Effects of Reclaimed Waters on Spectral
Properties and Leaf Traits of Citrus Orchards
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ABSTRACT:  Effects resulting from the use of reclaimed waters on
mandarins and grapefruits are evaluated by measuring the spectral
responses of their canopies and the anatomy and the chlorophyll content
of their leaves against control trees irrigated with waters provided by an
interbasin transfer. Spectral responses from the red (R) and near-infrared
(NIR) wavelength bands, and its normalized ratio (NDVI), were acquired
from a hyperspatial flight conducted after a low-moderate exposition to
reclaimed waters. Chlorophyll and leaf and palisade/spongy ratio
thicknesses were analyzed after a moderate-high exposition. Significant
differences between controls and treatments were detected in mandarins
in R and leaf chlorophyll, but not in grapefruits, likely because of their
higher tolerance to saline waters. Reused waters did not affect either
NIR-NDVI or anatomy traits. Hyperspatial sensing techniques are
suitable for detecting chlorophyll dynamics, but NIR information and
related vegetation indices may mask the detection of periods of saline
stress in citrus orchards. Water Environ. Res., 86, 2242 (2014).
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Introduction

Climates of dry lands are characterized by mean annual
precipitation values that are lower than potential evaporation.
Under these conditions, vegetation develops water use strategies
that aim to maximize transpiration up to annual rates similar to
the water inputs supplied by rainfall after accounting for
evaporation (Eagleson, 1982; Santoni et al., 2010). The quasi-
equilibrium between precipitation and actual evapotranspiration
makes deep drainage almost negligible in the long term and
promotes dry and salty vadose zones. As a consequence of the
soil dryness and the high salt concentrations in the soil profile,
the agronomic potential of semiarid regions is limited (Safriel et
al., 2005). Because irrigation is strongly constrained in these
regions resulting from water scarcity and shortages, farmers
typically search for alternative sources of water (e.g., reclaimed
urban effluents) and apply “deficit irrigation” strategies that aim
to maximize the yield of crops and orchards accepting a certain
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level of water stress (Fereres and Soriano, 2007; Lawhon and
Schwartz, 2006; Paranychianakis and Chartzoulakis, 2005;
Pedrero et al., 2010; Pereira et al., 2002). The use of reclaimed
waters for irrigation is considered an environment-friendly
option to lower the demand for water of high-quality standards
and to control the pollution of groundwater resulting from their
direct discharge to open channels. Another advantage is that the
use of reclaimed waters in irrigation agriculture can improve the
nutritional requirements of fruit cultivars (Levine and Asano,
2004; Pedrero et al., 2012; Pedrero et al., 2013). Despite their
potential environmental and nutritional benefits, the high
concentration of salts and phytotoxic elements typically
observed in these waters could exacerbate the problems of
secondary salinization and soil degradation and cause negative
effects on the growth, yield, and quality of cultivars if the water is
not appropriately applied (Beltran, 1999; Kalavrouziotis, 2011;
Kitamura et al., 2006; Paranychianakis and Chartzoulakis, 2005;
Pedrero et al., 2012; Pedrero et al., 2013; Scanlon et al., 2010;
Schoups et al., 2005). These negative effects on soils and crops
may even be increased when irrigation is supplied by dripping
against other less-efficient techniques (Mounzer et al., 2013). For
these reasons, preliminary assessments on the tolerance and
response of orchards and crops to the interactive effects of
salinity and phytotoxic elements in high-efficiency irrigated
agrosystems are critical to minimize the environmental risks
related to the adoption of these strategies in dry lands.

Salinity stress harms citrus orchards in two principal ways: (1)
by specific-ion toxicity and (2) by osmotic effects caused by the
accumulation of salts in the soil profile (Ferguson and Grattan,
2005; Parida and Das, 2005). In general specific-ion toxicities
and osmotic effects generate a reduction of the net gas exchange
in leaves, closure of stomata, and a decrease in the water use
efficiency. If the stress factor remains, changes in the content of
leaf pigments (e.g., chlorophyll, anthocyanin, carotenoids) can
arise, giving rise to leaf bronzing or yellowing (e.g., Garcia-
Sanchez et al., 2002; Zekri, 1991). This may lead finally to the
appearance of symptoms of chlorosis and necrosis. The extended
exposure to these stress conditions may result in yield and
growth suppression of orchards (Romero-Aranda et al., 1998).

Negative effects of salinity on the chlorophyll content and
anatomic morphology of leaves have been reported in trees of
native ecosystems as Arbutus unedo (Navarro et al., 2007),
Bruguiera parviflora (Parida et al., 2004), and Prosopis tamarugo
(Valenti et al., 1991); in such crops as cowpea, bean, and cotton
(Garzén and Garcia, 2011; Longstreth and Nobel, 1979); and in
such orchards as wine grapes (Qin et al., 2012) and fruit trees,
including species of Citrus (Romero-Aranda et al., 1998; Zekri,
1991), Tamarindus (Gebauer et al., 2004), Morus (Vijayan et al.,
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Figure 1—Location map showing the mandarin and grapefruit orchards studied. Control and treatment plots were irrigated with waters
of good agronomic quality provided by an interbasin aqueduct, and with reclaimed water supplied by a local water resource recovery

facility.

2008), and Olea (Bongi and Loreto, 1989; Karimi et al., 2009;
Vigo et al, 2005). In general, there is a broad agreement that
salinity reduces leaf chlorophyll contents of crops and trees
(Parida and Das, 2005). However, the degree of salinity effect on
leaf morphology, anatomy, and physiology is still poorly
understood as each specie has a different tolerance to the
accumulation of salts in the soil. Several studies have shown that
spongy and total leaf mesophyll layer thicknesses increase with
salinity in Citrus (Romero-Aranda et al., 1998) and Olive spp.
(Bongi and Loreto, 1989; Kchaou et al., 2010) because of the
accumulation of water in the mesophyll cells and the increase of
the succulence (Nastou et al., 1999; Romero-Aranda et al., 1998;
Zekri, 1991).

Incipient signals of vegetation stress in orchards can be
detected in a rapid and nondestructive way by measuring the
spectral response of their leaves and canopies. The acquisition of
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this information with remote sensing techniques have been
proved useful against more costly and time-consuming field
techniques based on the soil core or vegetation sampling, or
other electrical and electromagnetic device-based approaches
strongly limited to the early stages of the crops (Wang et al.,
2002). Absorption patterns in the visible region of the
electromagnetic spectrum, which includes the red (R) (660 to
680 nm) domain, is positively related with the concentration of
photosynthetic (chlorophyll at+b) and accessory (carotenoids,
anthocyanins) leaf pigments (Chappelle et al., 1992; Datt, 1998;
Ollinger, 2011; Sims and Gamon, 2002). Because salty environ-
ments harm or reduce the functionality and content of
chlorophyll in the leaves, reflectance may be proportionally
reduced. In the near-infrared (NIR) (750 to 1400 nm) domain,
the spectral response of leaves depends on the multiple
scattering of light inside the leaf that is mainly controlled by
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Table 1—Water quality measurements for irrigation waters
provided from the Tajo-Segura interbasin aqueduct (control) and
from a water resource recovery facility (treatment). Values
represent Avg = 1*Std. Error from 36 measurements for water
electrical conductivity (EC, dS m~"), sodicity adsorption ratio
(SAR), and chemical composition (Na and Cl in meq L™; B, in
mg L"). Significant differences (Tukey test, p-level < 0.05)
between types of water are marked with different letters.

Variable Control Treatment

EC 14+01a 34+03b
SAR 19+08a 40+17b
Na 69 +36a 178 + 88 b
Gl 12+08a 319 +16.2b
B 02=+01a 09+02b

its internal structure (e.g., leaf and mesophyll thickness,
palisade/spongy mesophyll thickness ratio, percentage of inter-
cellular air space in the spongy layer) (Grant, 1987; Hoque and
Remus, 1996; Pinter et al., 2003; Slaton et al., 2001). Among
these indicators, the palisade/spongy thickness ratio has been
suggested as a suitable indicator of stress conditions (Slaton et
al., 2001). Because differential absorption of light in the red and
NIR spectral domains is strongly related with most of the
biophysical parameters of vegetation, other composite indices
integrating data from both domains (e.g., normalized difference
vegetation index [NDVI]) have been also proposed as useful
indicators to (1) discriminate the photosynthetical tissues of the
plant from the non-photosynthetical and the soil background
signals, and (2) detect signals of water and saline stress (Bannari
et al,, 1995; Glenn et al., 2008).

Among the remote sensing techniques available at the
present, hyperspatial or high-resolution imagery improves the
capability to isolate tree crowns and retrieve their pure spectra
without the “spectral noise” resulting from the soil background
(Greenberg et al., 2005; Leckie et al., 2003). Nowadays, the use of
airborne platforms and unmanned aerial vehicles with hyper-
spatial sensors are receiving an increasing interest in agriculture
precision for the monitoring and surveillance of rangelands,
crops, and orchards (e.g., Herwitz et al., 2004; Zarco-Tejada et
al,, 2012).

This study provides results on the effects of prolonged
exposure (more than 9 years of experimental irrigation) to
reclaimed water on two species of Citrus spp. (mandarin and
grapefruit).

Material and Methods

Study Area and Experimental Design. The study was
conducted in two commercial citrus orchards located at
Campotejar (Figure 1), in the municipal district of Molina de
Segura (Murcia, SE Spain). The region is characterized by a
Mediterranean semiarid climate, with a mean annual precipita-
tion of 350 mm. Most of the rainfall is concentrated during the
November through May period. Mean annual temperature is 17
°C, with the highest values (up to 40 °C) reached during the dry
summer period. Potential evapotranspiration has been estimated
at ~900 mm y " according the Penman—Monteith equation.

The first farm was planted in 2002 with mandarin (Citrus
clementina cv Orogrande) grafted on Carrizo citrange (Citrus
sinensis L. Obs. x poncirus trifoliate L.). The second farm was
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planted in 2005 with “Star Ruby” grapefruit (Citrus paradise
Macf.) grafted on Macrophylla rootstock (Citrus macrophylla).
Soils in both farms are classified as an association of haplic and
petrocalcic calcisols according the FAO-ISRIC-ISSS (1998) soil
classification code, showing an aridic soil moisture regime, a
very weak ocric A horizon, and, frequently, a petrocalcic
horizon.

Two water sources of different agronomic quality were
employed in each farm (Table 1). The first source of water,
considered hereafter as the “control”, was provided from the
Tajo-Segura interbasin aqueduct. Control waters had low levels
of salinity (electrical conductivity less than 1.5 dS m™") and their
agronomic quality for irrigation were considered as good. The
second source of water, the “treatment”, consisted of reclaimed
waters pumped from a water resource recovery facility (WRRF)
located in the surrounding area. The treatment in the WRRF
consists of a conventional activated sludge process on local
urban effluents followed by a tertiary treatment with coagula-
tion—flocculation, lamellar sedimentation, sand filtration, and
UV disinfection. Treated waters had higher levels of salinity
(electrical conductivity 3.0 to 4.0 dS mfl), and chloride, boron,
potassium, and sodium concentrations 26, 4.5, 3.3, and 2.5 times
higher than in the control waters, respectively. According to the
electrical conductivity and water quality guidelines published by
the Food and Agriculture Organization of the United Nations
(Ayers and Westcot, 1985), the reclaimed water used in this
study may generate severe risks of salinization and strong
reductions in the water extraction capacity of the crops. Boron
content in reclaimed waters during the experiment was higher
than the phytotoxic range for sensitive crops (>0.7 mg L7,
Table 1). In the treated plots, Pedrero et al. (2013) have
measured boron contents in mandarin leaves higher than the
phytotoxic limits although at the time of those measurements,
no visual symptoms of toxicity were observed. In this study, the
authors analyzed plots in which irrigation inputs were supplied
to meet 100% of the crop water requirements during the second
phase of fruit growth (from late June to mid-August). Irrigation
was supplied by dripping with a single irrigation line for each
row of trees and three emitters per plant supplying a rate of 4 L
h™'. The adoption of drip irrigation against other less-water-
efficient techniques (e.g., sprinkling or furrow irrigation) ensures
sufficient stressful conditions for the assessment of the saline
tolerance of the orchards. Trees rows are sufficiently separated
(plant spacing of 5 X 3.5 m and 6 X 4 m in mandarin and
grapefruit, respectively) to minimize the competition of trees for
the water and nutrient resources.

Airborne Imagery and Data Processing. An airborne flight
campaign was conducted in the region on August 14, 2009. A
high-resolution (25 c¢cm), 16-bit, multispectral camera carried in
a Partenavia P68C-type aircraft was used for the acquisition of
the airborne imagery. Raw imagery was rectified, and raw data in
digital numbers from the red (R, 610 to 660 nm) and near
infrared (NIR, 835 to 885 nm) regions were used for this study.
The NDVI was computed as

NDVI = (NIR — R)/(NIR + R) (1)

in which NIR and R are the radiance at the top of the sensor (in
this study, coded as digital numbers). At the time of acquisition,
that is, in the middle of the summer, physiological activity of
mandarins and grapefruits in the region is at its maximum rate,

Water Environment Research, Volume 86, Number 11



Contreras et al.

adaxial

chlorophyll a, b, and total (see equations below) were quantified
with the equations of Inskeep and Bloom (1985) after recoding

absorbance at 647 and 664 nm with a spectrophotometer:

Chla = 12.70 *A664.5 —2.79 *A647 (2)
Chlb = 20.70 *A647 - 462 *A66445 (3)
Cth =17.90 = A64-7 — 8.08 *A664.5 (4)
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Figure 2—Transverse section of a representative leaf of
mandarin (A) and grapefruit (B) trees irrigated with waters
pumped from the Tajo-Segura interbasin aqueduct. PM; =
palisade-meshophyll layer thickness; SM; = spongy-
meshophyll layer thickness; Ly = total leaf thickness; e =
epidermis; ¢ = cystolite; o = oil channel.

which makes these dates the best suitable period to detect the
negative effects of salinity on the spectral response of canopy
trees. All pixel values from the red and NIR spectral domains,
and the resulting NDVI were extracted from all the canopy trees
located in the center of each experimental plot to minimize edge
effects. Tree crowns were manually masked from the NDVI map
layer to exclude the green canopy surface from the canopy edge
and the soil background. Once masked, outlier values found in
each tree crown were additionally removed before computing
the average value per tree. The average number of usable pixels
per tree was 90. Canopy variability observed was in average less
than 10% for all the variables considered. Statistical differences
between treatments were assessed using the nonparametric
Mann—Whitney U test.

Chlorophyll Content and Leaf Anatomical Properties. The
interactive effects of salinity and phytotoxic elements on the
citrus performance were additionally evaluated 4 years after the
airborne flight using laboratory analyses. These analyses were
performed in January 2013 over a representative sample of fresh
leaves collected from the top of the canopy in four trees located
in the central rows of each experimental plot (grapefruit vs
mandarin, control vs treatment).

For the chlorophyll determination, small disks of fresh leaves
were cut from the mid-lamina area and put inside scintillation
vials to reach a total weight of 0.03 = 0.01 g. Major veins were
avoided during the sampling. Three milliliters of N, N-
dimethylformamide were added to the fresh material and
maintained 72 hours in darkness. After 24 hours of shaking,

where A is absorbance in 1.00-mm cuvettes.

Measurements of the leaf total thickness (T), palisade- (PM),
and spongy- (SM) layer thickness, and the PM/SM ratio were
determined (Figure 2). To count this, fresh leaf material was
fixed in FAA (formaldehyde, ethanol, acetic acid, water). After 48
hours in the solution, transverse sections of the leaves were
obtained by freehand cutting, colored with safranin, and finally
mounted in DPX (a synthetic resin consisting of a mixture of
distyrene, a plasticizer, and xylene) (D’Ambrogio de Argiieso,
1986). Measurements were taken and analyzed with an Olympus
BX40 light microscope and the ProgRes C12 plus Capture Pro
1.1.0 software. Statistical differences for chlorophyll content and
anatomical traits between treatments were assessed using the
nonparametric Mann—Whitney U test.

Results and Discussion

Effects of Water Quality in Grapefruit and Mandarin:
Imagery Results. At the time of the airborne flight, mandarin
trees irrigated with saline-reclaimed waters showed 5% lower
reflectance values in the red wavelength domain than trees
irrigated with waters pumped from the interbasin aqueduct (p-
value < 0.05) (Table 2, Figure 3A). By contrast, no differences
were found between treatments for reflectance values in the NIR
regions (Figure 3A). Because of the differences in the red
reflectance values, NDVI computed in mandarins was 1.06 times
significant higher (p-value < 0.05) in plots irrigated with high-
quality waters than in those ones with saline-reclaimed waters
(Figure 4B).

In grapefruits, no reflectance differences in red and NIR and
in the NDVI were nevertheless found between controls and
treatments (Figures 3 and 4). Reflectance in the red region was
1.10 to 1.17 times higher (p-value < 0.05) in grapefruits than in
mandarins (Figure 3), whereas in control plots, NIR reflectance
was on average 10% lower in grapefruits than in mandarins for
the date of the airborne flight (Figure 4A).

Despite of the high electrical conductivity and boron contents
of the reclaimed waters used during the experiment and the use
of the drip irrigation technique, the fact that no differences were

Table 2—Comparisons between control (C) and treatment (T) water qualities for mandarin (Man) and grapefruit (Gra) trees in
measurements of red, near infrared, and NDVI. The number of trees analyzed for C and T appears in the rows n1 and n2. Significant
statistical differences are represented by asterisk symbols: *** (p-level < 0.01), ** (p-level < 0.05), * (p-evel < 0.1) (n.s. = not

significant).
Red Near infrared NDVI

T1vs T2 ni n2 ™ T2 p ™ T2 p ™ T2 p

Man-C vs Gra-C 9 13 1930 + 28 2254 + 32 5248 + 69 5731 = 77 0.46 + 0.01 0.43 = 0.00 xx
Man-C vs Man-T 9 9 1930 + 28 2037 + 40 o 5248 + 69 5208 + 55 n.s. 0.46 + 0.01 0.44 + 0.01 *x

Gra-C vs Gra-T 13 11 2254 + 32 2233 + 23 n.s. 5731 = 77 5730 = 88 n.s. 0.43 + 0.00 0.44 = 0.01 n.s.
Man-T vs Gra-T 9 11 2037 + 40 2233 + 23 5208 =+ 55 5730 + 88 0.44 + 0.01 0.44 = 0.01 n.s.
November 2014 2245
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Figure 3—Measurements of (A) canopy red reflectance, and (B) total leaf chlorophyll in mg g~' MF, for mandarin and grapefruit trees.
Vertical bars denote 0.95 confidence intervals, and different letters mark significant differences among treatments according to the

non-parametric Mann-Whitney U test (p-value < 0.05).

found in the NIR response between control and experiment
plots in mandarin and grapefruit suggests that no changes were
induced in the leaf structure after 7 and 4 years of treatment,
respectively. However, the differential response of mandarins
against grapefruits in the red reflectance may indicate that (1)
grapefruit presents a much higher salt tolerance than mandarins
or (2) that the time of exposure to saline waters was not
sufficiently extensive to promote the changes observed in the
mandarins. Another source of potential uncertainty, which could
explain the moderate (p-value < 0.05) or negligible differences
measured in the red reflectance in mandarins and grapefruits,
respectively, may be related to the poor relationship between the
reflectance at the red wavelength domain and the chlorophyll
content when it exceeds values higher than 0.5 mmol m™? (Sims
and Gamon, 2002). Although not measured at the time of the
airborne flight, the pool of total chlorophyll values acquired in
the area (section 2) ranges from 0.6 to 1.0 mmol m~2 in the
control plots, to 0.2-0.8 mmol m 2 in the treatment ones. To
avoid this saturation effect, several authors have suggested
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regions around 550 nm (green) and 700 nm (in the R-NIR
transition or “red edge”) as more suitable spectral domains for
evaluating changes in chlorophyll contents (e.g., Broge and
Leblanc, 2000).

Effects of Water Quality in Grapefruit and Mandarin: Leaf
Anatomy and Chlorophyll Content Results. In mandarin, total
leaf chlorophyll was 1.8 times higher in trees irrigated with
control water than in those irrigated with saline-reclaimed water
(Figure 2B). Average leaf thickness, PM-, and SM-layer thickness
measured in leaves of mandarins irrigated with control waters
was 240, 60, and 160 pm respectively (Figure 5, Table 3). The
PM/SM ratio was 0.38 = 0.01 (Avg * 1*Std. Error). No
significant differences between irrigation treatments were
observed for any leaf anatomical trait (Figure 5).

Leaf total chlorophyll measured in grapefruits at plots with
both irrigation treatments was similar to the values observed in
control plots of mandarins. Irrigation with reclaimed waters very
weakly (p-value < 0.1) reduced the leaf chlorophyll content
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Figure 4—Canopy measurements of (A) near-infrared reflectance and (B) NDVI for mandarin and grapefruit trees. Vertical bars denote
0.95 confidence intervals, and different letters mark significant differences among treatments according to the nonparametric Mann-

Whitney U test (p-value < 0.05).
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Table 3—Overview table with the basic statistics measured for different spectral properties, and anatomical and physiological traits in
mandarin and grapefruit trees (SE = standard error).

Mandarin—control

Mandarin—treatment

Variables N Avg + SE Min Max N Avg = SE Min Max
Spectral properties
Red reflectance 9 0.19 = 0.00 0.18 0.20 9 0.20 = 0.00 0.19 0.23
Infrared reflectance 9 0.52 = 0.01 0.50 0.56 9 0.52 + 0.01 0.50 0.55
NDVI 9 0.46 = 0.01 0.43 0.49 9 0.44 = 0.01 0.40 0.46
Anatomical properties
Leaf thickness (um) 4 243.09 + 2.68 239.05 250.94 4 241.41 = 15.88 209.69 284.56
PM thickness (um) 4 60.52 = 1.27 58.37 63.95 4 58.54 = 0.96 56.28 60.63
SM thickness (um) 4 161.44 = 3.36 155.37 170.80 4 163.08 = 14.73 136.04 205.05
PM/SM ratio 4 0.38 = 0.01 0.34 0.40 4 0.37 = 0.03 0.27 0.44
Chlorophyll content
Chl A (mg/g MF) 4 1.37 = 0.06 1.25 1.52 4 0.75 + 0.16 0.46 1.07
Chl B (mg/g MF) 4 0.48 = 0.02 0.43 0.55 4 0.28 = 0.03 0.22 0.35
Chl T (mg/g MF) 4 1.84 = 0.08 1.71 2.06 4 1.03 = 0.17 0.71 1.41
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Figure 5—Anatomical traits of mandarin and grapefruit leaves: (A) Leaf thickness, (B) palisade mesophyll (PM) thickness, (C) spongy
mesophyll (SM) thickness, and (D) PM/SM ratio. Vertical bars denote 0.95 confidence intervals, and different letters mark significant
differences among treatments according to the nonparametric Mann-Whitney U test (p-value < 0.05).
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Table 3—(Extended)

Grapefruit—control

Grapefruit—treatment

Variables N Avg + SE Min Max N Avg + SE Min Max
Spectral properties
Red reflectance 13 0.23 = 0.00 0.21 0.26 1 0.22 = 0.00 0.21 0.24
Infrared reflectance 13 0.57 = 0.01 0.52 0.62 1 0.57 = 0.01 0.51 0.60
NDVI 13 0.43 = 0.00 0.40 0.45 1 0.44 = 0.01 0.39 0.46
Anatomical properties
Leaf thickness (um) 4 309.49 + 12.08 286.00 340.11 4 324.55 + 8.10 306.87 343.50
PM thickness (um) 4 69.96 = 4.96 58.16 82.42 4 76.40 + 2.12 71.69 81.75
SM thickness (um) 4 214.86 + 8.32 198.53 235.26 4 226.06 + 7.91 211.25 246.77
PM/SM ratio 4 0.32 + 0.01 0.29 0.35 4 0.34 = 0.01 0.30 0.36
Chlorophyll content
Chl A (mg/g MF) 4 1.46 = 0.05 1.39 1.61 4 1.36 = 0.02 1.32 1.40
Chl B (mg/g MF) 4 0.48 + 0.02 0.44 0.55 4 0.42 = 0.01 0.41 0.45
Chl T (mg/g MF) 4 1.93 = 0.07 1.84 2.15 4 1.78 = 0.02 1.73 1.82

observed in grapefruits, that is, 8% lower in the treated than in
the control plots (Figure 3B). However like in the mandarins, no
significant differences between irrigation treatments were
observed when anatomy leaf traits were evaluated (Figure 5).

Grapefruits irrigated with high-quality waters were 27%
thicker than mandarins, and PM- and SM layers were in average
1.16 and 1.33 times thicker in grapefruits than in mandarins. The
PM/SM in control plots of grapefruits was 0.32, that is, 14%
lower than the average value measured in control plots of
mandarins (Figures 2 and 5).

This study’s irrigation experiment with reclaimed waters
shows that more than 11 years in mandarins and 8 years in
grapefruits were not sufficient to promote changes in their leaf
anatomies. Despite the few studies that have described leaf
anatomical changes resulting from a prolonged exposure to
saline waters, most of them have reported an increase in total
leaf thickness and a decrease of the intercellular spaces in the
SM layer (Nastou et al. 1999; Romero-Aranda et al, 1998).
Increases in leaf thickness after irrigation with saline waters have
been also observed for other tree cultivars such as olive (Bongi
and Loreto, 1989; Kchaou et al., 2010). Remote sensing and field
laboratory measurements were taken in different years so it is
not possible to find a quantitative correspondence for this study.
However, the general pattern of red reflectance decrease
observed in canopies of mandarins irrigated with reclaimed
waters was in agreement with the leaf chlorophyll decrease
measured after 4 years of the airborne flight. These differences
were not observed in grapefruits, possibly because of their higher
tolerance to salinity stress or because the time of exposure to
salts was not sufficient to generate the expected changes (the
experiment in grapefruits started 4 years after the mandarin’s 1
year). The decreasing trend in total chlorophyll resulting from
the prolonged exposure to saline waters has been also reported
in Citrus species (Nastou et al., 1999; Romero-Aranda et al,
1998; Zekri, 1991), and in other cultivars as Prunus salicina
(Ziska et al., 1990), Vitis spp. (Qin et al, 2012) and Psidium
guajava L. (Ali-Dinar et al., 1999).

According the findings by Mounzer et al. (2013), this study’s
results regarding the saline effects of reclaimed waters on both
canopy spectral and leaf anatomic properties could have been
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exacerbated even more if regulated deficit irrigation would have
been applied during the growing period of orchards.

Conclusions

Negative effect of salinity on the chlorophyll system of
mandarins after 7 years of exposure to saline reclaimed waters
(electrical conductivity in the 3.0 to 4.0 dS m™ range, boron
contents >0.7 mg L) was demonstrated by lower leaf
chlorophyll contents and red reflectance values measured at
the canopy level using a hyperspatial airborne flight. Grapefruit
trees showed a higher tolerance to salinity and, accordingly, no
significant changes in both variables were detected.

No differences between controls and treatments in both
orchards were observed for the NIR spectral response of
canopies, nor in the morphology and anatomy of leaves.

Results suggest that hyperspatial remote sensing techniques
are more suitable for detecting physiological processes and
responses on the short- and medium-term than those related
with the chlorophyll synthesis. Because 10 years of drip
irrigation with reclaimed water was not sufficient to promote
changes in the leaf and mesophyll layer thicknesses and in the
NIR spectral canopy response, vegetation indices related with
leaf anatomic traits and NIR information (e.g., the NDVI) may
be less suitable for detecting the gradual stress process in citrus
orchards. Negative effects on Citrus spectral and anatomical
traits may be exacerbated by using regulated deficit irrigation
techniques or as a result of the accumulation of other phytotoxic
elements (e.g., boron).
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