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Introduction 
The potential of remote sensing for the recommendation and monitoring of irrigation practices, is 
irrefutable. The context of uncertainty in the rural areas of the southwest Mediterranean area, especially in 
agriculture, is caused by the loss of competitiveness and abandonment of farming in many areas due to 
problems related to water scarcity and increase of drought events. 

The Southeastern Spanish basins, are regularly affected by drought. These events affect large areas, and its 
severity has increased in recent years due to climate change (García Galiano et al., 2011). This situation 
endangers the continuity of significant areas of irrigation, critical in this case for the economy of the Region 
of Murcia. Moreover, the adjusted water allocations for irrigation in the Region, coupled with quality 
problems that necessarily arise from the intensive use of resources will continue setting up a situation of 
scarcity, it is conceivable that repeated acute episodes of lack of water for irrigation, such as those registered 
in recent years and there will have to face in the coming decades with greater intensity. 

As a result, the assessment and monitoring of irrigated areas presents special relevance. Remote sensing has 
proved to be a very efficient tool for this, allowing the estimation of vegetation indices related to the soil 
water content, and actual evapotranspiration directly. The present study addresses the operational 
development below an GIS (Geographical Information System) environment, a remote sensing based 
methodology for estimating crop attributes and surface fluxes (actual evapotranspiration) and its application 
in the Region of Murcia. 

The potential of remote sensing in agriculture is high, because multispectral reflectance and temperatures of 
the crop canopies are related to photosynthesis and evapotranspiration (Basso et al., 2004). Several studies 
present methodologies for the assessment of water stress indices from remote sensing (Moran et al., 1994; 
Fensholt and Sandholt, 2003). The classical method for the monitoring and evaluation of vegetation water 
stress is the combined use of land surface temperature (LST) data and multispectral reflectance of the 
surface, from which the normalized difference vegetation index (NDVI) is derived. The information on 
wavelengths of the thermal region and visible / near-infrared (NIR), is relevant and useful for the purpose of 
monitoring the physiological state of vegetation and its level of stress, and especially the intensity of water 
stress. 

In the assessment of the onset, severity, and duration of water stress and drought situations, indicators can 
be based on meteorological and crop data, or be indicators based only on remote sensing, or be process-
based indicators. 

Regarding the indicators based on meteorological data, the Crop Water Stress Index (CWSI) proposed by 
(Moran et al., 1994), is widely applied. But the CWSI index, useful for surfaces completely covered with 
vegetation, requires a great deal of information in order to be applied. 

As for indicators based on remote sensing, different methodologies of operational assessment of indices 
related with water deficit of soil and vegetation stress, soil moisture or directly from remote sensing could be 
applied. However, remote sensing-based products must be calibrated with ground data (ground truth). There 
will be a literature review of the main sensors currently used in relation to soil moisture estimation from 
remote sensing. 
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Soil moisture estimates can be obtained from various satellites, such as ERS SAR (European Remote Sensing 
Satellites, Synthetic Aperture Radar), Radarsat, ENVISAT ASAR, ADEOS II and EOS PM sensor AMSR 
(Advanced Microwave Scanning Radiometer). But most of them do not have temporal resolutions 
appropriate for monitoring highly dynamic processes. Among the latest tools that are available, the MIRAS 
(Microwave Imaging Radiometer using Aperture Synthesis) sensor of SMOS (Soil Moisture and Ocean 
Salinity) mission of the European Space Agency (ESA, 2009) should be highlighted. In all cases, the 
indicators (or variables) derived from remote sensing data must be validated in situ (ground truth). 

In the case of indicators estimated from remote sensing, there indices that include ratios of two or more 
bands in the visible and NIR wavelengths (such as NDVI, etc.), and those obtained from the interpretation of 
LST-NDVI trapezoid (Vegetation Index/Temperature Trapezoid). These last include the Water Deficit Index 
(WDI) proposed by Moran et al. (1994) considering the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). 
The WDI index has been used to estimate evapotranspiration rates for mixed surfaces, while the CWSI index 
is specific for areas completely covered by vegetation. The WDI index reaches a value of 1 for conditions of 
extreme stress of the vegetation, and 0 for crop evaporation to its potential rate. The WDI index has been 
reformulated by Verstraeten et al. (2001), considering only terms of LST and air temperature. 

Then Wang (2001) proposed the Vegetation Temperature Condition Index (VTCI), in which the surface 
temperature-NDVI space behaved like a triangle. This methodology has been widely used in the U.S. 
Southern Plains (Wan et al., 2004). 

The Temperature-Vegetation Dryness Index (TVDI), proposed by Sandholt et al. (2002), is obtained from 
space LST-NDVI and can be used as an indicator of soil moisture and hence the vegetation water stress. 
Particularly in the rainy season, indices related to soil moisture obtained from wavelengths in the infrared 
short-wave and NIR can be a valuable supplement to the method based on LST-NDVI space interpretation. 
Since LST is very sensitive to atmospheric effects and clouds, the use of the SIWSI (Shortwave Infrared 
Water Stress Index) index, using near-infrared data (Fensholt and Sandholt, 2003) has been considered. 
According to these authors, working in areas of West Africa, the SIWSI is strongly related to soil moisture, 
and can be obtained even in the presence of clouds. Although from previous studies in the southeast Spanish 
(Garcia et al., 2006) it is not an appropriate index in semi-arid watersheds. 

The STI Index (Standardized Thermal Index), obtained from data of air temperature and LST, may also 
constitute a relevant indicator of relative deficit of soil moisture (Park et al., 2004). 

 Finally, indicators based on processes are regarding with the modeling of actual evapotranspiration (ETact). 
The methods considered simulate the mass and energy transfer between the atmosphere and surface. 

 

Indices based on ratios of two or more bands in the visible and NIR 
wavelengths  

• NDVI (Normalized Difference Vegetation Index)  
The Normalized Difference Vegetation Index (NDVI, Kriegler, 1969; Rouse et al., 1973), is based on the 
assumption that the vegetation subject to water stress presents a greater reflectivity in the visible region (0.4-
0.7 μ) of the electromagnetic spectrum and a lower reflectance in the NIR region (0.7-1.1 μ). The NDVI is 
obtained by the following equation, where NIR is the near-infrared reflectivity and R corresponds to the red 
region of the electromagnet spectrum. 

RNIR
RNIRNDVI

+
−

=             (1) 
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This index could be easily derived with the satellite information, using bands 1 and 2 in the case of AVHRR 
sensor (NOAA), or bands 3 and 4 in the case of ETM+ (Landsat). NDVI vary between -1 and 1. 

• RVI (Ratio Vegetation Index)  
This RVI (Ratio Vegetation Index, Jordan, 1969), is estimated as,  

R
NIRRVI =

            
(2) 

• GNDVI (Green Normalized Difference Vegetative Index) and DVI 
(Difference Vegetation Index) 

The GNDVI (Green Normalized Difference Vegetative Index) is a modification of NDVI where the Red band 
is substituted by the reflectance in the Green band (Gitelson et al., 1996). 

In the case of DVI (Difference Vegetation Index, Richardson and Everitt, 1992), is estimated as follows,  

RNIRDVI −=
           

(3) 
 

• SAVI (Soil Adjusted Vegetation Index) 
The SAVI (Soil Adjusted Vegetation Index) proposed by Huete (1988), takes into account the optical soil 
properties on the plant canopy reflectance. SAVI is involving a constant L to the NDVI equation, and with  a 
range -1 to +1, is expressed as follows,  

)1( L
LRNIR

RNIRSAVI +
++

−
=

          
(4) 

 

Two or three optimal adjustment for L constant (L=1 for low vegetation; L=0.5 for intermediate vegetation 
densities; L= 0.35 for higher densities), are suggested by Huete (1988). 

• TSAVI (Transformed Adjusted Vegetation Index) 
The TSAVI (Transformed Adjusted Vegetation Index) original method was modified by Baret and Guyot 
(1991), as follows,  

)1( 2aabRaNIR
baRNIRaTSAVI
++−+

−−
=

χ         
(5) 

 

where a and b are soil line parameters, and X is 0.08. TSAVI varies from 0 for bare soil to 0.7 for very dense 

canopies (Baret and Guyot, 1991). 

Interpretation of LST – NDVI space 

The combination of LST and NDVI can provide information about the condition of vegetation and moisture 
on the surface. The combined information on the wavelengths of the thermal region and the visible/NIR 
region has proved satisfactory for monitoring vegetation conditions and stress, especially water stress. 
Numerous studies have provided different interpretations of space LST-NDVI, based on a wide range of 
vegetation types and crops, climate, and different scales. 
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The NDVI is a rather conservative indicator of water stress, because the vegetation remains green after the 
start of this stress. By contrast, the LST increases rapidly with the water stress (Sandholt et al., 2002). For a 
given dry zone, the relationship between LST and the NDVI is characterized by a cloud of dispersion in the 
LST-NDVI space, the highest values of LST correspond to the lowest values of NDVI (Nemani and Running, 
1989). This relationship is often expressed by the slope of a line fitted to the dry edge of the space LST-NDVI. 

Numerous studies have focused on the relationship between LST and the NDVI, to provide indirect 
information about the vegetation stress and the soil moisture conditions. Nemani and Running (1989) 
related the slope LST-NDVI to stomatal resistance and evapotranspiration of a deciduous forest. Boegh et al. 
(1998) and Jiang and Islam (1999), related the slope LST-NDVI to surface evapotranspiration. The analysis 
of LST-NDVI space was also used to derive information on conditions of regional soil moisture (Carlson and 
Gillies, 1993; Goetz, 1997, Goward et al., 2002 and Sandholt et al., 2002). 

Often the estimate of the slope LST-NDVI is not direct (Troufleau and Soegaard, 1998), typically due to the 
significant variability caused by surface heterogeneity (Czajkowski, 2000). The scattering cloud formed by 
the LST and NDVI (or vegetation index) both derived from remote sensing, often results in a triangular 
(Price, 1990, Carlson et al., 1994) or trapezoidal (Moran et al., 1994) shape, if the data represent a full range 
of vegetation covers and soil moisture content. Different types of surfaces can have different slopes LST-
NDVI and intercept the atmospheric conditions and surface moisture equally; the choice of scale can 
influence the shape of the relationship between these variables (Sandholt et al., 2002). 

The vegetation index is linearly related to vegetation cover, and the gradient LST-air temperature is as a 
function of vegetation index. Assuming these premises, Moran et al. (1994) derived the shape of LST-NDVI 
space from modeling and proposed a theoretical justification for the concept. 

The interpretation of the LST for bare soil is not straightforward, because the measured temperature 
integrates both the temperature of the soil surface temperature and vegetation temperature, and the 
components cannot be linearly related. Other studies have shown that, at least for well irrigated areas, the 
relationship between LST and the NDVI is more directly related to the moisture of the soil surface (Friedl 
and Davis, 1994). 

Moran et al. (1994) combined the method of LST-NDVI space with standard meteorological data, as well as 
remote sensing data, to estimate the Water Deficit Index (WDI). They used the temperature difference 
between LST and air temperature (ΔTs = LST – Ta) and its relationship to vegetation index. This method was 
studied for partially vegetated surfaces, and the cloud of dispersion of the values LST-NDVI presented a 
trapezoidal shape. 

Sandholt et al. (2002) presented a simplification of the WDI index, which considers the variations in air 
temperature, water balance and atmospheric conditions to estimate the LST-NDVI space. The method is 
conceptually and computationally straightforward, and only uses information from satellites to define the 
Temperature-Vegetation Dryness Index (TVDI), which is related to soil moisture. 

Other authors, such as Prihodko and Goward (1997), proposed the Temperature-Vegetation Index (TVX), 
estimated as a slope in the LST-NDVI space for a homogeneous area with little or no variation in surface 
moisture conditions. This method, like that proposed by Sandholt et al. (2002), does not requires auxiliary 
data. This is an advantage over other methods for defining the limits of LST-NDVI space, with high 
requirements of detailed information about weather conditions, including vapor pressure deficit, wind speed 
and surface resistance.  

Adapting the method proposed by Sandholt et al. (2002), described above, the location of a pixel in the LST-
NDVI space is determined by several factors: 

 - Vegetation cover 

The vegetation cover does not necessarily have to be related to spectral vegetation indices through a simple 
linear transformation. Furthermore, the fraction of vegetation cover affects the amount of bare soil and 
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vegetation, visible by the sensor. Thus the LST can be affected by differences in temperature radiated by the 
bare soil and by sparse vegetation 

- Evapotranspiration (ET) 

The evapotranspiration can control the LST by the surface energy balance. To lower evapotranspiration, more energy 
will be available for heating the surface. The stomatal resistance, which characterizes the control of the plants to water 
vapor transfer by transpiration, is a key parameter in the estimation of ET. With greater stress of plants, there is therefore 
more resistance of the plants to water transfer. This resistance can be expressed in terms of soil factors (soil moisture or 
soil water potential) and of climate factors (radiation, relative humidity and air temperature). 

- Thermal properties of the surface 

 In the case of partially vegetated surfaces, LST is influenced by the heat capacity and thermal conductivity of the soil. 
These properties are a function of soil type, and change with the soil moisture. 

- Net radiation 

The available energy, incident on the surface, affects the LST. The radiation control of LST implies that areas with high 
albedo values present low temperatures. The albedo is controlled by the type of soil, surface soil moisture and vegetation 
cover. 

- Weather conditions and surface roughness 

The ability to transfer energy from the surface to the atmosphere is an important factor in controlling the LST. The 
concept of surface resistance is used to quantify this ability to transfer sensible and latent heat (evaporation).  

This resistance depends on the surface roughness, wind speed and atmospheric stability conditions. Under similar 
conditions of leaf area index and water availability, the vegetation cover with high roughness (forests) and low surface 
resistance will have lower LST than surfaces with low roughness (low vegetation) and higher surface resistance. This 
influences the shape of LST-NDVI space.  

The above-mentioned factors have been summarized in Fig. 1. It is clear that the relationship between LST and surface 
soil moisture is not straightforward. For bare soil with constant irradiance, the LST is defined primarily by the soil 
moisture content, via control of evaporation and thermal properties of the surface (Sandholt et al., 2002). 

 

Fig. 1. Factors for the definition of LST of the illuminated surface (adapted from Sandholt et al., 2002). 
 
From Fig. 1 above, variables enclosed by the circle can be estimated using satellite data. Sn = shortwave net radiation; 
Rn = net radiation; GLAI = leaf area index; Fc = fraction of soil covered by vegetation; ET = evapotranspiration; rs = 
stomatal resistence; M1 = soil moisture content (root zone); M0 = moisture content of top soil. 

In Fig. 2 depicts the concept of LST-NDVI space. The left edge represents bare soil from dry to wet (top-
down) range. As the amount of green vegetation increases, the NDVI value also increases along the X axis 
and therefore the maximum LST decreases. For dry conditions, the negative relationship between LST and 
NDVI is defined by the upper edge, which is the upper limit of LST for a given type of surface and climatic 
conditions (Sandholt et al., 2002). 
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Fig. 2. Simplified LST/NDVI space (adapted from Lambin and Ehrlich, 1996 in Sandholt et al., 2002). 

• TVDI index  
For deriving information regarding with content of surface soil moisture, Sandholt et al. (2002) proposed an 
index of aridity (TVDI), that takes values of 1 for the dry edge (limited water availability) and 0 for the wet 
edge (maximum evapotranspiration and thereby unlimited water availability). 

The TVDI is related to soil moisture, where high values indicate dry conditions and low values wet 
conditions. This is based on the fact that the LST is mainly controlled by the energy balance and thermal 
inertia, factors influencing moisture conditions at the surface and in the root zone (Andersen et al., 2002). 

 Following the concept in Fig. 3, the value of TVDI for a given pixel in the LST-NDVI space, is calculated as 
the ratio of lines A and B, and therefore calculated using the following equation (Sandholt et al. 2002),  

min

min

LSTbNDVIa
LSTLST

B
ATVDI

−+
−

==
         

(6) 

where LSTmin is the minimum LST in the triangle, defining the wet edge, and LST corresponds to the pixel. 
Then, a and b are the coefficients of the regression line that define the dry edge, as follows, 

bNDVIaLST +=max
 

          (7) 

where LSTmax is the maximum LST for a certain NDVI.   
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Fig. 3. Definition of TVDI index (adapted from Sandholt et al., 2002). 

 

The parameters   and  are estimated based on pixels from an large enough area to represent the full 
range of surface soil moisture content, from wet to dry, and from bare soil to fully vegetated surfaces. 

Uncertainty about TVDI is greater in the high range of NDVI, where the TVDI isolines are grouped. The 
simplification of representing LST-NDVI with a triangle instead of a trapezoid (eg Moran et al., 1994) may 
add uncertainty to TVDI estimation for high values of NDVI. The wet edge is also modeled as a horizontal 
line as opposed to an inclined one, as in the trapezoidal method, which can lead to an overestimation of TVDI 
for low NDVI. 

The TVDI isolines correspond to the TVX index, proposed by Prihodko and Goward (1997), thus being able to 
estimate such TVDI isolines as multiple superimposed TVX lines. For drier conditions, several studies of 
LST-NDVI spaces present steep slopes (eg, Goetz, 1997 and Nemani et al., 1993), which is consistent with 
TVDI. Since TVDI can be estimated for each pixel, the spatial resolution of the data is fully maintained. TVX 
requires an area wide enough for determination of the slope in the LST-NDVI space.  

The main advantages of TVDI are: (i) its simplicity of calculation; and (ii) its derivation from satellite data 
alone regardless of factors such as weather, vapor pressure deficit, wind speed and surface resistance. 
However, this approach requires a large number of remote sensing observations to accurately define the 
limits of that space (Sandholt et al., 2002). 

• Water Deficit index   
The Water Deficit Index (WDI, Moran et al. 1994), to estimate evapotranspiration in both areas completely covered by 
vegetation or partially covered, is based on the interpretation of the trapezoid formed by the relationship between the 
difference in LST and air temperature versus vegetation cover fraction (or vegetation index). The WDI quantifies the 
relative rate of latent heat flux, so it shows a value of 0 for fully wet surface (evapotranspiration only limited by the 
atmospheric demand), and 1 for dry surfaces where there is no latent heat flux. 

The WDI index could be expressed as follows,  









−−−
−−−

−=−=
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)()(11
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max
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aa
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(8) 

where LSTmax and LSTmin are maximum and minimum LST respectively; ETact and ETpot represent actual and 
potential evapotranspiration respectively, found for a given vegetation cover (or vegetation index) in the left 
and right edges of the trapezoid VITT (Vegetation index versus difference of temperature). Then, Ta 
represents air temperature. Verstraeten et al. (2001, in Ranjan, 2006) reformulated the WDI index equation, 

TVDI = 1

NDVI

LST

TVDI = 0

LST= a + b*NDVI

(LST/NDVI)

B
A
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based on the trapezoid, considering the difference of temperature on the ordinate axis and the vegetation 
index on the abscissa axis.  

Other indexes 

• STI index 
The Standardized Thermal Index (STI) describes the deviation experienced LST with respect to the air 
temperature, as the drought conditions are accentuated (Park et al., 2004). The STI index is based on the 
hypothesis that water-stressed areas present low values of NDVI and temperature gradients between the 
surface and the air, higher than in non-drought conditions. Therefore, the variation of this gradient will be 
inversely related to soil moisture and evapotranspiration of the area, and directly related to water stress. 

The indicator ranges between 0 and 1, and it is defined by the following equation (Park et al., 2004): 

acumair

acumair

mean

mean

TLST
TLST

STI
)(
)(

+
−

=
       

(9) 

where Tair mean is the mean air temperature. The STI index values show a significant correlation with the 
deviation of the NDVI. This demonstrates that higher values of STI correspond with more severe droughts. 

Several studies have shown that the cumulative deviations of LST present significant negative relationships 
with soil moisture content and the ratio ETact/ETpot, while they have positive relationships with the ration 
moisture deficit/ETpot. Then, it was found that STI values of 0.2 correspond to a decline of 15 % in NDVI, 
making this the threshold for thermal detection of drought conditions. 

• SIWSI index   
Physical models based on radiative transfer have shown that changes in water content of plant tissues 
present a large effect on leaf reflectance in several regions of the spectrum between the wavelengths of 0.4 to 
2.5 µm. A major absorption value is presented in these wavelengths by foliar surfaces in well-hydrated 
tissues. 

The reflectance is inversely related to water content (Ceccato et al., 2001), therefore an increase in the value 
of reflectance at these wavelengths implies in most cases a plant response to some type of stress, including 
water stress (Carter, 1994). In this case, it is possible to obtain a direct measurement of water content in 
plants. The region of the spectrum in which these changes occur is the short-wave infrared range 1.3-2.5 µm 
(SIR, Short Infrared), where the amount of water available in the internal structure of the leaf controls the 
spectral reflectance (Tucker, 1980). To illustrate this fact, Fig. 4 represents the location of the bands 5 and 6 
of MODIS sensor (TERRA satellite of NASA), and the reflectance of a vegetated surface with different soil 
moisture content (CW). 

 
Fig. 4. Representation of MODIS sensor bands (source: Fensholt and Sandholt, 2003). 
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The reflectance of bare soil, leaf biochemical parameters, internal structure, leaf area index and the influence 
of the atmosphere affect the value of reflectance measured by satellite. Therefore, the influence of water in 
the tissues of the plant is needed for it to be independent of other factors. The SIWSI index with its 
formulation seeks to achieve this objective, and can be expressed considering the 6 band (eq. 8) or 5 band 
(eq. 9) of MODIS, which, as was seen from Figure 4, can discern these differences, 

SIWSI(6,2)= (ρ6 -ρ2)/( (ρ6+ρ2)  (10) 

SIWSI(5,2)= (ρ5 -ρ2)/( (ρ5+ρ2)  (11) 

where ρ is the reflectance in the spectral range of MODIS 841 a 876 nm in the band 2, 1230 a 1250nm in the 
band 5 and 1628 to 1652 nm in the band 6. The SIWSI values from both equations are normalized, varying 
from -1 to 1. A positive value represents water stress on vegetation. 

 

Classification of methodologies for estimation of ETact  

• Models based on surface energy balance  
The energy balance equation, without advection, is expressed as: 

RN = λET + H + G + PH          (12) 

where RN is the net radiation, λET is the latent heat flux or ETact (λ latent heat of vaporization and ET flux of 
evaporated water), H is the sensible heat flux, G is the soil heat flux, and PH the energy used in the 
photosynthesis process. The magnitude order of PH is generally small, it is therefore negligible. The residual 
equation is usually used for the estimation of λET considering the following equation (Choudhury, 1994),  

λET = RN – G – H           (13) 

However, when ET-retrieval methods from remote sensing are used, several uncertainties arise in the 
parameterization of the energy term (RN – G), and especially of the term G, wich can reach high values in arid 
and semiarid countries (SIRRIMED D4.3, 2011). 

• Models based on land surface temperature: derivations of the residual 
method  

The surfaces where evapotranspiration occurs present a reduction in the temperature with respect to the 
non-evaporative surfaces. The level at which you set the surface temperature is an indicator of the 
distribution of the surface energy available for processes such as the flow of sensible and latent heat to the 
atmosphere, sensible heat flux to the ground and radiation into the atmosphere. The land surface 
temperature is a piece of readily-available remote sensing data. So, another expression derived from the 
residual equation, and known as "simplified equation", was derived for the assessment of ETact (Jackson et 
al., 1977; Delegido et al., 1993), 

ETd = RNd
* - B·(LST – Ta)i          (14) 

where ETd is the daily actual evapotranspiration, RNd* is the daily net radiation (mm/day), B is an empirical 
constant, and (LST – Ta)i is the difference between soil and air temperature, both measured around noon.  

For the determination of the constant B, measures of: evapotranspiration (lysimeter, method of "eddy-
correlation" method of Bowen), daily net radiation, daily mean air temperature and land surface temperature 
(which is obtained through remote sensing) are all needed. With these data, the constant B is calculated from 
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the regression line (ETd - RNd*) as a function of (LST – Ta)i. Once B is obtained, it is possible to use the 
simplified equation for estimating evapotranspiration from LST, Ta and RNd data.  

Later, this equation was improved by introducing a second parameter. A (Seguin, 1993): 

ETd = RNd
* + A – B · (LST – Ta)i         (15) 

Net radiation data are difficult to obtain from conventional weather stations, which could therefore be a 
drawback for the simplified method. But, nowadays, estimation of net radiation could be obtained 
considering remote sensing data. However, the equation was modified to obtain an expression depending on 
global radiation (which is easier to get). The ET0 is obtained with the following equation (Caselles et al., 
1992), 

ET0 = A . Ta
máx . Rg + B . Rg + C         (16) 

where ET0 is the reference crop evapotranspiration, Tamáx is the maximum air temperature, Rg daily global 
radiation, and A, B and C are empirical coefficients. There are several methods for estimating Tamáx and Rg 
from information obtained by remote sensing (Dedieu et al.,1987). 

• Models based on the relationship between vegetation indexes and land 
surface temperature 

A negative linear relationship between land surface temperature and vegetation indices (such as NDVI 
Normalized Vegetation Index), is generally observed. The land surface temperature (LST) decreases as the 
density of vegetation increases, which is explained by the cooling caused by ETact (Caselles et al., 1998). The 
slope of this linear relationship varies depending on the soil water availability, which depends on water 
balance (rainfall and evaporation). 

There are several water stress indices based on remote sensing of LST, associating the ETact with potential ET 
(ETpot) to assess water requirements. 

One of the first that was developed is the CWSI (Crop Water Stress Index), expressed as (Jackson et al., 
1981), 

CWSI
LSTLST

LSTLST
ET
ET

pot

act −=
−
−

= 1
maxmin

max

        (17)
 

where ETact is the actual evapotranspiration, ETpot is the potential evapotranspiration, LSTmax is the 
maximum LST in the study area, and LSTmin is the minimum LST in the study area (Jackson et al., 1981). 
This index is reliable only for surfaces with full cover of vegetation. 

For composite surfaces (only partially covered by vegetation), a graphical method of VITT trapezoid 
(Vegetation Index/Temperature Trapezoid), presented in Fig. 5, is used. With this method it is possible to 
estimate the WDI index (Water Deficit Index, Moran et al., 1994).  
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Fig. 5. VITT trapezoid (Vegetation Index-Temperature Trapezoid). Example for MODIS data, for Jucar River basin. 

• Indirect methods. SVAT Model   
These methods are based in Soil-Vegetation-Atmospheric Transfer (Soil-Vegetation-Atmosphere Transfer, 
SVAT) models. The SVAT models require data from different wavelengths (while the methods mentioned 
thus far require mainly data in the thermal infrared or IRR), to calculate land surface characteristics such as 
albedo, emissivity and leaf area index (LAI) (Courault et al., 2003). 

Although SVAT models are designed to be coupled with atmospheric models, they can also be used to study 
the processes of evapotranspiration in an "off-line" mode (Bastiaanssen et al., 2005). These models are 
suitable for ET evaluation in precision irrigation for short periods of time (hours), but have the disadvantage 
of requiring more initial data.  

Algorithms derived from the residual method  

All the selected algorithms are derived from the residual method. Once all the terms of surface energy 
balance equation have been estimated, ETact is evaluated as the residual of the equation. The methodologies 
considered could be classified into two groups: 

- Methods with direct estimation of sensible heat flux (Hs), estimating ET as the residual term of the 
surface energy balance equation: 

• SM method (Simplified method),  

• SEBAL model (Surface Energy Balance Algorithm for Land), and  

• TSEB (Two Source Energy Balance model). 

        These are a direct application of the residual method, where: 

  λET = RN – Hs – G         (18) 

- Methods with direct estimation of evaporative fraction (EF), and therefore ETact (without 
estimation of Hs):  

• Simplified SEBI method, S-SEBI (Soil Energy Balance Index), and  

• JIC method (proposed by Jiang and Islam, 2001). 

       Where: 
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 λET = EF·(RN – G)         (19) 

Three of these methods (S-SEBI, SEBAL and JIC) are based on the contrast between the pixels of the wet 
zone and the dry zone. These methods require a prior graphical representation and interpretation of the data, 
therefore they are also named graphical methods. The net radiation RN, at daily scale, as well as the flux of 
soil heat G, are needed for ETact estimation.  

1.  The Simplified Method  
In the simplified method, proposed by Carlson et al. (1995), the net daily evapotranspiration integrated in 
the surface ETd, is estimated from a few data: LST near noon, when the satellite passes (Ts,i), air temperature 
(Ta,i), and net radiation expressed as the integrated value over 24 hours (Rn,d), as follows  

, , ,·( )nn d d s i a iR ET B T Tλ− = −         (20) 

where B and n are parameters to be defined. Rn,d and λET are expressed in cm día-1. The term on the right of 
equation (9), represents an approximation of the daily sensible heat flux Hs,d, assuming that the soil heat flux 
is negligible at daily scale (Gd ≈ 0). The term B could be considered as a coefficient of sensible heat flux 
transference by convection and n is a correction factor to take the stability of the atmosphere into account. 
An unstable situation (during the day, when the warmer air is below the cooler air), tends to increase the 
sensible heat flux, while the reverse situation (stable atmosphere), tends to inhibit this flux. Carlson et al. 
proposed a relationship among the B and n parameters, the vegetation fraction Fv and the corrected NDVI 
N*, using the results from a SVAT simulation.  

This method requires the following data:  

o Spectral radiances in the red and NIR (for NDVI estimation), and LST, from remote sensing. 
o Air temperature at surface level.  

 

The main advantage of the simplified method is its simplicity. The drawback is its lack of precision, since the 
B and n parameters depend not only on the vegetation cover, but also of roughness height, wind velocity, and 
water status of soil and vegetation.  

• The SEBAL method  
The SEBAL method developed by Bastiaanssen et al. (1998) is a direct application of the residual method, 
combining an empirical and physical parameterization. The input data include local meteorological data 
(mainly wind velocity), and remote sensing data (radiances and LST). From these data, the net radiation 
(Rn), NDVI, albedo (α), roughness height (z0) and soil heat flux (G), are estimated. The sensible heat flux is 
estimated by contrasting two sites (one site of wet soil or with vegetation without water stress, and another 
site of dry soil). ETact is derived as the residual term of the surface energy balance.  

•  The TSEB algorithm  
So far, the models presented consider a single source of water vapor at the surface. They do not distinguish 
contributions of vegetation and soil in the surface fluxes. Therefore, the use or the water stress of vegetation 
cannot be separated. In the models with the approach known as “Two sources” (Norman et al., 1995; Kustas 
et al., 2003; Melesse et al., 2005), the estimation of surface energy balance at the surface is divided into two 
parts: one is related with the vegetation, and the other with the soil. 

This model can reach, in certain cases, high accuracy (up to 90 %), but it is more complex than other 
approaches, and requires very accurate LST information.  
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• The S-SEBI algorithm 
The S-SEBI scheme, proposed by Roerink et al. (2000), defines two temperature thresholds for a given 
surface albedo value: a maximum temperature, which corresponds to completely dry areas and a minimum 
temperature corresponding to surfaces that evaporate freely. These temperatures define the variation range 
of LST over the whole image, and are used for defining the evaporative fraction (EF). In the SEBI (Surface 
Energy Balance Index) method, the evapotranspiration estimated from the evaporative fraction is defined as 
follows,  

SN HET
ET

GR
ETEF

+
=

−
=

λ
λλ

         (21) 

 

The S-SEBI method presents two main advantages: 

• It is a self-sufficient method while satellite data is available, and needs no ground measurement data. 

• From a physical point of view, and comparing it with the methods that determine a single 
temperature for both dry and wet conditions, the S-SEBI method is more realistic because it 
determines the value of these temperatures as a function of albedo. 

The data required for the application of this method are: spectral radiances in the visible, near infrared and 
thermal infrared. 

• The JIC algorithm 
The method proposed by Jiang et al. (2004), or the JIC method, is based on the analysis of LST-NDVI space. 
This space (triangular or trapezoidal form), delimited by the distribution of pixels, has a linear relationship 
with the surface fluxes of energy.  

Fig. 6 below presents an example of LST-NDVI space obtained from remote sensing. This triangle defines the 
limits for the evaporative fraction (EF). The estimation of latent heat flux is restricted in this space, which is 
the key to this method. From this space, the EF is linearly related with LST for a certain NDVI. 

 

Fig. 6. Conceptual interpretation of LST vs. NDVI (adapted from Jiang et al., 2004). Example from MODIS data. 

 

In this method, ETact is based in the Priesler-Taylor equation and a relation between LST and NDVI (Jiang 
and Islam, 2001), is estimated as follows: 
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)(
)(

GRET N −
+∆
∆

=
γ

φλ          (22) 

where Φ is the evaporative fraction (EF), Δ is the slope of the vapor pressure, γ the psychometric constant 
and RN represents net radiation. 

In conditions without convection and advection,  

)( GRET N −≤           (23) 

Therefore, Φ presents the following range corresponding to minimum and maximum values of ETact, 
respectively.  

)(
0

γ
φ

+∆
∆

≤≤
          (24)

 

Each pixel of this LST-NDVI space has an associated specific Φ defined by: 

minmax

max
max LSTLST

LSTLST
−
−

= φφ
         (25)

 

where Φmax= 1.26 corresponds to bare soil, LSTmax is the maximum LST for NDVI=0, and LSTmin the 
minimum LST. Then, a spatial distribution of Φ is obtained for each date. 

The following equation represents the evaporative fraction (EF),  

)( γ
φ

+∆
∆

=EF
          (26)

 

where the γ psychometric constant is a function of atmospheric pressure. 

Application of Triangle method for estimation of ETact 

 
Datasets: Collection of spatio-temporal information 
 

Several sources of information were considered, the National Plan of Remote Sensing (PNT), the CHS water 
agency, the Instituto Murciano de Investigación Agraria y Alimentaria (IMIDA), and information freely 
accessible by internet. 

The satellite data used orresponded to Landsat 5 TM (TM5), Spot 5, and MODIS data. However, the work was 
mainly based on Landsat 5 TM and MODIS data. The MODIS (Moderate Resolution Imaging 
Spectroradiometer) is a sensor, on TERRA (EOS AM) and AQUA (EOS PM) platforms of NASA. 

The Landsat images cover a total surface of 185x185 km2. These images were geometrically rectified, and 
georeferenced considering the ETRS-89 system with UTM projection by the Instituto Geográfico Nacional (IGN). 

For considering the whole SRB in a specified date, the adquisition of the following four images are needed: 199-
33, 199-34, 200-33, and 200-34 (Fig. 7). A lag time between 199-33/1999-34 and 200-33/200-34 will be 
identified. Therefore, it is not possible to study the whole basin for the same date. The Region of Murcia is 
included in the spatial framework of 199-33 and 199-34 images.  



15   

   

For this study, the zones 199-33, 199-34, 200-33 and 200-34 were considered for years 2008 and 2009. 
Some of these images present a high percentage of cloudiness, especially in the case of 2008. For filtering clouds 
a methodology proposed by IGN was considered. This methodology of filtering is based in the difference between 
a reference image and the image to be evaluated (excluding the false positives, fixing a threshold in the thermal 
band). 

Time series of meteorological information (air temperature, relative humidity, atmospheric water vapor, etc.), 
were collected for the same time period form IMIDA and National Agency of Meteorology (AEMET, Agencia 
Estatal de Meteorología). The IMIDA institute is the responsible for management of several meteorological and 
agrometeorological networks, with more than 100 gauging stations in the Region of Murcia (and more than 30 
station of radiation measures). The following Fig. 8, represents the spatial distribution of stations for Region of 
Murcia.  

 

 

  
Fig. 7. Distribution of Landsat images over Spain. Fig. 8. Meteorological stations in the 

Murcia Region. Source: IMIDA on line. 

The dataset was completed including products of MODIS images, provided by TERRA MODIS satellite (NASA), 
corresponding to the same date of TM5 images. The land surface temperature (LST) product presents a spatial 
resolution of 1 by 1 km. The adquisition of MODIS images is free, and these are available by internet 
(http://ladsweb.nascom.nasa.gov/data/). 

Additional spatial information was collected and processed bellow GIS, in the present work, corresponding to 
channel network, UDAs, and administrative limits for SRB. 

 
Estimation of time evolution of NDVI 
Several vegetation indexes were considered, based in the interpretation of space conformed by LST and NDVI. 
Then, the water susceptibility (Giraut et al., 2000) coul be estimated based onc over of plant biomass based on 
NDVI (combination of bands 3 and 4); index of soil dryness (combination of bands 2 and 5), and cover of water 
surface (discrimination of band 7). 

NDVI was derived from reflectance values in the Red (B3) and infrared (B4) region of electromagnetc spectrum 
of TM5 images, as follows: 

NDVI = (B4 -B3) / (B4+ B3)          (27) 

The range of NDVI correspond from -1 to 1, but for this study the range 0 (bare soil) to 1 (soil with maximum 
plant biomass), was considere. Then, negative values represent water. The Fig. 9 shows the spatial distribution of 
NDVI for two dates (14/02 and 24/07 of 2009), in the Region of Murcia. 
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(a) 

 

(b) 

Fig. 9. Spatial distribution of NDVI for Murcia Region, from TM5: (a) 14/02/2009 and (b) 24/07/2009. 

 
Estimation of time evolution of LST 
From band 6 of Landsat, with spatial resolution of 120 m, the LST was estimated. The LST spatial distribution in 
combination with vegetation indexes will be considered in the estimation of indicators related with soil moisture 
(Sandholt et al., 2002) and actual evapotranspiration (Jiang and Islam, 2001). The LST spatial distributions 
from TM5 were contrasted with the LST product provided by MODIS sensor. SPOT images have not present 
thermal band. 

In the following paragraphs, the methodology for the estimation of LST from Landsat, is presented. The 
geometric correction was not needed for Landsat images, because correspond to PNT, and the corrections were 
done. The signals received by the thermal sensors (TM5) can be converted to at-sensor radiance (Lsensor), 
according the corrections proposed by Voogt and Oke (2003): 

(1) Spectral radiance conversion to at-sensor brightness temperature, 
(2) Correction by atmospheric absortion and re-emission, 
(3) Correction by surface emissivity, and  
(4) Correction by surface roughness. 

 
In the case of correction (1), the signal received from thermal sensor could be converted to different parameters for the 
LST estimation,  

biasDNgainLsensor += .
         (28)

 

where Lsensor is the spectral radiance of thermal band, DN is the digital number of a given pixel (in this case, 
each pixel of TM5 band 6), gain is the slope of the radiance/DN conversion function depending of the band 
(for the band 6, the gain is 0.055158), and bias is the intercept of the radiance/DN conversion function, it is 
a constant depending of the band (bias=1.238 for TM5 band 6) 









+

=
1ln 1

2

sensor

sensor

L
K
KT

          (29)
 

where Tsensor represents the at-sensor brightness temperature (K) with K1=607.76 W/(m2sr.μm) and 
K2=1260.56 K as prelaunch calibration constants for TM5 (Landsat Project Science Office, 2002), and Lsensor 
estimated above. 

For obtaining LST, the following steps corresponds to correction (2) to (4), applying the single-channel 
algorithm proposed by Jiménez-Muñoz and Sobrino (2003), must be done. 
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          (32) 

 

where Ts is the LST in K, ε is the ground surface emissivity, c1=1.19104.108 (W μm4m-2sr-1), and c2=14387.7 
(μm K), λ is the effective wave lenght (μm) corresponding to band 6.  

The following equations represent the correction by total atmospheric water vapor content (w in grs/cm2), 
therefore the atmospheric functions (ψ1, ψ2 and ψ3) are depending only of w, particularized for TM/ETM+ 6 
data, as follows, 

1234.115583.014714.0 2
1 +−= wwψ

 
52894.037607.01836.1 2

2 −−−= wwψ
      

39071.08719.104554.0 2
3 −+−= wwψ

       (33) 

 

For the estimation of atmospheric water vapor, external data are needed. In this case, the MODIS Terra Level 
2 Water Vapour product MOD05_L2 (Gao and Kaufman, 1998), could be used because the hour of satellite 
pass throught the Iberian Peninsula  is similar to Landsat. But the MODIS data are available from 2000, 
therefore for previous years the AVHRR sensor of NOAA satellite could be considered.  

However, in the present work the maps of water vapor (grs/cm2) were generated from monthly values 
provided for typical clear days by SoDA Project (http://www.soda-is.com) stations in different parts of the 
Region of Murcia, according to Remund et al. (2003). 

The last step for the estimation of LST from Landsat, is the calculation of the surface emissivity (ε). The ε  
values could be obtained for example based on classification image, based on NDVI image or based on the 
ratio values of vegetation and bare ground (Zhang et al., 2006). In this work, the ε  values are estimated in 
function of NDVI (Valor and Caselles, 1996) as follows,   

    -1   <NDVI< -0.18     ε =0.985 

-0.18  <NDVI<  0.157    ε =0.955 

 0.157<NDVI<  0.727    ε=1.0094+0.047ln(NDVI) 

 0.727<NDVI<    1         ε=0.99          (34) 

 

The Fig. 10 presents an example of the application of the methodology described in the estimation of LST for 
Murcia Region (date 24/07/2009).  
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Fig. 10. Spatial distribution of LST (ºC) for date 24/07/2009 (LSTD20090724). 

 

The results of NDVI and LST derived from TM5, could be compared with the corresponding products from 
MODIS TERRA. In this case, the product MOD11A1 (daily LST with spatial resolution 1x1 km) and product 
MOD09GA (daily reflectances with spatial resolution 500x500 m), could be used. From MOD09GA the 
NDVI is estimated, combining the bands 1 and 2, as NDVI = (B2–B1)/(B2+B1). From the comparison of 
images, the differences detected are neglictible. 

Application of JIC Algorithm derived from the residual method 

An algorithm derived from residual method, proposed by Jiang et al. (2004) or JIC method, was selected. In 
the JIC method, the ETact is based on the direct estimation of evaporative fraction (EF), without estimation of 
Hs, as follows 

)(
)(

GRET N −
+∆
∆

=
γ

φλ          (35) 

where Φ is the evaporative fraction (EF), Δ is the slope of the vapour pressure, γ the psycrometric constant, 

RN is the net radiation, and G is the the flux of soil heat. 

This method require a prior graphical representation and interpretation of LST-NDVI space. This space 
(triangular or trapezoidal form), delimited by the distribution of pixels, has a linear relationship with the 
surface fluxes of energy. Each pixel of the space, presents an specific Φ defined by,  

minmax

max
max LSTLST

LSTLST
−
−

= φφ          (36) 

where Φmax= 1.26 corresponds to bare soil, LSTmax is the maximum LST for NDVI=0, and LSTmin the 
minimum LST. Then, a spatial distribution of Φ es obtained for each date.  

The following equation represents the evaporative fraction (EF),  

)( γ
φ

+∆
∆

=EF
          (37)

 

where the γ psicrometric constant is function of atmospheric presion by the following equation, 



19   

   

P310.665.0 −=γ
          (38)

 

where P is the atmospheric pressure (kPa), depending of height (on normal climatology conditions), as : 







 −

= 8000
0

z

ePP
           (39)

 

where z is the height in meters above sea level, and P0 atmospheric pressure (kPa) at sea level.  

The Δ is the slope of the vapor pressure, is estimated as follows, 
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The maps of relative humidity (HR) and air temperature, are obtained from meteorological stations. The Fig. 
11, presents an example ot HR and Ta maps, for the date 24/07/2009. From these maps, the spatial 
distributions of e* (saturated vapour pressure) and ea (air vapour pressure), were derived. 

 
(a) 

 
(b) 

Fig. 11. Mean daily spatial distribution for Murcia Region: (a) Ta (ºC), and (b) HR. 

The saturated vapour pressure (e*) could be estimated, only depending of surface temperate. And, finally the 
ea is estimated from HR (%) and e*, as follows, 

100
 *eHRea =

           (41)
 

Estimation of net radiation 
The net radiation (RN, Wm-2day-1) is estimated considering ground meteorological data, remote sensing data, 
and topographical attributes derived from a Digital Elevation Model (DEM), applying the  following 
equation,  

↑↓↓↑↓↑↓ ++−=+++= LLsLLssN RRRRRRRR )1( α        (42) 
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where Rs
↓

 and Rs
↑ are downward and upward shortwave solar global radiation respectively, RL

↓
 and RL

↑ are 
downward and upward long wave radiation respectively. They were estimated considering the Stefan Law, 
with the clear sky emissivity calculate from an empirical relationship with ea, and the surface emissivity. 

Estimation of  (Rs
↓
+Rs

↑) shortwave net radiation 
The diffuse, direct (beam) and ground reflected solar irradiation for given day, latitude, surface and 
atmospheric conditions, could be estimated for clear-sky and overcast atmospheric conditions with r.sun 
model below GRASS GIS (GRASS, 2011). Therefore, the term (Rs

↓
+Rs

↑) or net balance of shortwave global 
radiation, is derived from the results of r.sun command.   

The r.sun model considers all relevant input parameters as spatially distributed entities to enable 
computations for large areas with complex terrain (Šúri and Hofierka, 2004). Conceptually the model is 
based on equaions of European Solar Radiation Atlas (ESRA). As an option the model considers a shadowing 
effect of the local topography. The r.sun works in two modes. In the first mode it calculates for the set local 
time a solar incidence angle (degrees) and solar irradiance values (Wm-2). In the second mode, used in the 
present work,  daily sums of solar radiation (Whm-2day-1) are computed within a set day.  

The input data correspond to : 

- A DEM (metres) and topographical attributes such as slope and aspect (both in decimal degrees), are used. 
In this case, a DEM with a spatial resolution of 30 m was considered. The topographical attributes were 
derived from the DEM, applying the GRASS GIS command r.slope.aspect. The following Fig. 12, presents the 
DEM and aspect maps for Murcia Region. 

- Latitude map (decimal degrees, from -90º to 90º), is other map required.  

Then, the spatial distribution of slope and latitude, are presented in Fig. 13. 

 
(a) 

 

 
 

(b) 

Fig. 12. Spatial distributions for Murcia Region: (a) DEM (m), and (b) aspect (grades 

from East). 
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(a) 

 

 
 

(b) 

Fig. 13. Spatial distributions for Murcia Region: (a) slope, and (b) latitude. 

 

- The link turbidity values, through SoDa Webpage (http://www.helioclim.net) were obtained at monthly 
scale for the 34 stations considered in the present study. The spatial distributions of monthly mean turbidity 
were obtained by interpolation  

- The albedo indicates the percentage of irradiation reflected in function of the surface. In this case, the 
spatial distribution of albedo was derived from MODIS MOD43B3 product.  

- The day corresponds to julian day of the year (1 to 365). 

 

From the results of this command, the shortwave net radiation could be estimated from direct, diffuse and 
reflected radiation as follows,  

RN=Rdirect-Rdiffuse-Rreflected          (43) 

Estimation of longwave net radiation   
The longwave net radiation could be estimated by a balance between the radiation emitted by the sky and the 
reflected by earth's surface, as follows,  

44 LSTTRR saaLL σεσε −=− ↑↓

         (44)
 

where σ=5.67.10-8Wm-2K-4, Ta (K), LST (K), and  εa is the emissivity estimated as, 

( ) ( )[ ][ ] 02/1 259.056.0  ó  32.1exp11 eaa +=+−+−= εξξε
      (45) 

a

a

T
e5.46=ξ

           (46)
 

where ea air vapor pressure (kPa). 

The heat flux from the soil G varying along the day, but its value is too small in comparison with RN or λET. 
Therefore in the present work, the G value was not considered. . However, the relation among RN, NDVI and 
G could be estimated by the Moran et al. (1989) equation,  

[ ] 0)13.2(exp583.0 ≈−= NRNDVIG         (47) 

Therefore, the actual evapotranspiration (Wm-2day-1) will be,  
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( )GRET N −
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∆

=
γ

φλ          (48) 

And for the result expressed in mm/day, is needed to divide eq. Xx by 3047.6 factor. 

 

A schema of the developed methodology is presented in Fig. 14, and an example of spatial distributions of RN 

and ETact for the 24/07/09, are presented in  Fig. 15. 

 

 
Fig. 14. Schema of the developed methodology. 

 

 
(a) 

 
(b) 

Fig. 15. Spatial distributions for Murcia Region: (a) RN net radiation (Wm-2day-1), and (b) 

ETact (mm/day). 
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