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rate, high spatial resolution are crucial for improving our understanding of basin
scale hydrology. We explore the relation between precipitation estimates derived from the Tropical Rainfall
Monitoring Mission (TRMM) and the normalized difference vegetation index (NDVI) for different spatial
scales on the Iberian Peninsula in southern Europe, using time series from 2001 to 2007. Analysis shows that
NDVI is a good proxy for precipitation. On an annual basis an exponential function best describes the relation
between NDVI and precipitation. The optimum relation between NDVI and precipitation is found at an
approximate scale of 75–100 km. This is an intermediate scale and it is likely that at smaller scales NDVI is
determined primarily by anthropogenic land use and at larger scales factors such as geology, soils, and
temperature play an increasingly important role. The fact that both TRMM and NDVI are subject to bias due
to orbital deviations, atmospheric conditions and imperfect retrieval algorithms could also influence the
scale dependency. The derived relation between NDVI and precipitation is used to develop a new
downscaling methodology that uses coarse scale TRMM precipitation estimates and fine scale NDVI patterns.
The downscaled precipitation estimates are subsequently validated using an independent precipitation
dataset. The downscaling procedure resulted in significant improvements in correlation, bias, and root mean
square error for average annual precipitation over the whole period, for a dry year (2005), and a wet year
(2003).

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Precipitation is a major driving force in the water cycle and
accurate data with sufficient spatial detail are of key importance in
assessing basin scale hydrology. It is common practice that hydro-
logical models are runwith precipitation data acquired from a limited
number of gauges (Goodrich et al., 1995). Recent studies showed that
the spatial resolution greatly influences model outcomes and that
models using raster based precipitation data outperform models that
use precipitation derived from point measurements (rain gauges).
(Guo et al., 2004; Smith et al., 2004). Smith et al. (2004) concluded
that for complex basins, which are rarely completely, or uniformly
covered by a single precipitation event, the use of distributed rainfall
in modelling, resulted in better discharge simulations than modelling
with traditional lumped rainfall from point measurements. Schuur-
mans and Bierkens (2007) also showed that spatial patterns of
precipitation are essential in characterizing the behaviour of a
catchment. Their study focused on a relatively small catchment
(135 km2) and even at this scale it was concluded that the use of a
single rain gauge for rainfall input decreases the accuracy of discharge,
Immerzeel).
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groundwater level, and soil moisture predictions. They also concluded
that information on the spatial variability of rainfall is required to get
insight into the day-to-day spatial variability of discharge, ground-
water level, and soil moisture content. Access to reliable high
resolution precipitation datasets is therefore highly relevant for
hydrological studies.

Remote sensing can provide spatial precipitation patterns. Ground
radar systems can also provide spatial precipitation information but
validation of ground radar rainfall products is a major challenge for
general hydrologic applications (Krajewski and Smith, 2002). Ground
radar systems also have a limited range and are generally aimed at
monitoring of extreme events over limited time spans, making their
use less suitable for long term assessments. Satellite remote sensing is
a better source of spatial precipitation data. Such data are generally
readily available over longer periods and covers large areas. Many
different algorithms and types of sensors aboard a variety of satellites
exist. Adler et al. (2001) provide an extensive overview and inter-
compare 25 satellite based products to four model based, and to two
climatological products. In this study we use blended data products
from the Tropical Rainfall Monitoring Mission (TRMM) with a high
spatial resolution. These products are derived using sophisticated
algorithms and are based on data from a range of different sensors
(Huffman et al., 2007). These products have a spatial resolution of
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Fig. 1. Study area location, elevation and location of the meteorological stations used for validation.

Fig. 2. Average monthly precipitation and temperature for the IP. Bars indicate
precipitation and the line indicates temperature.
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0.25° and span the globe from 50 °N to 50 °S. Although this resolution
is high compared to other satellite based products, it is still too coarse
for use in (small) basin scale hydrological studies. A robust down-
scaling procedure below the pixel resolution would be highly
advantageous for such hydrological applications.

In this study we hypothesize that greenness of vegetation is a
proxy for cumulative precipitation. To quantify vegetation greenness
the normalized difference vegetation index (NDVI, Tucker, 1979) is
used. Since NDVI data are generally available at a much higher
resolution than precipitation data, NDVI can be used in a downscaling
procedure. By linearly aggregating the NDVI data to the spatial scale of
the precipitation data a relation between NDVI and precipitation can
be established and used to predict cumulative spatial rainfall over
catchments at relatively high resolution. This is however not trivial
and only allowed if the process scale is larger than the observation
scale (Pelgrum, 2000). The scale of typical synoptic mid-latitude
weather systems is typical in the range of 1000 km. However at
smaller, local scales there is also large variation in precipitation due to
mesoscale climatic processes, land use, and relief interactions. These
processes causing local precipitation variation typically occur at scales
of 2 km and larger (Orlanski, 1975). The scale (extent and spatial
distribution) of precipitation is therefore larger than the NDVI scale
(1 km) and aggregating NDVI to explain precipitation is therefore
legitimate. High resolution NDVI data have previously also been used
to sharpen thermal bands (Kustas et al., 2003; Agam et al., 2007).
Previous studies (Malo and Nicholson, 1990; Davenport and Nichol-
son, 1993; Grist et al., 1997; Immerzeel et al., 2005) have also related
NDVI behaviour to precipitation, but NDVI has not been used for
downscaling satellite based precipitation estimates. In this study, the
relation between TRMM precipitation estimates and NDVI is explored
for different spatial scales on the Iberian Peninsula (Spain and
Portugal) in southern Europe. Based on this assessment, an empirical
relationship is defined. This relation is used to develop a new
downscaling methodology that uses coarse scale TRMM precipitation
estimates and fine scale NDVI patterns. The downscaled precipitation
estimate is subsequently validated using an independent dataset from
precipitation gauges.
2. Study area

The Iberian Peninsula (IP, Fig. 1) is located in the extreme
southwest of Europe, and includes Spain, Portugal, Andorra and
Gibraltar and a small part of France. It is bordered by the
Mediterranean Sea and the Atlantic Ocean. The Pyrenees form the
northeast edge of the Peninsula, separating it from the rest of Europe.
The IP has a surface area of 582,860 km2. Elevation ranges from sea
level to 3479 m (Mulhacén in the Sierra Nevada). Fig. 1 clearly shows
the Meseta (42 °N, 6 °W), which is a vast plateau in the heart of the IP
surrounded by a number of mountain ranges (Sistema Central, Sierra
Morena, the Cordillera Cantábrica, and the Sistema Ibérico). Other
mountain ranges include the Pyrenees in the north, Sistema
Penibético in the southeast and the Sierra Nevada in the south.

The IP has a temperate climate with hot and dry summers in the
interior and wetter and cooler summers along the coastlines,
especially along the Atlantic coast. Fig. 2 shows the average monthly
precipitation and temperature averaged over the entire IP. There is a
clear seasonal pattern. July is the warmest month with an average
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temperature of 21.7 °C. December is the coldest with an average
temperature of 6.4 °C. Precipitation is highest in November (68 mm)
and lowest in July (13 mm). Average annual precipitation equals
562 mm. The distribution of precipitation on the IP shows strong
gradients, with higher values in the west and the north of the IP
(N1000 mmyear−1) and lower values toward the southeast (b400 mm
year−1). The southeast also shows the highest variation in precipita-
tion. Large parts of the IP are semi-arid. Annual precipitation is related
to large scale circulation indices (North Atlantic Oscillation, East
Atlantic and the Southern Oscillation Index) (Rodriguez-Puebla et al.,
1998).

3. Methodology

3.1. Datasets

3.1.1. Tropical Rainfall Monitoring Mission
The Tropical Rainfall Monitoring Mission (TRMM) is a joint project

between NASA and the Japanese space agency, JAXA. TRMM was
launched on November 27th, 1997. The primary TRMM instruments
are the Precipitation Radar (PR) (the first and only rain radar in space)
and the TRMM Microwave Imager (TMI), a multi-channel passive
microwave radiometer, which complements the PR by providing total
hydrometeor (liquid and ice) content within precipitating systems.
The Visible Infrared Scanner (VIRS) is used to provide the cloud
context of the precipitation and is used to connect microwave
precipitation information to infrared-based precipitation estimates
from geosynchronous satellites. TRMM processing algorithms com-
bine information from these instruments and provide the finest scale
(0.25°×0.25°) precipitation estimate currently available from space
(Huffman et al., 2007). A range of orbital and gridded TRMM products
are available and in this study the 3B42 and 3B43 products are used.

The 3B42 estimates are routinely produced in four stages:

• The microwave precipitation estimates are calibrated and combined
at three-hourly intervals at a resolution of 0.25°. Passive microwave
estimate from AMSR-E, AMSU-B and SSM/I are also used in this step.
All passive microwave estimates are calibrated using the TRMM
combined instrument precipitation estimate (2B31).

• Infrared precipitation estimates are generated using the calibrated
microwave precipitation.

• The microwave and IR estimates are combined.
• All three-hourly data are aggregated to monthly values.

Huffman et al. (2007) provide detailed information on the different
processing steps. The 3B42 precipitation is a multi-satellite product.
The 3B42 product is combined with gauge precipitation data as
described by Huffman et al. (1997). The gridded precipitation gauge
based product (1°×1°) of the Global Precipitation Climatological
Center (Rudolf, 1993) is used to perform a large scale bias correction
on the 3B42 product similar to themethod described by Huffman et al.
(1997). The resulting monthly product, which is a combination of
satellite and gauge data, is the 3B43 product.

For this study, monthly 3B42 and 3B43 data from 2001–2007 are
available through the GES-DISC Interactive Online Visualization ANd
aNalysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth
Sciences (GES) Data and Information Services Center (DISC).

3.1.2. SPOT VEGETATION
The VEGETATION instrument (VGT), on board the SPOT 4 and SPOT

5 satellites has four spectral bands: blue (0.43–0.47 μm), red (0.61–
0.68 μm), Near InfraRed (NIR, 0.78–0.89 μm) and Short Wave InfraRed
(SWIR, 1.58–1.74 μm). The red and NIR bands are used to calculate
NDVI ([NIR−RED]/ [NIR+RED]). The spatial resolution of the imagery
is 1 km at nadir and the 2200 km swath width allows daily imaging of
about 90% of the equatorial regions, the remaining 10% being imaged
the following day. At latitudes higher than 35° (North and South), all
regions are observed daily. The synthesized pre-processed S10 NDVI
product was used in this study, which is a geometrically and
radiometrically corrected 10-day composite image. The 10 day-
periods were defined from the 1st to the 10th, from the 11th to the
20th and from the 21st to the end of each month. Atmospheric
corrections were performed using the Simplified Method for Atmo-
spheric Corrections (SMAC) (Rahman and Dedieu, 1994).

In this study a dataset containing 252 (7 years×36 images per year)
10-day composite NDVI images spanning the period January 2001 to
December 2007 was used. From January 2001 to January 2003 data
from the VGT1 sensor aboard the SPOT-4 satellite were used and from
February 2003 onwards data from the VGT2 sensor aboard the SPOT-5
satellite were used. Both sensors have the same spectral and spatial
properties. For more information on the VGT instrument see the
VEGETATION User Guide (http://www.spot-vegetation.com). A spatial
subset of the imagery was made using the IP boundaries, and annual
NDVI images were calculated by averaging the 36 10-day composites.

3.1.3. Meteorological data
A dataset with daily station data in Europe was used for validation

of the downscaled precipitation grids. This dataset was generated as
part of the European Climate Assessment (ECA) project and described
by Klein Tank et al. (2002). For the IP the dataset contains a total of 28
meteorological stations, which are shown in Fig. 1.

3.2. Downscaling

The TRMM datasets were downscaled using an approach devel-
oped by Agam et al. (2007) for sharpening thermal imagery with
NDVI. The approach is based on the assumption that a relation exists
between NDVI and precipitation at different scales. This relation is
then used at a finer scale to generate more detail in the precipitation
grids. A stepwise approach was used to test the assumption. First the
average NDVI from 2001–2007 was compared to the accumulated
average annual 3B42 and 3B43 precipitation for the same period at
different resolutions (0.25°, 0.50°, 0.75°, 1.00° and 1.25°). The NDVI
data, with an original resolution of 1 km, were scaled up using grid cell
averaging. For each resolution, the NDVI values were regressed against
the TRMM precipitation. The best fit among the different resolutions
was used in the downscaling procedure. As a second step, the validity
of the regression relationships was tested for individual years. The
wettest year (2003) and the driest year (2005) were selected from the
2001–2007 time series.

Downscaling was performed as follows. A distinction was made
between the low resolution (LR) and the high resolution (HR) imagery.
HR refers to the resolution of the original NDVI imagery (1 km) and LR
refers to the five different resolutions which are tested starting at the
nominal 3B43 resolution (0.25°). An exponential regression was
performed between NDVILR and the TRMM product, which is
expressed in the function below (Eq. (1)).

Pe NDVILRð Þ = a � eb�NDVILR ð1Þ

Where Pe (mm year−1) is the TRMM estimate based on NDVILR and
a and b are the fitting coefficients resulting from the regressions
between NDVI and 3B43 at different scales. This was repeated for all
five low resolutions and the resolution with the best fit was used in
the downscaling procedure. Then the difference between Pe and the
TRMM precipitation (ΔTRMMLR) was calculated at the nominal 0.25°
resolution (LR) according to Eq. (2).

ΔTRMMLR = 3B43−Pe NDVILRð Þ ð2Þ

This low resolution residual was interpreted as the amount of
rainfall that cannot be explained by the NDVI regression function.
Using the centre points of the TRMM grid cells the Δ3B43LR was
interpolated to HR (ΔTRMMHR) using a simple spline tension

http://www.spot-vegetation.com


Fig. 3. Average annual NDVI (1 km resolution) (A) and 3B43 accumulated annual
precipitation (0.25° resolution) (B) for the period 2001–2007.
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interpolator (Franke, 1982). Splining is a deterministic technique to
represent two dimensional curves on three dimensional surfaces
(Eckstein, 1989; Hutchinson and Gessler, 1994). The mathematical
spline function is constrained at the centre points of the TRMM grid
cells, it assumes smoothness of variation, and is typically used for
regularly-spaced data.

The next step was to estimate the precipitation at high resolution
(1 km) according to

Pe NDVIHRð Þ = a � eb�NDVIHR ð3Þ

The final downscaled product (Pds) was calculated by adding the
HR residual (ΔTRMMHR) to the HR precipitation estimate based on the
NDVI according to

Pds = Pe NDVIHRð Þ +ΔTRMMHR ð4Þ

The above can be summarized as a two step approach. Firstly, an
exponential relation between the low resolution NDVI and precipita-
tion is derived at an optimum scale between 0.25° and 1.25°. Secondly,
the high resolution precipitation field is derived using this relation,
the high resolution NDVI and the interpolated residual, which
compensates for precipitation variation not explained by NDVI.

We have refined the downscaling methodology as described by
Agam et al. (2007) in two ways:

• The relation between NDVI and precipitation was tested at different
resolutions and we have selected the basis function at an optimum
resolution with the highest r2.

• The residuals were interpolated using a spline interpolator.

3.3. Validation

The downscaled precipitation for the wet year, the dry year, and
the 2001–2007 average was validated using the daily station datasets.
For the 3B42, 3B43 and Pds a number of commonly used performance
indicators were calculated (Hoffmann et al., 2004).

Firstly, the coefficient of determination (r2) between the station
data and the precipitation product was calculated. A value of one
corresponds to a perfect correlation and a value of zero indicates that
the station data and the precipitation product are uncorrelated.

Secondly, the bias (B) was determined, which is expressed as

B =
∑
n

i = 1
Mi

∑
n

i = 1
Oi

−1 ð5Þ

Where M is the 3B42, 3B43 or Pe at the station location, O is the
observed station precipitation, i the index of the station number and n
the total number of stations. The bias indicates the degree to which
the observed value is over or underestimated.

Finally, the root mean square error (RMSE) was assessed by means
of the equation

RMSE = ∑
n

i
Oi−Mið Þ2=n

� �1=2

ð6Þ

4. Results and discussion

4.1. NDVI and TRMM regression

Fig. 3 shows the average annual NDVI and 3B43 accumulated annual
precipitation for the period 2001–2007. Fig. 3 reveals that precipitation
in the northern and north western part along the Atlantic Ocean is
indeed much higher (~1200 mmy−1) than in central and south eastern
Spain (~400 mmy−1). The relatively dry Meseta is also clearly visible as
well as the higher precipitation in themajormountain ranges across the
IP. NDVI shows a very similar pattern as 3B43 precipitation and a clear
spatial correlation exists between the two datasets.

The scale dependencyof theNDVI and 3B43 relationshipwas tested
at different spatial resolutions. Fig. 4 shows the results of fitting
exponential functions at the six different resolutions. Fig. 4 shows that
at all resolutions a clear relationship exists between the greenness of
vegetation and precipitation. The curves show that the relationships
hold only to high NDVI values where the relation with precipitation
dissipates and water is not limiting growth anymore. The strongest
relation is found in the NDVI range between 0.2 and 0.7 and in the
precipitation range from200–800mmy−1. Given that the precipitation
over the majority of the IP falls in this range it is concluded that the
NDVI-3B43 relation could be used for downscaling. For the observed
data range an exponential function provides the best fit. Other
functions were tested at the nominal resolution of 0.25°, but resulted
in lower r2 values (linear=0.52, power function=0.55, 2nd order
polynomial=0.53). There were differences in the function fitting
coefficients for the different resolutions. The r2 ranged from 0.57
(0.25°) to 0.75 (0.75°). When aggregating to a lower resolution the
coefficient of determination increased and there was a peak at 0.75°
and then a slow decrease in correlation at even lower resolutions.
There was an optimum scale at which we found the best relation
between the NDVI and 3B43. At this optimum scale, precipitation was
better explained by NDVI than at any other scale. The NDVI was at this
scale least influenced by factors such as geology, soils, vegetation type,
temperature, irrigation, and anthropogenic influences. By using this
optimum fit at a smaller resolution we estimated the local precipita-
tion assuming a similar response as at the optimumscale. Note that the
differences in the a and b coefficient of the exponential curves for the
different scales are not very large, and a similar relation between NDVI



Fig. 4. Fitting of average annual NDVI and 3B43 accumulated annual precipitation (2001–2007) at different resolutions (0.25° (A), 0.50° (B), 0.75° (C), 1.00° (D), 1.25° (E) and 1.50° (F)).
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and 3B43 obviously exists at different spatial scales. In otherwords, the
greenness of vegetation, as reflected by the NDVI, is a function of
different variables, including precipitation. By investigating the scale
dependency of the precipitation-NDVI relation we isolated the NDVI
response to precipitation in the best possible way. It is also acknowl-
edged that both NDVI and TRMM do not provide perfect measure-
ments and both are subject to bias due to orbital deviations,
atmospheric conditions and imperfect retrieval algorithms. The scale
dependency could be related to these factors as well.
4.2. Downscaling

Based on this analysis we used the following equation to calculate
the NDVI based precipitation estimate at the 0.75° resolution

Pe NDVILRð Þ = 154:8 � e3:1�NDVILR ð7Þ

From Eq. (7) the low resolution NDVI based precipitation estimate
was calculated. The result is shown in the top left map of Fig. 5. The



Fig. 5. Overview of the downscaling results: the low resolution NDVI based precipitation map (Pe (NDVILR)), the low resolution residual (ΔTRMMLR), the high resolution residual
(ΔTRMMHR), the high resolution NDVI based precipitation map (Pe (NDVIHR)), and the final downscaled precipitation map (Pds) at 1 km resolution.

Table 1
Validation results for downscaling of the average 2001–2007 precipitation

Pds P3B42 P3B43

r2 0.77 0.49 0.39
Bias −0.01 −0.07 0.09
RMSE (mm) 120 173 201

Validation results are also shown for 3B42 and 3B43 TRMM data products at original
resolution of 0.25°.
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general precipitation patterns are well captured in this estimate. The
north western part of Portugal, the Atlantic coast and the mountain
ranges clearly are wetter and the estimated amounts correspond well
with the 3B43 precipitation (bottommap of Fig. 3). However, for some
regions substantial residuals are found after subtracting Pe from the
3B43 precipitation (top right of Fig. 5). This residual map represents
that part of the precipitation that cannot be explained by NDVI alone.
Negative residuals (red) indicate areas which are greener than
expected, given the precipitation. These areas may possibly have an
additional water source (irrigation, accumulated runoff, and ground-
water) or are characterized by vegetation types less responsive to
precipitation (for example evergreen needle forest with deep rooting
systems). Positive residuals (green) depict areas that are less green
than would be expected, given the observed precipitation. Steep and
sparsely vegetated slopes in mountain ranges or areas with a high



Fig. 6. Relation between resolution, and r2 of NDVI regressed against 3B43 for awet year
(2003), a dry year (2005) and the average of 2001–2007.
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precipitation that fall into the (over)saturated part of the NDVI-3B43
fit, could explain these residuals. The middle left figure shows the
downscaled residuals using interpolation through the centre points of
the 3B43 cells (ΔTRMMLR). The high resolution residual is interpolated
from the 3B43 points using a minimum curvature spline technique.
Future studies for improvements of the downscaling procedure
should evaluate other interpolation techniques such as kriging or
spatial autoregressive models. These techniques also allow inclusion
Fig. 7. 3B43 TRMM precipitation at nominal resolution of 0.25° and downscaled precip
of secondary information that could influence rainfall locally (e.g.
relief, wind direction). The final downscaled precipitation map is the
sum of Pe(NDVIHR) and the downscaled residual (ΔTRMMHR) and is
shown in the bottom left map of Fig. 5. This map now shows excellent
agreement with the LR TRMM map, but with a much higher spatial
resolution.

4.3. Validation

The efficacy of this method to improve precipitation mapping was
validated using the ECA dataset. Out of the 28 ECA stations on the IP a
total of 16 stations had a complete record of data from 2001–2007.
These stations were used in the validation. The original low resolution
3B42, the 3B43 and the Pds precipitation are extracted at the station
locations and the validation indicators were calculated. The results of
the validation are shown in Table 1. It can be concluded that the
downscaling procedure has significantly increased the r2 and reduced
bias and RMSE. The downscaled precipitation map is of higher
accuracy than the original 3B43 estimate and the downscaling
approach is very promising. Another striking feature, apparent from
Table 1, is the fact that for the average 2001–2007 precipitation, the
original low resolution 3B42 product outperforms 3B43. This is
unexpected as the 3B43 product is a combined satellite and gridded
gauge based product, while the 3B42 product is based on satellite data
only. A possible explanation could be that over a multi-year period the
bias is reduced and the satellite data captures spatial heterogeneity
better than the combined 3B43 product. It should also be acknowl-
edged that Spain is near the outer limits of TRMM data acquisition. At
these latitudes, the sampling errors can be relatively large.
itation maps at 1 km resolution for the dry year (2005) and the wet year (2003).



Table 2
Validation results for downscaling of the 2003 (wet) and 2005 (dry) precipitation

Pds P3B42 P3B43

2003 r2 0.78 0.47 0.60
Bias −0.01 −0.23 0.05
RMSE (mm) 188 331 248

2005 r2 0.95 0.70 0.69
Bias −0.03 −0.18 −0.02
RMSE (mm) 70 194 166

Validation results are also shown for 3B42 and 3B43 TRMM data products at original
resolution of 0.25°.
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Having shown successful downscaling for amulti-year average, the
robustness of the method was tested for individual years. From the
2001–2007 time series the wettest year and driest year were selected.
The average 2001–2007 3B43 precipitation equalled 650mm, the year
2005 was the driest at 496 mm, and 2003 was the wettest at 745 mm.
Themethodology for 2003 and 2005was similar to the one used in the
case of average rainfall. First, the scale dependency was tested. Fig. 6
shows how r2 varies with resolution for the average period from
2001–2007, for the dry year 2005 and for the wet year 2003. The
coefficient of determination is, not surprisingly, highest for the
average case. The variation in r2 is highest in the wet year 2003, and
the highest r2 is found at a resolution of 1.25 (0.73). In the dry year the
r2 is highest at the same resolution, but slightly lower (0.62) than in
the wet year. Other stress factors besides water shortage that cause
reduced vegetation growth (e.g. temperature stress) could be a
possible explanation.

The exponential function selected at the resolution where the r2 is
highest for 2005 (1.25°) is as follows

Pe NDVILRð Þ = 104:9 � e3:5�NDVILR ð8Þ
and for 2003 (1.25°) is as follows

Pe NDVILRð Þ = 152:0 � e3:1�NDVILR ð9Þ

There is notably a considerable lower coefficient of determination
for the dry year 2005. Fig. 7 shows the downscaled precipitation maps
for 2003 and 2005. The year 2005 was an extremely dry year,
specifically in the southern part. There were extensive areas which
received less than 300 mm rainfall, which in combination with
reference evapotranspiration of nearly 1500 mm has led to extreme
drought stress. The year 2003 obviously was much wetter. The area
along the northern Atlantic coast is notably consistently wet, while the
area along the south-western Mediterranean coast is extremely dry in
both years. The other parts of the IP, specifically the inland areas, show
a larger variation in annual precipitation.

From the 28 stations of the ECA dataset, stations with a full year of
data for 2003 and 2005 respectively were selected for validation
purposes. For 2003 19 stations were available and for 2005 20 stations
were used and the validation results are presented in Table 2. These
results confirm those from the multi-year average and the down-
scaling leads to improved r2 and a reduced bias and RMSE. The r2 was
highest for the dry year, and the RMSE was also much lower than in
the case of the wet or average year (70mm). For these individual years
the original low resolution 3B43 performed better than 3B42 with
respect to bias and RMSE as can be expected. For both years there was
a strong negative bias, e.g. the satellite estimates were significantly
lower than the observed precipitation.

5. Conclusions

This study investigated downscaling of TRMM precipitation
estimates on the Iberian Peninsula using a time series of TRMM
3B43 monthly precipitation products and SPOT VEGETATION 10-day
NDVI imagery from 2001 to2007. A scale dependent exponential
relation between precipitation and NDVI was used to develop a
downscaling procedure and the results were validated using pre-
cipitation gauge data. A number of conclusions can be drawn based on
this work:

• NDVI is a proxy for precipitation and on an annual basis an
exponential function best describes this relationship.

• The correlation between precipitation and NDVI varies with
resolution and the best correlations are found at a resolution of
approximately 100 km (0.75°–1.25°). The highest r2 was displayed
by the regression fits for the 2001–2007 average precipitation and
equalled 0.75.

• The downscaling approach resulted in very significant improve-
ments in the accuracy and spatial resolution of the average 2001–
2007 precipitation and for the annual precipitation of 2003 (wet)
and 2005 (dry).

• We have refined the downscaling methodology as described by
Agam et al. (2007) by selecting the basis function at an optimum
resolution and by interpolating the residuals.

• The original low resolution 3B42 product outperforms the 3B43
product in the multi-year average precipitation analysis.

• We showed that it is feasible to increase spatial resolution and
accuracy of precipitation estimates using vegetation greenness as a
proxy for precipitation on an annual basis. Future work should focus
on extending this procedure at a better temporal resolution (e.g.
seasonal or monthly).

• On the IP the best relation between NDVI and precipitation is found
at an approximate scale of 75–100 km. This is an intermediate scale
and at smaller scales NDVI is probably determined primarily by
anthropogenic land use. At larger scales factors such as geology,
soils, and temperature may play an increasingly important role in
explaining NDVI.

The main conclusion of this study is that it is possible to accurately
downscale TRMM precipitation using vegetative response on the
Iberian Peninsula and that the presented approach is generic in nature
and is applicable in other semi-arid areas of the world.
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