureWater/SPHY
http://www.hi-aware.org/
https://cran.r-project.org/web/packages/rivr/vignettes/technical-vignette.html

BIBLIOGRAPHY

Nash, J. E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models, part i – a discussion
of principles. Journal of Hydrology 10, 282–290.

O’Sullivan, J. J., Ahilan, S., Bruen, M., 2012. A modified muskingum routing approach for floodplain
flows: Theory and practice. Journal of Hydrology 470-471, 239–254.

Pechlivanidis, I. G., Jackson, B. M., McIntyre, N. R., Weather, H. S., 2011. Catchment scale hydrological
modelling: a review of model types, calibration approaches and uncertainty analysis methods in the
context of recent developments in technology and applications. Global NEST Journal 13 (3), 193–214.

Pletcher, R. H., Tannehill, J. C., Anderson, D., 2012. Computational Fluid Mechanics and Heat Transfer.
CRC Press, third Edition.

Ramı́rez, J. A., 2000. Inland Flood Hazards: Human, Riparian and Aquatic Communities. Cambridge
University Press, Ch. Prediction and modeling of flood hydrology and hydraulics., pp. 293–333.

Rockström, J., Falkenmark, M., Lannerstad, M., Karlberg, L., 2012. The planetary water drama: Dual
task of feeding humanity and curbing climate change. Geophysical Research Letters 39 (L15401).

Shahedi, K., 2008. Hillslope hydrological modeling - the role of bedroch geometry and hillslope-stream
interaction. Ph.D. thesis, Wageningen University.

Shukla, A., Singh, A. K., Singh, P., 2011. A comparative study of finite volume method and finite
difference method for convection-diffusion problem. American Journal of Computational and Applied
Mathematics 1, 67–73.

Shultz, M. J., 2007. Comparison of distributed versus lumped hydrologic simulation models using sta-
tionary and moving storm events applied to small synthetic rectangular basins and an actual watershed
basin. Ph.D. thesis, The University of Texas at Arlington.

Singh, V. P., 1996. Kinematic wave model in water resources - Surface water hydrology. John Wiley and
Sons, Inc.

Smith, G. D., 1985. Numerial Solution of Partial Differential Equations: Finite Difference Methods.
Clarendon Press.

Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W., Droogers, P., 2015. Sphy v2.0: Spatial
processes in hydrology. Geoscientific Model Development 8, 2009–2034.

Torfs, P. J. J. F., 2002. Open channel flow.

Vakgroep Hydraulica en Afvoerhydrologie, Year unknown. Afvoervoorspellingen voor de rijn bij lobith,
nota 67.

Verma, P., Hari Prasad, K. S., Ojha, C. S. P., 2012. Maccormack scheme based numerical solution of
advection-dispersion equation. ISH Journal of Hydraulic Engineering, 27–38.

Vörösmarty, C. J., Green, P., Salisbury, J., Lammers, R. B., 2000. Global water resources: Vulnerability
from climate change and population growth. Science 289, 284–288.

Wagener, T., Wheater, H. S., 2006. Parameter estimation and regionalization for continuous rainfall-
runoff models including uncertainty. Journal of Hydrology 320, 132–154.

82

A. Overview python tables

83

APPENDIX A. OVERVIEW PYTHON TABLES

T
a
b
le

A
.1

P
y
th

o
n

ta
b

le
D

escrip
tion

F
o
rm

at
F

ile
n

am
e

rea
ch

ID
L

o
ca

tion
s

of
all

cells
b

elo
n

g
in

g
to

a
strea

m
o
rd

er
x
,

y
reach

id
o
rd

er
R

each
A

rray
ID

S
im

ilar
to

rea
ch

ID
w

ith
slo

p
elen

g
th

(S
L

)
a
n

d
D

E
M

va
lu

e
ID

,
x
,

y,
D

E
M

,
S

L
R

each
A

rray
ID

o
rd

er
ad

d
ed

.
S

o
rted

b
ased

on
S

L
.

S
u

b
R

each
A

rray
ID

S
im

ilar
to

R
ea

ch
A

rra
yID

b
u

t
n

ow
fo

r
ea

ch
su

b
-rea

ch
w

ith
in

ID
,

x
,

y,
S

L
,

#
ord

er,
#

su
b

S
u

b
R

each
A

rray
ID

o
rd

er
su

b
a

stream
o
rd

er.
S

o
rted

fro
m

u
p

-to
d

ow
n

strea
m

o
u

tID
reach

L
o
ca

tion
o
f

o
u

tlets
o
f

a
ll

rea
ch

es
fro

m
a
ll

strea
m

o
rd

ers
#

o
rd

er,
#

su
b

,
x
,

y
ou

tID
reach

in
ID

reach
L

o
ca

tion
o
f

in
lets

o
f

a
ll

rea
ch

es
fro

m
a
ll

strea
m

o
rd

ers
#

o
rd

er,
#

su
b

,
x
,

y
in

ID
reach

u
p

sID
rea

ch
L

o
ca

tion
o
f

in
lets

o
f

a
ll

rea
ch

es
w

ith
strea

m
o
rd

er
>

1
#

o
rd

er,
#

su
b

,
x
,

y
u

p
sID

reach
p

itID
S

a
m

e
as

o
u

tID
rea

ch
,

h
ow

ever
in

th
e

o
rd

er
th

a
t

P
C

R
a
ster

sca
n

s
x
,

y
th

e
ra

ster.
N

eed
ed

to
con

vert
a
rray

s
to

m
a
p

s
a
g
a
in

.
in

ID
S

im
ilar

to
in

ID
rea

ch
,

h
ow

ever
in

th
e

o
rd

er
th

a
t

P
C

R
a
ster

sca
n

s
x
,

y
th

e
ra

ster
an

d
on

ly
rea

ch
es

w
ith

strea
m

o
rd

er
1
.

N
eed

ed
to

con
vert

array
s

to
m

a
p

s
a
g
a
in

.
u

p
h
y
d

roID
C

o
n
tain

s
th

e
lo

ca
tion

s
of

in
lets

o
f

rea
ch

es
o
f

x
,

y
stream

o
rd

er
>

1.
in

ou
tID

C
o
n
tain

s
th

e
lo

ca
tion

s
of

a
ll

o
u

tlets
p

lu
s

in
lets

o
f

x
,

y
reach

es
w

ith
strea

m
ord

er
1
.

co
n

n
ectID

L
o
ca

tion
w

h
ere

a
strea

m
fl

ow
s

in
to

th
e

n
ex

t
strea

m
.

x
,

y
con

n
ectID

O
rd

er
sa

m
e

as
p
itID

.
co

u
p

led
rea

ch
es

L
ists

w
h

ich
reach

es
a
re

co
n

n
ectin

g
to

ea
ch

o
th

er.
#

o
rd

er,
#

su
b
,

#
ord

er,
#

su
b

cou
p

led
reach

es
F

irst
tw

o
colu

m
n

s
con

ta
in

in
fo

rm
a
tio

n
a
b

o
u

t
th

e
u

p
strea

m
rea

ch
.

T
h

e
la

tter
2

colu
m

n
s

sto
re

in
fo

rm
a
tio

n
a
b

o
u

t
th

e
rea

ch
it

fl
ow

s
in

to
.

T
im

eA
rray

P
it

S
tores

fo
r

ea
ch

o
u

tlet
th

e
a
ccu

m
u

la
ted

ru
n

o
ff

a
t

th
a
t

p
o
in

t
T

im
estep

,
ou

tlet
1,

ou
tlet

2,
...

T
im

eA
rray

p
its

for
every

tim
estep

.
T

im
eA

rray
In

S
tores

fo
r

ea
ch

in
let

w
ith

strea
m

o
rd

er
1

th
e

a
ccu

m
u

la
ted

ru
n

o
ff

T
im

estep
,

in
let

1,
in

let
2,

...
T

im
eA

rray
in

lets
at

th
a
t

p
oin

t
fo

r
every

tim
estep

.
T

im
eA

rray
U

p
h
y
d

ro
S

tores
fo

r
ea

ch
in

let
w

ith
strea

m
o
rd

er
>

1
th

e
T

im
estep

,
in

let
1,

in
let

2,
...

T
im

eA
rray

u
p

s
accu

m
u

la
ted

ru
n

o
ff

a
t

th
at

p
o
in

t
fo

r
every

tim
estep

.
T

im
eA

rray
O

u
tlet

S
tores

fo
r

th
e

o
u

tlet
o
f

th
e

en
tire

ca
tch

m
en

t
T

im
estep

,
in

let
1,

in
let

2,
...

T
im

eA
rray

ou
tlet

th
e

a
ccu

m
u

la
ted

ru
n

o
ff

fo
r

ev
ery

tim
estep

.
U

p
h
y
d

ro
H

y
d

ro
g
rap

h
at

th
e

in
let

o
f

a
rea

ch
.

#
row

s
=

#
tim

e
step

s
u

p
h
y
d

ro
o
rd

er
su

b
D

ow
n

h
y
d

ro
H

y
d

ro
g
rap

h
at

th
e

o
u

tlet
o
f

a
rea

ch
.

#
row

s
=

#
tim

e
step

s
d

ow
n

h
y
d

ro
o
rd

er
su

b
L

ateral
H

y
d

ro
g
rap

h
at

th
e

cell
th

a
t

la
tera

lly
d

ra
in

s
in

to
th

e
n

ex
t

rea
ch

.
#

row
s

=
#

tim
e

step
s

lateral
o
rd

er\
su

b
\o

rd
er

d
ra

in\o
rd

er
su

b
Q

record
b

ack
S

tores
fo

r
ea

ch
cell

of
a

rea
ch

th
e

resu
lts

o
f

th
e

cD
-eq

u
a
tio

n
fo

r
#

colu
m

n
s

=
#

cells,
Q

record
b

ack
o
rd

er
su

b
each

tim
e

step
.

’
b

ack
’

refers
to

ru
n

n
in

g
th

e
cD

-eq
u

a
tio

n
#

row
s

=
#

tim
e

step
s

in
u

p
stream

d
irection

.
Q

record
S

tores
fo

r
ea

ch
cell

of
a

rea
ch

th
e

resu
lts

o
f

th
e

cD
-eq

u
a
tio

n
fo

r
#

colu
m

n
s

=
#

cells,
Q

record
o
rd

er
su

b
each

tim
e

step
.

N
ow

th
e

cD
-eq

u
a
tio

n
is

a
p

p
lied

in
d
ow

n
strea

m
#

row
s

=
#

tim
e

step
s

d
irectio

n
.

Q
a
ll

S
tores

fo
r

ea
ch

cell
of

th
e

en
tire

strea
m

n
etw

o
rk

th
e

resu
lts

o
f

th
e

#
colu

m
n

s
=

#
cells,

Q
all.tx

t
cD

-eq
u

atio
n

for
ea

ch
tim

e
step

.
U

sed
fo

r
v
isu

a
lizin

g
th

e
resu

lts.
#

row
s

=
#

tim
e

step
s

84

B. Reach length based on ldd map

Determine the length of the reach in km. Based on the flow direction the flow path

is either the spatial resolution of a cell (straight), or it flows diagonal

over the cell. In the latter case Pythagorean theorem is applied (diag).

Find for each cell its drain direction

lddreach = pcr.ifthen(subreach,FlowDir ini)

ldd reacharray = pcr.pcr2numpy(lddreach, MV)

Count the number of cells in which the water flows diagonally or straigth respectively.

diag = numpy.count nonzero(ldd reacharray==1) + numpy.count nonzero(ldd reacharray==3) +

numpy.count nonzero(ldd reacharray==7) + numpy.count nonzero(ldd reacharray==9)

straight = numpy.count nonzero(ldd reacharray==2) + numpy.count nonzero(ldd reacharray==4)

+ numpy.count nonzero(ldd reacharray==6) + numpy.count nonzero(ldd reacharray==8)

pit = numpy.count nonzero(ldd reacharray==5)

Calculate the length of the reach.

length reach = diag*(math.sqrt((SpaceRes**2)*2)) + (straight+pit)*SpaceRes

numpy.save(outpath + ’length ’ + str(order) + ’ ’ + str(sub+1), length reach)

85

C. Calibration log-file

This appendix is written after the first results were presented already and it continues on the results
that were found during the sensitivity analyses (i.e. it was found that mass is not preserved). Artificial
examples were performed to test the numerics of the routing module. Apart from minor revisions the
code appears to be solid. However, it was found that the routing module is highly sensitive to parameter
values and parameter combinations. Therefore a script called ’cD test.py ’ was created in which many
parameter combinations are tested and the preliminary results are written to a log-file. The user should
specify the range for the parameters c, D, dt and dx in the config-file, as well as the range within which
the simulated discharge should remain, otherwise a warning is raised.

12 # Length of reach in km

13 L = length

15 # Specify the weight given to Neumann and Dirichlet part of the Robin b.c.

16 alpha = config.getfloat(’CDROUTING’,’alpha’)

17 beta = config.getfloat(’CDROUTING’,’beta’)

19 # Implicit/explicit (omega=1 --> fully implicit, omega=0 --> fully explicit)

20 omega = config.getfloat(’CDROUTING’,’omega’)

22 # Generate TABLE to test/calibrate the results of several combinations

23 # of parameters c, D, dt, dx.

24 C min = config.getfloat(’CDROUTING’,’C min’)

25 C max = config.getfloat(’CDROUTING’,’C max’)

26 C step = (C max-C min)/5 # 5 interval steps

27 C = np.arange(C min,C max+C step,C step)

28 if C min == 0.0: # Cannot handle 0

29 C[0] = 0.0001

31 D min = config.getfloat(’CDROUTING’,’D min’)

32 D max = config.getfloat(’CDROUTING’,’D max’)

33 D step = (D max-D min)/5 # 5 interval steps

34 D = np.arange(D min,D max+D step,D step)

35 if D min == 0.0: # Cannot handle 0

36 D[0] = 0.0001

38 Dt min = config.getfloat(’CDROUTING’,’Dt min’)

39 Dt max = config.getfloat(’CDROUTING’,’Dt max’)

40 Dt step = (Dt max-Dt min)/5 # 5 interval steps

41 DT = np.arange(Dt min,Dt max+Dt step,Dt step)

43 Dx min = config.getfloat(’CDROUTING’,’Dx min’)

44 Dx max = config.getfloat(’CDROUTING’,’Dx max’)

45 Dx step = (Dx max-Dx min)/5 # 5 interval steps

46 DX = np.arange(Dx min,Dx max+Dx step,Dx step)

86

48 # Range within the simulated Q should stay, otherwise a warning is raised.

49 Q max = config.getfloat(’CDROUTING’,’Q max’)

50 Q min = config.getfloat(’CDROUTING’,’Q min’)

52 # Open/create log-file to write the results to.

53 f=open(’logfile’, ’w’)

54 f.write("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" %

(’c’,’D’,’dt’,’dx’,’Courant’,’Peclet’,’Qmax’,’Qmin’,’Qtot up’,’Qtot down’,’WARNING’))

56 # Try all parameter combinations:

57 for c in C:

58 for d in D:

59 for dt in DT:

60 for dx in DX:

61 warningFLAG = 0

62 # Number of spatial steps

63 Nx = int((L/dx)+1)

64 x grid = np.array([j*dx for j in range(Nx)])

66 # Number of time steps

67 Nt=50

68 t grid = np.array([n*dt for n in range(Nt)])

70 # Define sigma and rho in the context of numerical discretization

71 sigma = float(d*dt)/float(dx*dx)

72 rho = float(-c*dt)/float(2.*dx)

73 Courant = 4*-rho

74 Peclet = dx*c/d

76 # Create tridiagonal matrices A and B

77 A = np.diagflat([(-sigma+rho)*omega for i in range(Nx-1)], -1) +

78 np.diagflat([1.+2.*sigma*omega for i in range(Nx)]) +

79 np.diagflat([(-(sigma+rho))*omega for i in range(Nx-1)], 1)

80 A[0,:] = np.array([1] + [0 for i in range(0,Nx-1)])

81 A[-1,:] = np.array([0 for i in range(0,Nx-3)] + [-1] +

[(2*beta*dx)/alpha] + [1])

83 B = np.diagflat([(sigma-rho)*(1-omega) for i in range(Nx-1)], -1) +

84 np.diagflat([1.-2.*sigma*(1-omega) for i in range(Nx)]) +

85 np.diagflat([(sigma+rho)*(1-omega) for i in range(Nx-1)], 1)

86 B[0,:] = np.array([0 for i in range(0,Nx)])

87 B[-1,:] = np.array([0 for i in range(0,Nx-3)] + [-1] +

[(2*beta*dx)/alpha] + [1])

89 # Create vector F

90 f vec = np.array([0 for i in range(0,Nx)])*dt

110 # Specify initial condition

111 base = config.getfloat(’CDROUTING’,’Q’)

112 init = np.array([base for i in range(0,Nx)])

113 Q = init

115 # Impulse upstream

116 impulsFLAG = config.getint(’CDROUTING’, ’impulsFLAG’)

117 if impulsFLAG == 0:

118 value impuls=50

87

APPENDIX C. CALIBRATION LOG-FILE

119 width impuls = 2

120 up = np.array(np.ndarray.tolist(np.linspace(base,value impuls,width impuls))

+ np.ndarray.tolist(np.linspace(value impuls,base,width impuls))

+ [base for i in range(0,Nt-(2*width impuls))])

123 else:

124 amplitude = 50

126 width impuls = 5

127 freq = 1.1

128 x = np.arange(width impuls)

129 y = base+amplitude*np.sin(np.pi * freq * x / width impuls)

131 up = np.array(np.ndarray.tolist(y)+[base for i in range(0,Nt-width impuls)])

135 # Create empty list to store the results

136 Q record = []

138 # First create a stationary solution which is subsequently provided

to

139 # the main loop. To create this stationarity no impulse is given

upstream.

140 for ti in range(1,100):

141 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

142 Q = Q new

143 Q record.append(Q)

145 # Main loop to solve the system iteratively

146 for ti in range(1,Nt):

147 # Provide upstream hydrograph

148 f vec[0] = up[ti]*dt

151 # Solve the system

152 Q new = np.linalg.solve(A, B.dot(Q)+ f vec)

153 Q = Q new

154 if max(Q)>Q max or min(Q)<Q min:

155 warningFLAG = 1

156 print ’WARNING: large oscillations:

choose other parameter values’

157 break

158 Q record.append(Q)

160 # If warning is raised: write the parameter values to the log-file

161 # without continuing the calculations

162 if warningFLAG==1:

163 f.write("%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%s,%s,%s,%s,%s\n" %

(c,d,dt,dx,Courant,Peclet,’NaN’,’NaN’,’NaN’,’NaN’,’WARNING’))

164 continue

165 # If no warning is raised: create array Q record

166 Q record = np.array(Q record)

168 # Calculate the maximum and minimum simulated Q

169 Qmax=[]

170 Qmin=[]

171 for time in range(0,Nt):

172 Qmax.append(max(Q record[time]))

173 Qmin.append(min(Q record[time]))

174 Qmax = max(Qmax)

175 Qmin = min(Qmin)

88

177 # Calculate the total Q at the upstream and downstream end of the

reach.

178 # If the wave is passed completely, these totals should be equal.

179 Qtot up = 0

180 for j in range(len(Q record)):

181 Qtot up+=Q record[j][0]

183 Qtot down = 0

184 for j in range(len(Q record)):

185 Qtot down+=Q record[j][-1]

192 # Write the results of this parameter combination to the log-file

193 f.write("%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%s\n" %

(c,d,dt,dx,Courant,Peclet,Qmax,Qmin,Qtot up,Qtot down,’-’))

89

	Abstract
	Introduction
	Problem description
	Objectives and research questions
	Structure of report

	Application example
	SPHY model
	Model structure
	Current routing procedure
	Simple routing scheme
	Advanced routing scheme

	Potential routing methods
	Dynamic wave equations
	Convection-diffusion approximation
	Kinematic wave approximation
	Selecting a routing method

	Numerical approximation
	Finite-difference schemes
	Explicit finite-difference
	Implicit finite-difference
	Crank-Nicolson

	Boundary conditions
	Numerical discretization of cD-equation

	Advanced routing module implementation
	Preprocessing
	Preparing data and maps
	Define the stream network
	Determine stream order
	Identify reaches

	Conservation of mass
	Temporal and spatial grid
	Initial and boundary conditions
	Lateral inflow
	Parameter values to be specified in config-file
	The cD-equation
	Determine downstream hydrographs using cD-equation
	Determine locations of inlets and outlets
	Determine connecting points
	Locate connecting reaches
	Accumulated runoff at inlets and outlets
	Downstream boundary conditions

	Apply cD-equation for routing
	Visualisation of the results
	Time series at observation stations
	Calibration
	Adjustments made in SPHY script

	Results and Discussion
	Model output and analysis
	Sensitivity analysis
	Wave celerity
	Diffusion coefficient
	Temporal resolution
	Spatial resolution

	Computational time

	Conclusion
	Recommendations
	Overview python tables
	Reach length based on ldd map
	Calibration log-file

