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Abstract. Agriculture in developing countries might benefit from ad-
vanced satellite based data mining approaches. The objective of the
current study was to evaluate the added value of high- above coarse-
resolution satellite imagery in crop yield forecasting. This study focused
on a coarse-resolution pixel in the Nile Delta in Egypt. Within this
coarse-resolution pixel, 256 high-resolution (15 m) ASTER pixels are
present, with wheat and berseem being the main crops. A crop-water
model was used to simulate crop yields for the coarse-resolution pixel
and for each of the high-resolution pixels. The model was driven by re-
motely sensed LATs; one time-series for the coarse-resolution run, and 256
time-series for the high-resolution runs. The model was calibrated with
SEBAL retrieved ET,. It was concluded that with the use of coarse-
resolution remote sensing, yields were overestimated between 9-26%,
while high-resolution remote sensing resulted in errors below 3%.
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1 Introduction

Crop growth models play a major role in sustaining the world-wide food secu-
rity. In developing countries, like e.g. Egypt, such models are hardly used. These
models are used to simulate crop growth during the growing season, given the
farmers’ management practices. Crop growth models provide the farmer with the
option to simulate certain farm management measures (e.g. irrigation depth), in
order to evaluate the effect of these measures on the final crop yield. If these
crop growth models are sufficiently accurate, then a farmer is able to optimize
his management practices to obtain a higher crop yield. At a more strategic
level, these crop growth models can play an important role to decision makers
to take timely decisions regarding food import and/or export strategies.

If the uncertainty in the spatial variation of soil properties, initial soil condi-
tions, crop parameters, and meteorological forcing is small, then crop growth



models are capable of simulating crop yields quite accurately [9]. When crop
yield forecasting applications are applied over large areas that rely on a spa-
tially distributed crop growth model, the uncertainty in the spatial variation of
the input data increases [6].

Nowadays, in data mining remote sensing images are often used in crop growth
models to improve the simulation of these processes [2], [8], [10], [11]. Data that
can be derived from remote sensing are e.g. the Leaf-Area-Index (LAI) [5], crop
yield and biomass [12]. Remote sensing images are available in numerous spatial
resolutions, where coarse-resolution images often contain a mixed signal (e.g.
different Leaf-Area-Indexes (LAIs)) of the crops present in the area of interest.
Therefore, it is expected that high-resolution satellite images result in improved
crop yield forecasts in areas where the distribution in crop types is heteroge-
neous. This situation is very likely if the focus is on small-scale farming, where
many different crops are grown next to each other. This leads to an increased un-
certainty in the model input parameters (soil properties, crop parameters, etc.).
It is, however, unknown to what extent the use of high- above coarse-resolution
satellite imagery is really significant in the crop yield forecast. Therefore, the
objective of the current study is to evaluate the added value of high- above
coarse-resolution satellite imagery in crop yield forecasting.

2 Methodology

2.1 Pixel selection

In order to evaluate the added value of high-resolution above coarse-resolution
remote sensing images in crop yield forecasting, an area of 240 x 240 m in the
Meet Yazid command area (Fig. 1) in the Egyptian Nile Delta has been selected
for this study. This area is, together with the command areas Mahmoudia and
Manaifa, home to 140,000 small-scale farmers, which makes the spatial crop dis-
tribution highly heterogeneous and thus increases the uncertainty in crop yield
forecasting.

The current study uses NASA’s ASTER remote sensing images for the high-
resolution (15 m) images. In order to undertake the comparison based on differ-
ence in resolution only, it is important that i) the coarse-resolution pixel contains
a mixture of major crops and some noise (built-up area and other crops), ii) the
pixels are cloud-free, and iii) crop classification has been conducted in the area.
A good option for a coarse-resolution image would be to use MODIS [1] imagery
(250 m spatial resolution). However, for the current study a synthetic coarse-
resolution image (240 m), referred to as MODIS,. (Fig. 1) hereafter, has been
created by bilinear interpolation of the high-resolution ASTER images. MODIS,.
contains 256 ASTER pixels (Fig. 1, left), with 131 wheat pixels, 86 berseem pix-
els, 31 built-up area pixels, and 8 other crop pixels. The current study focuses
on the winter growing season (1 November 2011 — 14 May 2012), with berseem
and wheat being the main crops.
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Fig. 1. The left plot shows the high-resolution ASTER pixels with wheat (yellow),
berseem (green), build-up area (grey), and another crop (red). The right plot shows a
high-resolution 5 m IKONOS image with the selected coarse-resolution image (yellow
box) superimposed.

2.2 Remote sensing and SEBAL

The current study uses the Soil-Water-Atmosphere-Plant (SWAP) model [14]
to simulate crop yields. SWAP was calibrated using bi-weekly actual evapo-
transpiration (ET,) values retrieved from the SEBAL (Surface Energy Balance
Algorithm for Land) [4] algorithm. SEBAL was also used to calculate the poten-
tial evapotranspiration (ET, ), which was used in combination with the reference
evapotranspiration (ET,.y) to calculate the periodically crop factor (Kc). For
detailed information regarding SEBAL, we refer to [4], [3]. The combination of
remote sensing and SEBAL resulted for each of the high-resolution pixels and
the coarse-resolution pixel in a bi-weekly time-series of ET,, ET),, LAI, and Kc.

2.3 SWAP modeling

Model schematization. SWAP [14] was selected as “the” modeling tool for
the current study, because it simulates the soil moisture content in the soil pro-
file, which is a major process in the determination of the actual transpiration
and reduction of photosynthesis as a result of drought stress [6]. Since the scope
of the current project is to evaluate the added value of high-resolution remote
sensing (e.g. LAI, Kc) above coarse-resolution remote sensing, it is a huge advan-
tage that the user can assign remotely sensed LAIs and Kc to SWAP, instead



of simulating these variables like more complex crop growth models do (e.g.
WOFOST [15]).

We have used the simple crop module in SWAP, where we have specified for
each high-resolution pixel, being either berseem or wheat, as function of the
development stage the LAI, Kc, rooting depth, irrigation depth, and the stress
criterion (Tstress) which triggers irrigation applications. The same is done for the
coarse-resolution pixel, being only one LAI and Kc time-series, representing a
mixture of wheat, berseem, build-up area, and another crop. The yield response
factor [7] relates the reduction in transpiration to the reduction in yield according
to the FAO33 method (1).

Y, T,
1- =K, (1-2% 1
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with Y, the actual yield (kg/ha), Y, the potential yield (kg/ha), K, the yield
response factor (-), T, (¢cm) and T, (cm) are the potential and actual transpi-
ration, respectively. The yield response factors are 1.05 for wheat and 1.1 for
berseem. SWAP calculates the actual (fresh) yield based on the relative yield
and the potential yield. The potential yield for berseem is taken as 90,000 kg/ha
and for wheat the potential yield is taken as 7,220 kg/ha. In following-up studies
the more detailed WOFOST [15] schematization can be used.

SWAP calibration. SWAP needs to be calibrated in order to give reliable crop
yield forecasts. Since the fraction of the actual evapotranspiration (ET,) over the
potential evapotranspiration (ET),) indicates the relative crop yield, SWAP has
been calibrated such that the simulated ET, matches the measured ET, from
SEBAL, on a bi-weekly basis. For the current study, SWAP has been calibrated
separately for a representative wheat pixel and a representative berseem pixel.
The calibration of SWAP is done using the model-independent Parameter Esti-
mation Software PEST?. SWAP was calibrated by optimizing the soil hydraulic
parameters, initial soil moisture conditions, irrigation depths and frequencies,
and rooting depths.

The calibration of SWAP for wheat was satisfactory (Fig. 2); the R? increased
from 0.36 (uncalibrated) to 0.90 (calibrated). Also berseem was calibrated suc-
cesfully; the R? increased from 0.57 (uncalibrated) to 0.89 (calibrated).

2.4 Crop yield forecasting

To evaluate the added value of high-resolution above coarse-resolution remote
sensing images in crop yield forecasting, it is required to have a reference data
set which represents the real crop yield situation in the field. The reference
data set was created by running SWAP for the entire growing season, using
high-resolution ASTER imagery for the entire growing season. This run will be

® http://www.pesthomepage.org/



wui
(=]

B
w

B
o

w
w

w
o

ETa [mm/period]
N
(52

Period

METa observerd wETauncalibrated ®ETa calibrated

Fig. 2. Observed (SEBAL) and simulated ET, for wheat. Results are shown for each
period (bi-weekly) for the uncalibrated and calibrated model.

referred to as the reference run hereafter.The last four bi-weekly periods (two
months) are used as the crop yield forecasting period. For the coarse-resolution
crop yield simulation we have used the MODIS, LAIs and Kc for the first ten
bi-weekly periods, whereas for the high-resolution crop yield simulation we have
used the ASTER LAIs and Kc for the first ten bi-weekly periods. For the fore-
casting period, no remote sensing images are available. To simulate crop yields
for the entire growing season, SWAP also requires LAT and Kc input for the fore-
casting period. To use representative LAIs and Kc during the forecasting period,
”standard values” can be used for both the high- and coarse-resolution simula-
tions. The current study uses the MODIS,. imagery as ”standard values” for the
forecasting period for both the coarse- and high-resolution runs. In summary
three simulations were compared:

1. high-resolution, no forecasting (reference);
2. high-resolution, 2 months forecast;
3. coarse-resolution, 2 months forecast;

3 Results

Table 1 shows the average wheat and berseem yields forecasts for the reference
run, and the high- and coarse-resolution runs. Based on these results it is clear
that the use of high-resolution remote sensing in crop yield forecasting gives a
very small error when compared with the reference situation.

Fig. 3 shows the spatial variation in relative yields for each of the three runs: for
i) the reference run, ii) the high-resolution run, and iii) the coarse-resolution run.



Table 1. Average wheat and berseem yields forecasts for the reference situation, and
the high- and coarse-resolution runs. Also the errors with respect to the average refer-
ence situation are shown.

Run Wheat yield [kg/ha] Error[%] Berseem yield [kg/ha] Error [%]
Reference 6,390 67,107

High-resolution 6,303 -14 68,544 2.1
Coarse-resolution 6,955 8.8 84,478 25.9

Also the errors with respect to the reference run are shown for both the high-
and coarse-resolution run. The white area represents the area that is covered
with build-up area or another crop and is left out of the analysis. It can be
seen that the distribution in relative yields is not significantly different for the
reference run and the high-resolution run. This is especially true in the central
and southwestern part of the pixel where wheat is grown. Differences between the
high-resolution run and the reference run are mainly present at the northern and
eastern borders of the pixel where mainly berseem is grown. Within this area the
relative yield for berseem is higher for the high-resolution run as for the reference
run. A clear transition zone is present in the northern and eastern pixels where
wheat borders berseem. In this zone the yield is underestimated with respect to
the reference run. This holds for both the wheat and the berseem pixels. For
the coarse-resolution run the relative yields are overestimated for both wheat
and berseem, with the largest overestimations for berseem. The overestimated
yield for berseem is mainly present in the northern and eastern part of the pixel,
where the overestimation can reach 30%. For wheat the overestimation is less
significant, and is almost zero in the central and southwestern part of the pixel.

4 Discussions and implications

4.1 Advantage for farmers

The current study has shown that for farmers, the use of high-resolution remote
sensing has several advantages above the use of coarse-resolution remote sensing
in crop yield forecasting. First of all, a farmer can obtain a much more accurate
yield forecast if high-resolution satellite imagery is used. If coarse-resolution re-
mote sensing would have been used, then for wheat the yield is overestimated
with approximately 9%, and for berseem with 26%. If the farmer assumes these
numbers for the forecast, then he will be very satisfied for the wrong reasons,
because eventually his or her yields turn out to be considerably lower. Addition-
ally, he or she will take the wrong measures: e.g. less irrigation, reduced fertilizer
applications etc. If high-resolution satellite imagery will be used, then the fore-
cast accuracy is much better; wheat underestimated with 1.4% and berseem
overestimated with 2.1%.
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Fig. 3. Spatial variation in relative yields at the end of the growing season for the
reference situation (top left), high-resolution run (top middle), and coarse-resolution
run (top right). The bottom plots represent the errors of the high- and coarse-resolution
runs with respect to the reference run.

4.2 Advantage for decision makers

At a more strategic level, decision makers will have considerable advantages if
high-resolution remote sensing is used in crop yield forecasting; they can better
take timely decisions regarding food import and/or export strategies. If yields
are significantly overestimated in crop yield forecasting models, then decision
makers might assume to have sufficient yields to consider export, but in real-
ity they will have considerably lower yields. If yields are underestimated on the
other hand, then decision makers will import the required amount of food to
feed the country’s population. Then it finally turns out that, because of the un-
derestimation and the imported food, there is too much food purchased. In both
cases money will be lost by either i) lower than expected food export or ii) too
much food import.

Differences in production with respect to the reference situation are shown in
Fig. 4. Based on this figure, it is clear that a significant amount of money can
be saved if high-resolution remote sensing is used in crop yield forecasting. If



coarse-resolution remote sensing is used in crop yield forecasting for wheat, then
approximately 660 million US$ is lost through less export due to overestimated
wheat yields. High-resolution remote sensing for wheat would lead to underes-
timated wheat yields, meaning that decision makers import too much wheat
for a price of approximately 100 million US$. Losses are even more significant
for berseem. Both coarse- and high-resolution remote sensing results in over-
estimated berseem yields. If coarse-resolution remote sensing will be used for
berseem, then 3.2 billion USS$ is lost through less exports, whereas high-resolution
leads to a loss of approximately 0.3 billion US$. Costs of high-resolution remote
sensing in crop yield forecasting are very modest and are calculated at about
0.05 US$/ha. This is negligible small if compared to the benefits; 68 US$/ha for
wheat (250 million US$/36,832 km?), and 869 US$/ha for berseem (3.2 billion
US$/36,832 km?).
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Fig. 4. Production difference with respect to the reference situation if high- vs. coarse-
resolution remote sensing is used in crop yield forecasting.

4.3 Future outlook

The current study evaluated the added value of high-resolution above coarse-
resolution remote sensing in crop yield forecasting by analyzing one pixel in the
Meet Yazid command area in the Nile Delta in Egypt. The results of the current
study provide some interesting perspectives for future activities:

1. A more in-depth study over a larger area and multiple years; the results of
this study are based on one pixel in the Meet Yazid command area in the Nile
Delta in Egypt. Since the land use fractions for this pixel are known, it would
be interesting to conduct the study over a larger area, using many coarse-
resolution MODIS images and high-resolution ASTER images. This will lead
to increased model input uncertainties, since probably more different crops
are to be found over a larger area.



2. Actual implementation to support farmers in Egypt.
3. Advisory services to decision makers and agro-industry and trade.
4. Support small-scale rainfed farmers in developing countries.

More detailed information regarding this study can be found in the technical
report [13]6.
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