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Key Points 

 

 In Morocco, blue water resources are overexploited and nearing the limit of ecologically 

sustainable withdrawal. Population growth in the Sebou basin is putting increasing 

pressure on land and water resources. Land use and management changes that are 

taking place are altering the overall water balance, leading to an increase in runoff, 

peak flows, soil erosion and sedimentation of downstream reservoirs. The costs of 

mobilising more blue water are becoming more and more expensive.  

 

 The Sebou basin is the most important agricultural region of Morocco. It has relatively 

well-developed social and economic infrastructure. Only 25% of the basin’s drainage 

area is covered with natural vegetation. Since the lower basin consists of a coastal 

plain, large-scale irrigation schemes have been developed in the Rharb plain. The 

upstream part of the basin supports a large population of rainfed farmers offering 

significant opportunities for improved green water management practices. 

 

 The main advantage of using the SWAT model for the exploration of GWC in the Sebou 

basin is that it uses a physical-based rainfall-runoff scheme. This guarantees more 

reliable scenario simulations where there are only poorly gauged catchments. 

Furthermore, the model is primarily focused on the interaction between land 

management versus water-and erosion processes.  

 

 The crops with the highest potential to respond to the implementation of green water 

management practices are those that are cultivated in the upstream areas. These are 

the rainfed crops of wheat, barley and broad beans.  

 

 A selection was made of three management practices from the WOCAT database that 

have shown large potential in previous GWC assessments. These were: 

1. Stone lines (cordons de pierres) 

2. Bench terraces (banquettes) 

3. Contour tillage 

 

 It was concluded that all three green water management scenarios, in addition to their 

direct benefits to upstream farmers for the selected crops, result in a decrease in 

sediment inflow into the three reservoirs. Sediment inflow decreases by 22% for Allal 

El Fassi, by 14% for Al Wahda, and by 18% for Idriss 1 Er.  

 

 The following data gaps were identified during this phase and are being addressed: 

 A more detailed land use dataset is in preparation with the Moroccan counterparts 

and should be included in a consequent follow-up analysis. 

 Currently only the northern and western parts of the basin are covered by a 

detailed soil map: similar maps should be obtained for the remainder of the basin. 

 More detailed information on overall agricultural practice is needed to enhance the 

reliability of the assessment of the green water management measures. 
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1 Introduction 
 

1.1 Context 

In Morocco, blue water (see Figure 2 for the concept of GWC and definitions) resources are 

overexploited and nearing the limit of ecologically sustainable withdrawal of ground and surface 

water. Population growth in the Sebou basin, Morocco, is putting increasing pressure on land 

and water resources. Land use and management changes that are taking place are altering the 

overall water balance, leading to an increase in runoff, peak flows, soil erosion and 

sedimentation of downstream reservoirs, and thus reducing water availability throughout the 

watershed. Flooding and pollution have been identified as the major issues in the Sebou river 

basin. The costs of mobilising more blue water are becoming more and more expensive and are 

nearing the limit of economic viability.  

 

A mind-shift is necessary regarding the way we think about water and agriculture. Instead of a 

narrow focus on utilisation of river and groundwater, it is important to be aware that precipitation 

is the ultimate source of water that can be managed. There is high potential to improve the use 

and management of rainwater in upstream rainfed agriculture: this is termed green water 

management. Current land management practices by farmers show loss of rainwater by (i) large 

quantities of surface runoff, enhancing both flash floods and erosion (Figure 1), and (ii) high 

losses of water by evaporation, directly from the bare soil. 

 

 
Figure 1: Example of land erosion due to surface runoff. 

 

The knowledge and the tools to improve upstream management and land use in arable, range 

and forest areas are available, but these need to be more widely implemented. Upstream land 

users can effectively provide rainwater management services to water users downstream, to 

improve the available blue water resources in terms of quantity and quality. 

 

The implementation of green water management options can enhance water availability, but 

farmers need incentives to put them in place. At the same time, downstream users may be 

unaware of the benefits they can gain through farmer implementation of these measures in 

upstream areas.  

 

This report builds on the Proof-of-Concept assessment that evaluated the possibilities for Green 

Water Credits in the Sebou river basin in Morocco. In the first mission to Morocco in April 2009, 

interest in the Proof-of-Concept phase was explored on the basis of basin identification (Green 
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Water Credits, Work Plan, 2010). This indicated that the Sebou river basin offered scope to 

implement a Green Water Credits programme. The choice of the Sebou river basin was 

acknowledged in the Steering Management Committee (SMC) meeting in Rome in July 2009. 

This project will be supported under IFAD’s Large Grant Green Water Credits Pilot Operations. 

 

 
Figure 2: Green Water Credits: the concept. 

 

The overall goals of GWC are to enable rural people to better manage land and water resources 

leading to benefits including: 

 Enhanced water flows; 

 Reduced erosion and siltation of reservoirs 

 Mitigation of floods; 

 Mitigation of droughts; 

 Mitigation of climate change impacts.  

 Improved food and water security and public health;  

 Improved local resilience to economic, social and environmental change by asset 

building (stable soils, improved water resources, reduced rate of poverty, and 

diversification of rural incomes); 

 

A study was undertaken for the implementation of GWC within the Tana basin in Kenya (Hunink 

et al. 2009). The analysis of this basin showed that the implementation of GWC could 

significantly reduce problems related to the growing demands for hydropower generation, and of 

both municipal water utilities, and irrigators. Different green water management options were 

analysed, which showed that considerable improvements could be obtained in terms of water 

security for both upstream as well as downstream stakeholders. 

 

1.2 Basin characterisation 

1.2.1 Basin selection 

The choice for the Sebou river basin for the implementation of GWC was acknowledged in the 

Steering Management Committee meeting in Rome in July 2009. The GWC objectives are in 

line with Morocco’s Green Plan (Plan Maroc Vert), as the plan seeks a balance between 

irrigated and rainfed agriculture, the latter being the target of GWC. The plan aims at boosting 
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market-oriented agriculture that should improve the livelihoods of smallholders and subsistence 

farmers, which is also a target of the GWC. 

 

1.2.2 Basin overview 

The Sebou river basin (Figure 6), with a total area of 39,021 km
2
, is one of Morocco’s most 

important river basins. The Sebou river begins amongst scattered lakes in the cool oak and 

cedar forests of Morocco’s Middle Atlas range. The basin contributes 30% of the national 

potential of surface water resources and 20% of the groundwater resources. Sometimes this 

basin is referred to as Oued Sebou or River Sebou. The river runs north through overgrazed 

scrub and grasses of the Atlas foothills to meet with the Oued Fes, near the historic city of Fes. 

From there, it winds through one of the most populated areas of Morocco, supplying water to 

irrigate fields of rice, wheat and sugar beet as well as supporting olive groves and vineyards. 

This lower course of the river is artificially connected by the Nador canal to one of the most 

important wetlands of North Africa: the Merja Zerga lagoon. 

 

The basin can be divided into three distinct geomorphic regions: the upper, mid, and lower 

Sebou (Snoussi et al. 2002). The upper Sebou raises above 2800 m in the Middle Atlas 

mountains and is underlain mainly by calcareous rocks. Mean annual precipitation is above 

1000 mm, and at high elevations winters are snowy. The mid-Sebou basin is located in the Rif 

and pre-Rif mountains, which are characterised by an average altitude of 2000 m, very steep 

slopes, and a strong rainfall gradient across the basin. Ouerrha and Inaouene are the major 

tributaries of the Sebou draining the Rif and pre-Rif mountains. At the lower basin, the Sebou 

opens into a wide valley where it meanders through a floodplain. The mean annual rainfall is 

about 600 mm in the west and 450 mm in the southeast. 

 

The Sebou basin is the most important agricultural region of Morocco. It has relatively well-

developed social and economic infrastructure. Only 25% of the basin’s drainage area is covered 

with natural vegetation. Since the lower basin consists of a coastal plain, large-scale irrigation 

schemes have been developed in the Rharb plain. The main crops grown are cereals, 

vegetables, olive, sugar beet, citrus, and grapes (Snoussi et al. 2002). The upstream part of the 

basin supports a large population of rainfed farmers (Figure 3), offering significant opportunities 

for improved land and water management in agricultural and forest land. 

 

 
Figure 3: Percentage of land use (Green Water Credits, Work Plan (2010)). 

 

A total of 6.7 million people live in the basin (23% of Morocco’s population), of which 57% live in 

rural areas. Most of the population is concentrated in the urban centres of Fès, Meknés, Kénitra, 

Taza, in the agricultural plains of Saïs, Gharb and Mnasra, and to a minor extent, in the forestry 

and pastoral areas of the Middle Atlas, the Rif and the pre-Rif.  
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Faced with a rapidly growing urban population of 3.0% per year, the Moroccan authorities, 

along with local actors and the international community, are searching for innovative 

approaches to address the interrelated issues of water scarcity, poverty and environmental 

degradation in the Sebou basin. Pressure to secure the growing demands for water for 

domestic consumption, industry and agriculture is particularly high in the densely populated 

basin of the Sebou river. 

 

 
Figure 4: Past and future population growth (data source: PDAIRE, 2005). 

 

Another major problem recognised in the basin is the massive deforestation and associated 

land degradation which has several negative impacts: these include siltation of dams, loss of 

arable land, and flooding. These problems are especially relevant in the high mountain areas of 

the Middle Atlas and the Piedmont area. Localised, intense precipitation, especially in summer 

or fall, cause damage to fields, erosion of fertile land, and give rise to hazardous flood levels in 

the rivers. Prolonged floods also occur, affecting downstream areas. These harmful events have 

most likely become more frequent in recent years due to the continuing land use changes in the 

mountain areas. 

 

 
Figure 5: The Sebou river basin in a nutshell. 

 The Sebou River Basin in northern Morocco runs roughly 500 kilometers, from the Middle Atlas 

Mountains in the east to the Atlantic Ocean in the west. The area of the basin is 39,021 square 

kilometers. 

 

 The Sebou water resources potential is about 5.6 billions of cubic meters, representing 28% of the 

national potential. This basin possesses large agricultural potential: a total agricultural area of 1.8 million 

hectares, of which 357,000 ha are irrigated. The Sebou basin includes various industrial, touristic and 

handicraft activities. 

 

 The Sebou Basin Hydrological Agency (ABHS) faces many challenges: 

o Droughts which are becoming increasingly regular 

o Flooding 

o Groundwater depletion through overexploitation  

o Pollution 

o Watershed erosion and dams silting up 

o Poor efficiency of the water distribution systems 

o Under-developed irrigation potential with respect to the command area of dams  
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1.2.3 Water balance 

A rough estimate of the water balance of the Sebou river basin is shown in Table 1, derived 

from previous studies (Green Water Credits, Work Plan 2010), which shows that runoff to rivers 

and reservoirs is 18% of the annual rainwater, and groundwater recharge is 5%. So far, efforts 

in improved water management have mainly directed at harnessing blue water in reservoirs that 

currently have a storage capacity of 24% of the annual rainfall. The total amount of green water 

(evapotranspiration) is 77% of the total annual rainfall, which is a “target for improvement” under 

the GWC programme.  

 

Table 1: The Sebou estimated water balance (Green Water Credits, Work Plan 2010)
1
 

Water flux Quantity (Mm
3
) Quantity (%) 

Precipitation 24,000 100 

Green water (ET) 18,500 77 

Runoff 4,160 18 

Groundwater 1,300 5 

 

 
Figure 6: The Sebou river basin (red line) in Morocco. 

                                                      
1
 ABHS and WWF (2009) SPI-Water: Etat des lieux du bassin du Sebou 
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2 Methodology 

2.1 Model selection 

The circulation of water within the earth and atmosphere is a complex mechanism of energy 

exchange and different ways of transportation. A schematisation of the different processes 

involved in the water cycle is shown in Figure 7. Hydrological models are a tool to simulate 

these paths of water movement under different conditions. They are used to study, for example, 

the impact of climate change on water availability, the impact of land use change on river 

discharges, and the impact of (agricultural) management strategies on water availability and 

sediment yield. 

 

 
Figure 7: Schematisation of the global water cycle. 

 

Currently, a huge number of hydrological models are available to analyse soil-water 

relationships at the field and catchment/basin level. For the current study, the Soil and Water 

Assessment Tool (SWAT) (Gassman et al. 2007) was chosen to evaluate the impact of crop-

land-soil management on downstream water and sediment flows. SWAT was chosen because it 

is a basin-scale model, which is able to quantify the impact of land management practices in 

large, complex watersheds. 

 

The main advantage of SWAT for the exploration of GWC in the Sebou basin is that SWAT 

uses a physical-based rainfall-runoff scheme, instead of a purely data-based statistic or 

conceptual scheme. This guarantees more reliable scenario simulations and better performance 

in poorly gauged catchments, which is essential for a study at this scale. Besides, the model is 

primarily focused on the interaction between land management versus water-and erosion 

processes. This makes the tool appropriate for this study, as it is able to represent and simulate 

the impact of land management practices on basin-scale water and sediment yields.  
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In brief, strong aspects of the SWAT model that make it suitable for the current project can be 

summarised as: 

 Physical-based rather than parametric-based rainfall-runoff scheme to ensure more 

reliable scenario simulations. 

 Focus on water-erosion-land management processes. 

 Public domain, including source code. 

 User-friendly interface. 

 Large user-group worldwide. 

 Excellent documentation, including training materials. 

 Consortium’s extensive experiences in application as well as training. 

 Modelling experience with previous Green Water Credits assessments (Kauffman et al. 

2007; Hunink et al. 2009). The relevant components of SWAT for this study will be 

described in the following paragraphs. 

 

2.2 The agro-hydrological model SWAT 

SWAT is a river basin model developed originally by the USDA Agricultural Research Service 

(ARS) and Texas A&M University and is currently one of the world’s leading spatially distributed 

hydrological models. 

 

A distributed rainfall-runoff model – such as SWAT – divides a catchment into smaller discrete 

calculation units for which the spatial variation of the major physical properties are limited and 

hydrological processes can be treated as being homogeneous. The total catchment behaviour 

is a net result of manifold small sub-catchments. The soil map and land cover map within sub-

catchment boundaries are used to generate unique combinations, and each combination will be 

considered as a homogeneous physical entity, namely a Hydrological Response Unit (HRU). 

The water balance for HRUs is computed on a daily time basis. Hence, SWAT disaggregates 

the river basin into units that have similar characteristics in terms of soil, land cover, and that 

are located in the same sub-catchment. 

 

 

 
Figure 8: Main processes as implemented in the SWAT model. 

 

Irrigation under SWAT can be scheduled by the user, or automatically determined by the model 

depending on a set of criteria. In addition to specifying the timing and application amount, the 
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source of irrigation water must be specified, which can be canal water, a reservoir, a shallow 

aquifer, a deep aquifer, or a source outside the basin.  

 

SWAT can deal with standard groundwater processes (Figure 8). Water enters groundwater 

storage primarily by infiltration/percolation, although recharge by seepage from surface water 

bodies is also included. Water leaves groundwater storage primarily by discharge into rivers or 

lakes, but it is also possible for water to move upward from the water table into the capillary 

fringe, i.e. capillary rise. As mentioned before, water can also be extracted for irrigation 

purposes. SWAT distinguishes recharge and discharge zones. 

 

Recharge to unconfined aquifers occurs via percolation of excessively wet root zones. 

Recharge to confined aquifers by percolation from the surface occurs only at the upstream end 

of the confined aquifer. Where the geologic formation containing the aquifer is exposed at the 

earth’s surface, flow is not confined, and a water table is present. Irrigation and link canals can 

be connected to the groundwater system; this can be an effluent as well as an influent stream. 

 

After water has infiltrated into the soil, it can leave the ground again as lateral flow from the 

upper soil layer – which mimics a 2D flow domain in the unsaturated zone – or as return flow 

that leaves the shallow aquifer and drains into a nearby river (Figure 9). The remaining part of 

the soil moisture can feed into the deep aquifer, from which it can be pumped back. The total 

return flow thus consists of surface runoff, lateral outflow from root zone and aquifer drainage to 

river. 

 

 
Figure 9: Schematisation of the SWAT sub-surface water fluxes. 

 

For each simulation day, potential plant growth, i.e. plant growth under ideal growing conditions 

is calculated. Ideal growing conditions require adequate water and nutrient supply and a 

favourable climate. First the Absorbed Photosynthetical Radiation (APAR) is computed from 

intercepted solar radiation, followed by a Light Use Efficiency (LUE) that, under SWAT, is 

essentially a function of carbon dioxide concentrations and vapour pressure deficits. The crop 

yield is computed as the harvestable fraction of the accumulated biomass production across the 

growing season (Figure 10). 
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Figure 10: Parameterisation of crop production in SWAT 

 

2.3 Data needs 

An overview of the data required to perform the biophysical assessment is provided in Figure 

11. The datasets were requested and obtained from the Moroccan counterparts and evaluated, 

as described in the following sections. In addition, the remainder of the data necessary for the 

schematisation of the model was obtained from global public domain datasets.  

 

It was discussed with the local counterparts that the time resolution of the climate-data needs to 

be daily data. These data need to be from various weather stations, well-distributed throughout 

the basin, both from mountain areas as well as downstream locations. 

 

 
Figure 11: Diagram of required data and modelling components for the GWC Bio-

physical Assessment for the Sebou basin. 

 

The following sections will describe the datasets that have been evaluated and prepared for the 

assessment. The main datasets that are discussed are: 

- Digital elevation model 

- Climate 

- Land use and management 

- Soils 

- Streamflow 

- Reservoirs 
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3 Baseline Datasets 
 

 

For the Green Water Credits concept it is crucial to fully understand and quantify the up- and 

downstream interactions in terms of water flows and sediment transport. Consequently good 

data on the interfering variables of the current situation are needed and must be analysed with 

the appropriate tool. As was mentioned before, the SWAT model is used in this study to analyse 

the impacts of land use management strategies on the water and sediment dynamics in the 

Sebou river basin. 

 

The current chapter describes the available datasets which were used to build-up the distributed 

hydrological model in the Sebou river basin. Different datasets are available, which are 

compared and evaluated in order to make an appropriate dataset selection to obtain optimal 

accuracy in the quantification of the interactions relevant for the scope of Green Water Credits. 

 

3.1 Digital Elevation Model  

The basis for the delineation of a watershed in SWAT is a Digital Elevation Model (DEM). Digital 

elevation data were obtained from the Shuttle Radar Data Topography Mission (SRTM) of 

NASA’s Space Shuttle Endeavour flight on 11-22 February 2000. SRTM data were processed 

from raw radar echoes into digital elevation models at the Jet Propulsion Laboratory
2
 (JPL) in 

California.  

 

Currently, SRTM data at a spatial resolution of 3 arc-second (90 meters) are available for global 

coverage between latitude 60 degrees North and 56 degrees South. This product consists of 

seamless raster data and is available in geographic coordinates (latitude/longitude), and is 

horizontally and vertically referenced to as the EGM96 Geoid (Lemoine et al. 1998). The SRTM-

DEM data were obtained using the Data Distribution System of CIAT (http://srtm.csi.cgiar.org/) 

where the original DEMs were further processed to fill in these no-data voids. This involved the 

production of vector contours and points, and the re-interpolation of these derived contours 

back into a raster DEM. These interpolated DEM values are then used to fill in the original no-

data holes within the SRTM data. These processes were implemented using Arc/Info and an 

Arc Macro Language AML script. The DEM was resampled to the Lambert Conformal Conic
3
 

projection with a resolution of 250 m using a bilinear algorithm. Finally it was clipped to the 

boundary of the basin, and sink were filled using the method of Tarboton et al. (1991) with a 

threshold of 20 m.  

 

This DEM is shown in Figure 12 for the Sebou river basin in Morocco. Based on this DEM, we 

note that the elevations in the basin range between 0 and 2921 m.a.s.l. Large elevation 

differences are found in the south-eastern and north-eastern part of the basin, which belong to 

the Atlas mountain range.  

 

                                                      
2
 http://www2.jpl.nasa.gov/srtm/ 

3
 http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Lambert_Conformal_Conic 

http://srtm.csi.cgiar.org/
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Figure 12: Digital Elevation Model (DEM) of the Sebou river basin at a spatial resolution 

of 250 m. 

 

3.2 Climate 

3.2.1 Data needs 

SWAT requires daily rainfall data, as well as other meteorological input data that depend on the 

evapotranspiration method used. Several methods are available to calculate the potential 

evapotranspiration. The most advanced method available, the Penman-Monteith method 

(Monteith et al. 1965), requires data on temperature, solar radiation, wind speed, and humidity 

for the calculation of the spatially distributed potential evapotranspiration rates. For this phase, 

the Hargreaves method (Hargreaves et al. 1985) was used for the calculation of the potential 

evapotranspiration, because the variables solar radiation, wind speed, and relative humidity 

were not available at a high spatial resolution. 

 

Various sources for precipitation and temperature data were evaluated, as described in the 

following section. 

 

3.2.2 Data sources 

3.2.2.1 Locally obtained climate data 

For the Proof-of-Concept phase of Green Water Credits, local data were obtained from 32 

meteorological stations in the basin (Figure 13). These data were provided by the Agence Du 

Bassin Hydraulique Du Sebou ABHS. More stations were available, but these did not cover a 

sufficient period of time. In addition to this, these stations also contained many missing records. 

The 32 stations selected provide a continuous time-series of daily precipitation for the period 

1998-2007. As can be noticed from Figure 13, the network of stations is quite dense and also 
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providing daily precipitation data in the mountainous regions. These stations cannot be used for 

temperature data because they only provide a daily average temperature. For SWAT a daily 

maximum and minimum temperature is necessary to calculate evapotranspiration. 

 

 
Figure 13: Locations of the GSOD stations, TRMM grid-cells, and ABHS stations. 

 

3.2.2.2 TRMM 

A world-wide used source of precipitation data is the Tropical Rainfall Measuring Mission
4
 

(TRMM). TRMM is a satellite with active precipitation radar on-board and has the following 

characteristics: 

 Data is available at a high spatial resolution of 0.25 degrees (approx. 25 km) 

 Data is available from 1998 onwards 

 

It is known that in the first years after launching TRMM, the precipitation data was less accurate. 

For this reason we have selected the period from 2001 onwards. For the current study, daily 

TRMM precipitation data has been downloaded for the period 2001-2010. The locations of the 

TRMM grid points are shown in Figure 13. 

 

                                                      
4
 http://trmm.gsfc.nasa.gov/data_dir/data.html 



 

21 

3.2.2.3 GSOD 

Meteorological data from weather stations all over the world can be found at the public domain 

Global Summary of the Day (GSOD
5
) database archived by the National Climatic Data Center 

(NCDC
6
). This database offers a substantial number of stations with long-term daily time-series. 

The GSOD database submits all series (regardless of origin) to extensive automated quality 

control. Therefore, it can be considered as a uniform and validated database in which errors 

have been eliminated. For the current study, four active stations located within the Sebou river 

basin were extracted from the GSOD database for the period 2001-2010. The characteristics of 

these four stations are described in Table 2. The locations of these meteorological stations are 

presented in Figure 13. A shortcoming of these four stations is that their location is more or less 

in the same climatic zone, while no weather stations could be found in the higher mountain 

areas. 

 

Table 2: Characteristics of the GSOD meteorological stations. 

Station name Elevation(m.a.s.l) Data 

Fes 579 01/01/2001 to 31/12/2010 

Taza 510 01/01/2001 to 31/12/2010* 

Rabat 79 01/01/2001 to 31/12/2010 

Meknes 560 01/01/2001 to 31/12/2010 

* Empty records of Taza are filled with records from Fes. 

 

3.2.2.4 Data availability 

As described in the foregoing paragraphs, three sources of data are available for this study. The 

characteristics of these data sources are described in Table 3. As can be seen from this table, 

only the GSOD data provides maximum and minimum temperature on a daily basis. All three 

data sources as described in Table 3 provide precipitation data on a daily basis. The TRMM 

satellite precipitation data provides the highest spatial resolution, and this is desirable for 

hydrological modelling. Because the GSOD dataset is quality-checked precipitation data, it is 

likely that this is the most accurate source. However, it is only based on four stations, and 

therefore it cannot be used for hydrological modelling. It can, however, be used for quality 

evaluation of the TRMM precipitation data. The ABHS precipitation data can also be considered 

as coming from a reliable source, because it is locally obtained within a relatively dense 

network. For hydrological modelling high resolution precipitation data is preferred. Therefore we 

have corrected the TRMM precipitation data, using the daily ABHS station data. The method of 

correcting the TRMM precipitation data is described in Section 3.2.3. 

 

                                                      
5
 http://climate.usurf.usu.edu/products/data.php?tab=gsod 

6
 http://www.ncdc.noaa.gov/oa/ncdc.html 
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Table 3: Characteristics of the different meteorological data sources. 

Name Type Format Temporal 

resolution 

Nr. 

stations* 

/spatial 

resolution 

Availability Variables 

ABHS Observed Station Daily 32 1998-2007 P, T* 

GSOD Observed Station Daily 4 1980-

present 

P, Tmax,Tmin 

TRMM Satellite 

precipitation 

Grid Daily 0.25° 1998-

present 

P 

* Only the monthly maximum and minimum temperature was available. For a couple of stations daily average 

temperature was available. 

 

3.2.3 Correction of TRMM satellite data 

The 32 ABHS stations provide a continuous time-series of daily precipitation for 1998-2007. 

TRMM satellite data was selected for the period 2001-2007, because the first years of TRMM 

(1998-2000) are less accurate. This results in the overlapping period 2001-2007 which can be 

used to adjust TRMM. For the TRMM grid-cells and the ABHS stations, the average monthly 

precipitation sums were first calculated based on the period 2001-2007. This results in 12 files, 

both for the TRMM grid cells (point B, Figure 14) and for each of the stations. Secondly, for 

each month the 32 stations were interpolated to the same spatial resolution as TRMM, using 

Ordinary Kriging (Burrough 1986). This results in 12 interpolated grids (one for each month) 

(point A, Figure 14), having the same resolution as TRMM. Thirdly, a correction factor (C) was 

calculated for each month by dividing the interpolated station precipitation (A) by the TRMM 

precipitation grid (B). Finally, the daily TRMM precipitation data for the period 2001-2010 was 

multiplied by the correction factor grid (C) for that specific month to calculate the corrected 

precipitation grid for that day. All these steps are shown in Figure 14. The calculation of the 

monthly correction factor C, for August, is illustrated in Figure 15. 

 

 

Figure 14: Steps for correcting TRMM precipitation data. 
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Figure 15: Illustration of calculating the correction factor C for August. A represents the 

interpolated station grid for August. B represents the TRMM precipitation grid for 

August, and C represents the correction grid for August. 

 

3.2.4 Climate data evaluation 

3.2.4.1 Other studies 

The Sebou basin is generally classified as having a Mediterranean climate; however, it naturally 

varies between seasons and regions. While the coastal areas are still influenced by the south-

west trade winds, the inland areas are more continental with cold winters and hot summers. The 

climate in the mountain peak areas of the Atlas and the Riff changes dramatically with snow 

cover most of the year. The winter period, between October and April, is known to be the rainfall 

season, while the remaining months are mainly dry. The main agro-climatic zones of the Sebou 

river basin are shown in Figure 16. 
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Droogers and Immerzeel (2008) analysed precipitation and temperature data of the WMO
7
 

Meknes meteorological station for the period 1997-2006. They concluded that temperatures 

range from 10°C during winter up to roughly 25°C during summer. Precipitation from June to 

September is very low. An interesting result from the WMO dataset is that the year-to-year 

variation in precipitation can be substantial, and ranges from 300 to about 600 mm (Figure 17). 

 

 
Figure 16: Main agro-climatic zones based on the balance between precipitation and 

evapotranspiration. The Sebou encompasses five main climatic zones ranging from 

moist sub-humid to arid (Fischer et al. 2002). 
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Figure 17: Annual precipitation (WMO), Meknes station for 1997-2006. 

                                                      
7
 http://worldweather.wmo.int/ 
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3.2.4.2 Evaluation of corrected TRMM precipitation 

Daily TRMM precipitation was corrected as described in Section 3.2.3. To evaluate the 

performance of the correction method, monthly precipitation sums of GSOD, uncorrected 

TRMM, and corrected TRMM were compared for four locations: Fes, Meknes, Rabat, and Taza. 

Each of these four locations has a GSOD station, as well as a corresponding TRMM grid-cell 

which was used for the evaluation. The monthly precipitation sums of these locations are shown 

in Figure 18 for the period 2001-2007. As can be seen from this figure, corrections are largest 

during winter months. The overall conclusion is that TRMM was too dry, and therefore it was 

corrected to become wetter for most months. Corrections were especially large for Taza, where 

the uncorrected TRMM was far too dry during winter months.  

 

The corrected annual precipitation sums for these four locations are shown in Figure 20. It is 

clear that the year-to-year variation can be large. 2005 is known to have been a very dry year. 

The years 2009-2010 were extremely wet. This period had many floods and all the dams in the 

reservoir experienced spill during these years (ABHS 2010). According to the ABHS (2010), 

rainfall in this extremely wet period reached 2739 mm in the Rif and between 700 and 900 mm 

in the other areas and sub-catchments. 

 

 
Figure 18: Average monthly precipitation sums of GSOD, TRMM, and corrected TRMM for 

the period 2001-2007. 
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Figure 19: Flood in the Sebou basin during 2009-2010 (ABHS, 2010). 

 

 
Figure 20: Annual precipitation for Fes, Meknes, Rabat, and Taza for 2001-2010. 
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3.3 Land use 

3.3.1 GlobCover dataset 

GlobCover
8
 is an ESA initiative in partnership with JRC, EEA, FAO, UNEP, GOFC-GOLD and 

IGBP. The GlobCover project has developed a service capable of delivering global composite 

and land cover maps, using observations from the 300 m MERIS sensor on board of the 

ENVISAT satellite mission as input. The GlobCover service was demonstrated over a period of 

19 months (December 2004 - June 2006), for which a set of MERIS Full Resolution (FR) 

composites (bi-monthly and annual), and a Global Land Cover map were produced. 

 

The GlobCover composites are derived from a set of processed MERIS FR images, such as 

cloud detection, atmospheric correction, geo-localisation, and re-mapping. The GlobCover Land 

Cover map is compatible with the UN Land Cover Classification System (LCCS). 

 

The use of medium resolution data provides a considerable improvement in comparison with 

other global land cover products, which have a lower spatial resolution, e.g. the GLC2000 

dataset. The quality of the GlobCover product, however, is closely dependent on the reference 

land cover database, which is used for the labelling process, and on the number of valid 

observations available as input. When the reference dataset is of high spatial resolution with a 

high thematic detail, the GlobCover product also shows a high accuracy. On the other hand, the 

number of valid observations is a restrictive factor. The spatial coverage of the MERIS data 

clearly determines the quality of the temporal mosaics, and therefore of the land cover map. 

The GlobCover land use classification map for the Sebou river basin is shown in Figure 21. The 

GIS section of the ABHS provided irrigation extents of all known large-scale irrigation areas in 

the Sebou river basin. Unfortunately, there is currently no record available for areas where 

landowners provide irrigation based on non-registered or private irrigation wells. 

 

 
Figure 21: The GlobCover land use classification for the Sebou river basin. 

                                                      
8
 http://www.esa.int/esaEO/SEMGSY2IU7E_index_0.html 
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3.3.2 Forest Cover dataset 

The Ministry of Forestry of Morocco possesses a map of Forest Types
9
 in Morocco, which was 

extracted for the Sebou river basin. This map is shown in Figure 22. 

 

 
Figure 22: Forest types in Morocco (source: Ministry of Forestry of Morocco). 

 

3.3.3 SPAM 

SPAM (You et al. 2009) delivers disaggregated agriculture statistics based on a cross entropy 

approach utilising national or sub-national administrative regions statistics together with crop-

specific suitability information based on local climate and soil conditions and land use. We 

reclassified the SPAM dataset to delineate major harvested area for the Sebou basin, as 

detailed information of the crop distribution at the time was missing. Based on this map, we 

adjusted boundaries to large-scale topographic differences. A map of the five different cropping 

regions is given in Figure 23. 

 

                                                      
9
 http://www.eauxetforets.gov.ma/fr/text.aspx?id=993&uid=23 
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3.3.4 Processing of land use data 

The development of land use data was done in an automated way using a script in the “Python 

programming language”, in which the following steps were performed: 

 All datasets were re-projected into the Lambert Conformal Conic projection; 

 The datasets were converted into 250 m grids, using nearest neighbour resampling; 

 The datasets were clipped into the basin border; 

 The Forest Cover and GlobCover dataset were reclassified according to the SWAT data 

model land use descriptions; 

 It was assumed that the forest dataset represents the local conditions more accurately. 

Therefore any gap in the forest dataset was filled with information from the GlobCover 

dataset; 

 Finally, information was added from the irrigation extent as well as from the major crop 

type dataset (Figure 23). 

 

Due to administrative regions in the downscaling methodology, based on the SPAM dataset in 

which the dominant crop types were extracted, sharp boundaries exists. To accommodate for a 

more realistic image of crop distribution in the Sebou basin, the boundaries were adjusted 

based on topography, which led to (at least visually) a more realistic crop distribution pattern. 

This additional step resulted in the final SWAT land use map as is shown in Figure 24. The 

corresponding total areas for each land use class are represented in Table 4. For future 

elaboration, more research and a more detailed input are needed, which then can delineate 

crop patterns in a more precise manner for the second and third phase. 

 

For future elaboration during Phase II, local land use data should be obtained from different 

Agencies (OFRE, Ministry of Agriculture) to represent the most accurate and detailed ground 

truthing available. Still, the problem persists, that a complete coverage of the Sebou basin might 

probably not be achieved and therefore a data aggregation combined approach is needed, 

similar to the one implemented under the current approach. As long as local data are available, 

they will override any information provided by global datasets. 
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Figure 23: Estimated major crop regions in the Sebou river basin with the boundaries 

adjusted to topographic differences based on the global SPAM dataset.  
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Figure 24: Land use map as used in the SWAT model. 

 

Table 4: Total area of each land use class 

Land use class Area (km
2
) % of total area 

Bare soil 117 0.3% 

Barley rainfed 1249 3.2% 

Broad beans irrigated 234 0.6% 

Broad beans rainfed 2497 6.4% 

Forest deciduous 624 1.6% 

Forest evergreen 5034 12.9% 

Forest mixed 1561 4.0% 

Olives irrigated 8 0.02% 

Olives rainfed 3473 8.9% 

Plantation 195 0.5% 

Range brushes 3629 9.3% 

Range grasses 1522 3.9% 

Urban 468 1.2% 

Open water 234 0.6% 

Winter wheat irrigated 3317 8.5% 

Winter wheat rainfed 14,906 38.2% 

Total 39,068 100% 



 

32  

3.4 Soils 

3.4.1 Data sources 

The Sebou river basin is covered with different soil datasets from different scales and more 

importantly, various attributes. From a global perspective, the Harmonized World Soil 

Database
10

 (HWSD) is available for the whole world. Its aim is to provide improved soil 

information worldwide, particularly in the context of the UN Framework Convention on Climate 

Change (UNFCCC) and the Kyoto Protocol for soil carbon measurements, and for the 

FAO/IIASA Global Agro-Ecological Assessment study (Fischer et al. 2008). While this database 

is rather quite coarse, it contains most of the parameters that are required in the SWAT model.  

 

For Morocco, we are aware of three different products which would be suitable:  

1. A soil map at the scale 1:2 million, covering almost the entire area in digital format and 

containing soil names; 

2. Two map sheets at the scale 1:500,000 (source: INRA
11

). These maps, however, do not 

cover the Sebou area completely. These maps are only available in analogue format, 

with only soil names for the attributes; 

3. Pending results from the e-SOTER project
12

. While these map sheets/datasets contain 

significantly more spatial detail with respect to the HWSD, the only attribute information 

currently available is the soil name. 

 

The dominant soils in the Sebou river basin are shown in Figure 25. 

 

 
Figure 25: Dominant soils (scale 1:2 million) in the Sebou river basin, Morocco. 

 

Soil resources for the Sebou basin are available at various scales and resolutions, however we 

had significant problems with INRA in obtaining digital data sources (see Figure 26). 

                                                      
10

 http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ 

11
 http://www.inra.org.ma/accueil1.asp?codelangue=23&po=2 

12
 http://www.esoter.net/ 
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Figure 26: Analogue Soil Map at the scale of 1:500,000 for the southern part of the Sebou 

basin. 

 

Despite these difficulties we were able to obtain: 

 A soil map with soil units classifications for the Gharb region; 

 A soil map with soil profiles for the northern area (Figure 27) of the Sebou for the 

Basins Versant De Lóued Ouergha as well as Amont du barrage al Wahda on a scale 

of 1:100,000. 

 

 
Figure 27: Soil Map for the north-eastern part of the Sebou basin. 
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3.4.2 Processing of soil data 

Soil profiles from the 1:100,000 soil map were brought into digital format and were assigned as 

reference profiles to the soil units found in the 1:100,000 soil map.  The properties of the soil 

units from the Gharb catchment were translated from the French system into the FAO system 

FAO 1974, based on expert estimates from similar soils as observed in the WISE database. 

These properties represent a high level of uncertainty, but they are the best guess taking into 

account missing data from INRA. 

 

To fill the remaining gaps and to achieve the best spatial and attribute detail, we used data from 

the Moroccan 1:2 million soil map, and extended the polygons using data from the HWSD, 

where soil polygon data were missing. Initially we sought to use a taxo-transfer rule-based 

procedure, which heavily draws on soil analytical data held in the ISRIC-WISE soil profile 

database. Currently, however, there were not sufficient profiles to allow such a procedure. 

Therefore we assigned the attributes based on the soil names in the FAO1974 classification 

from the HWSD. 

 

All three data sets were converted into raster data, projected into the Lambert conformal conic 

projection for Morocco with a resolution of 250 m, IDs were adjusted so a running number could 

be generated for all data sets, mosaicked into one larger raster, and any remaining missing 

pixels at the border filled with a zonal majority function before an extraction with the basin 

border was performed.  

 

An important characteristic, which is not provided in the HWSD database, is the saturated 

hydraulic conductivity. A well-developed technique to overcome this problem is to use pedo-

transfer functions (PTF). A wide range of pedotransfer functions have been developed and 

applied successfully over the last decades over various scales (e.g. field scale in Droogers et al. 

2001 and basin scale in Droogers and Kite 2001). Sobieraj et al. (2001) concluded from a 

detailed analysis that most PTFs were not very reliable and that the impact on runoff estimates 

could be considerable. The PTF that generates conductivity values closest to measured ones is 

the Jabro equation (Jabro 1992):  

 

 

 

where:  KSAT  = Saturated Hydraulic Conductivity (cm/h) 

  st = % silt 

  cl = % clay 

  BD =  Bulk Density 

 

The erodibility factor needed by the SWAT model was calculated according to the formulas 

below:  
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where  KUSLE = Erodibility factor 

  ms = % sand 

  msilt = % silt 

  mc = % clay 

  orgc = % organic matter 

 

For future elaboration under Phase II, local soil maps (1:500,000) vector and attribute data 

should be obtained from the responsible Agencies (INRA, OFRE, Ministry of Agriculture), to 

represent the most accurate and detailed ground-truth available. Besides the more classical 

approach, two other techniques could be applied. First, the pending results from the e-SOTER 

project for Morocco could be investigated for suitability to transfer to the Sebou basin. The other 

approach would be to use Digital Soil Mapping techniques, where soil parameters are estimated 

based on soil profiles and auxiliary information. 

 

3.4.3 Soil data evaluation 

The final soil map used in SWAT is shown in Figure 28. The highest hydraulic conductivities are 

found in the central and northern part of the Sebou basin, while the lowest hydraulic 

conductivities are located in the western part. The most erodible soils are those with the highest 

USLE_K value. Based on Figure 30, it can be concluded that the soils most sensitive to erosion, 

are located in the northern, mountainous, part of the basin. The soils in the southern part are 

also quite erosion sensitive, but less so than in the northern part. Another, but very relevant soil 

parameter, is Available Water Holding Capacity (AWC) (Figure 31). This parameter defines the 

percentage of water which can be held in the soil. Considering Figure 31, it is clear that the 

AWC of the soils in the central and southern part (the largest area of the basin) are very low. An 

AWC of 0.015% is unlikely – and so low that the soil can hardly hold any water, resulting in 

severe and rapid water stress and virtually no growth is possible in this situation. This value of 

AWC is very questionable therefore.  
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Figure 28: SWAT soil classes. 

 

 
Figure 29: Saturated hydraulic conductivity. 
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Figure 30: Soil erodibility map (USLE_K). 

 

 
Figure 31: Available Water Holding Capacity (AWC). 

 

3.5 Discharge 

Several discharge gauging stations are present in the Sebou river basin: station data was 

provided by ABHS. These stations provide discharge data on a monthly basis. Table 5 shows 
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the characteristics of the discharge gauging stations present in the Sebou basin. For the 

calibration we need stations which cover the same period of time as the climate-forcing data 

(2001-2010). The discharge data, which was made available to us by the ABHS, covered the 

period up to 2006. These stations (18 in total) are shown in red and blue triangles in Figure 32. 

The station IDs correspond to the station numbers in Table 5. It is clear that these stations are 

reasonable well distributed over the basin. For the calibration, as discussed in Section 4.3, we 

selected the discharge stations marked by the blue triangles (7 stations). These were selected 

for the following reasons: 

1. They are located upstream of the large reservoirs. This means that the management of 

the reservoirs does not influence the streamflow pattern recorded by these stations. 

The discharge stations downstream of the large reservoirs are highly sensitive to 

reservoir outflow; 

2. They are located in the upstream areas which comprise the target zone for the green 

water management measures. If these areas are simulated well, then the downstream 

results will also be are more accurate; 

3. The spatial distribution of these stations is good; 
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Table 5: Characteristics of discharge gauging stations in the Sebou river basin, Morocco. 

Station name Station 
nr. 

Data 
availability 

Upstream area 
(km2) 

Elevation 
(MASL) 

AitKhabbach 585 1971-1980 1264 1011 

ElMers 541 1982-2002 963 848 

DarElArsa 2263 1971-2002 7318 1918 

Ain Louali 2210 1988-2002 332 1396 

Lalla 
Mimouna 

1815 1978-2002 123 117 

My Ali Chrif 1545 1968-2002 482 377 

AinTimedrine 581 1933-2002 4379 1811 

Azzaba (pont) 583 1958-2002 4666 2008 

Dar Hamra 1000 1985-2002 681 910 

Pont du Mdez 582 1933-2002 3426 1736 

Azib Soltane 1540 1960-2002 16,143 2071 

Belksiri 633 1968-2002 - - 

Had Kourt 1436 1968-2002 670 370 

Kharrouba 454 1988-2002 89 279 

Khenichet 1359 1971-2001 7321 1484 

Souk El Had 3261 1968-2002 1873 1058 

A´n A´cha 1217 1982-2002 2504 1580 

Bab Ouender 260 1952-2002 1783 861 

Galez 1216 1984-2002 517 1030 

Pont Sra 81 1952-2001 524 1468 

M'JaÔra 609 1960-2002 6260 1419 

Tabouda 1215 1979-2002 866 827 

Bab Echoub 702 1989-2002 612 1056 

Bab Marzouka 551 1971-2002 1502 961 

Beni Hitem 672 1988-2002 252 750 

El Kouchat 653 1977-2001 2623 1250 

Sidi Allal Tazi 1355 1967-1990 25,779 2142 

Tissa 1542 1933-2002 1194 836 

El Hajra 2244 1969-2002 1384 1456 

Rhafsai 607 1952-2001 768 1320 

Tafrant 608 1952-1995 1040 879 

Ourtzagh 79 1956-1996 3579 1351 
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Figure 32: Location of streamflow gauges in the Sebou basin (blue and red triangles). 

Blue triangles indicate the selected gauges (out of the red triangles) for calibration. Red 

triangles indicate streamflow gauges covering the period 2001-2006. 

 

3.6 Reservoirs 

 

The Sebou river basin encompasses several large reservoirs as well as various smaller ones 

built over a period of 70 years. The El Kansera reservoir was constructed on the Beht river in 

1935. It was initially used to restrain floods but now also stores water. By 1973, there were at 

least 15 dams with 5 large reservoirs and 10 smaller ones. These reservoirs are now a major 

source of irrigation and drinking water and strongly regulate the flow in the upper, mid, and 

lower catchments. The Al Wahda dam (Figure 33), constructed on the Ouerrha river between 

1991 and 1996, is the second largest dam in Africa after the High Aswan dam. It has a storage 

capacity of 3.8·10
3
 MCM and a height of 88 m. This reservoir provides long-term storage, 

irrigates 100,000 ha, generates a hydroelectricity potential capacity of 400 GW h year
–1

, 

transfers a water capacity of 600·10
6
 m

3
 towards the southern regions, and protects the Rharb 

plain from high floods. 
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Figure 33: Al Wahda dam, Sebou river basin, Morocco. 

 

Snoussi et al. (2007) underline the impact of the dam: 

  

“The Al Wahda dam can reduce the flood volumes at the Rharb plain by more than 95%, 

avoiding an economic loss estimated at close to US $27 million yr
-1

.”  

 

The impact of the reservoirs on runoff is also indicated with Figure 34: annual discharge rates 

have significantly decreased after the construction of the dam. The well-known “Sebou Project” 

supported by various donors, including the World Bank, UNDP and FAO, began in the 1960s 

and can be considered as the actual start of the development of the basin. Since then, the 

infrastructural works were intensified, in order to supply drinking water, extend the agricultural 

area and production, control floods and provide power generation. The completed infrastructure 

now includes 10 large dams, 44 smaller dams (with a total storage capacity of 5872 MCM, for 

regularisation of a total volume of 2970 MCM), and four hydropower stations. Moreover, 

thousands of wells have been drilled to supplement the water provided by groundwater sources 

(Minoia and Brusarosco 2006). 

 

The characteristics of the 10 principal reservoirs in the Sebou basin are shown in Table 6. 

Besides hydropower generation these reservoirs serve for irrigation and as sources for drinking 

and industrial water. The locations of these reservoirs within the Sebou river basin are shown in 

Figure 35. As was shown in Figure 34, the reservoirs have a large influence on the discharge in 

the streams, and thus it is desirable to know the monthly outflow for each of the reservoirs 

during the simulation period. Fortunately, the ABHS provided monthly outflow of the 10 largest 

reservoirs as denoted in Table 6. This will improve the model simulations significantly. 
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Figure 34: Relationship between the annual water discharge and annual rainfall before 

(solid circles) and after (open circles) the construction of dams for station Azib Es 

Soltane (source: Snoussi et al. 2002). 

 

Table 6: Principal reservoirs in the Sebou basin. 

Reservoir 

/dam 

Year of 

constru

ction 

Use* Surface  

area  

(km
2
) 

Height 

(m) 

Capacity 

(MCM) 

Irrigable  

Surface (ha) 

 

Hydropower 

(GWh/year) 

Allal El Fassi 1990 AEPI, T, I 5 61 64 26,000 270 

Idriss  1
er
 1973 E, I 68 72 1152 72,000 66 

El Kansera 1935 E,I,AEPI 18 68 230 29,050 30 

Sidi Chahed 1996 AEPI, I 11 51 170   

Sahla 1994 I, AEPI 4 55 62   

Al Wahda 1996 E, I, T 123 88 3714 115,000 400 

Barrage de 

Garde 

1991 I, BS 0.07 18 37   

Bouhouda 1998 AEPI , I 3 55 55.5   

Asfalou 1999 AEP, I 9 112 317   

Bab Louta 1999 AEP - 54 35   

* T: Hydropower, I: Irrigation, AEPI: Drinking water and industry, E: flood control, BS: Preventing salination. 

 

 

 
Figure 35: Location of the 10 main reservoirs.  
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4 Baseline modelling assessment 
 

4.1 Introduction 

This chapter describes the set-up of the SWAT model to serve as the quantitative tool for 

exploring Green Water Credits. The most relevant land use classes regarding GWC have also 

been explored in a crop-based assessment. These are the crops with potential for the 

implementation of green water management practices. Furthermore, the spatial distribution of 

the SWAT model output has been analysed at the level of Hydrological Response Units 

(HRUs).  

 

The SWAT model has been set-up for a period of 10 years (2001-2010). Justification of data 

used to build the model was provided in the previous section. To summarise:  

- DEM: NASA SRTM dataset. 

- Climate: for precipitation corrected TRMM data is used. For temperature the GSOD 

dataset is used (4 stations). 

- Land use: a preliminary aggregated land use classification based on various sources, 

elaborated by ISRIC. 

- Soil: Harmonized World Soil Database and pedo-transfer functions. 

- Discharge measurements and reservoir characteristics: obtained from local 

counterparts. 

 

4.2 Model set-up 

4.2.1 Basin delineation 

Under SWAT, the basin outlet is defined as the lowest point of the Sebou river, which is located 

west of Kenitra: thus all upstream tributaries are included in the analysis. 

 

The DEM forms the base to delineate the catchment boundary, stream network and sub-

catchments. This is performed by the pre-processing module of SWAT and requires a threshold 

area. This refers to a critical source defining the minimum drainage area required to form the 

origin of a stream. The determination of an appropriate threshold area has to be in accordance 

with the desired level of detail. 

 

In the current study we found an appropriate threshold of 5000 ha, which provides a good 

balance between the level of detail and computational constraints. This resulted in a total of 417 

sub-catchments. A first trial was performed with a threshold area of 10,000 ha, but this led to a 

total of 207 sub-catchments, which lacks the desired detail for this study. A threshold of 10,000 

ha also results in elongated sub-catchments with large elevation differences (>2000 m) within 

the sub-catchment. This has negative effects on the simulation of the orographic precipitation 

regimes. The delineation of the 417 sub-catchments is shown in Figure 36. It can be seen that 

the sub-catchments are more or less equally sized, and that they are not too stretched. The 

average sub-catchment area (with the defined threshold of 5000 ha) is 9358 ha. 
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Figure 36: Locations of the 417 delineated sub-catchments along with the derived 

streams. The threshold for delineation was set at 5000 ha. 

 

4.2.2 Hydrological Response Units 

For the spatial disaggregation of the sub-catchments, SWAT uses the concept of Hydrological 

Response Units (HRUs) (Neitsch et al. 2000): these are portions of a sub-catchment that 

possess unique land use, management, and soil attributes. In other words, an HRU is the total 

area within a sub-catchment with a specific land use, management, and soil combination. HRUs 

are used in SWAT since they simplify a run by lumping all similar soil and land use areas into a 

single response unit. The size of a HRU depends on the size of the total area under 

consideration. 

 

Implicit in the concept of the HRU is the assumption that there is no interaction between HRUs 

within one sub-catchment. Loadings (runoff with sediment, nutrients, etc. transported by the 

runoff) from each HRU are calculated separately and then summed to determine the total 

loadings from the sub-catchment. If the interaction of one land use area with another is 

significant, rather than defining those land use areas as HRUs they should be defined as sub-

catchments. It is only at the sub-catchment level that spatial relationships can be defined. The 

benefit of HRUs is the increase in accuracy this adds to the prediction of loadings from the sub-

catchment. The growth and development of plants can differ greatly substantially among 

species. If the diversity in plant cover within a sub-catchment is accounted for, then the net 

amount of runoff entering the main channel from the sub-catchment will be much more 

accurate. 

 

In practice the HRUs are defined by overlaying three data layers:  

 Sub-catchments; 

 Land use; 
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 Soils; 

Based on these three data layers 4349 HRUs (Figure 37) were determined for the Sebou river 

basin. 

 

 
Figure 37: The defined hydrological response units (HRUs). 

 

4.3 Calibration and model performance 

 

As mentioned before, seven discharge gauging stations were selected (Figure 32) for the 

calibration of the SWAT model. These stations have an overlapping period, namely 2001-2006 

with the climate-forcing data. The calibration will be evaluated over the period 2002-2006, while 

2001 will be used to initialise the model. For the Proof-of-Concepts, the key focus is to assess 

the impact of the green water management practices on the water and sediment fluxes in the 

basin, quantifying the differences between the studied scenarios and the current management 

situation (i.e. baseline scenario). In this sense, it is crucial to note that conclusions drawn from 

scenario analysis are much more reliable than absolute model predictions (relative vs. absolute 

model accuracy, e.g. Droogers et al. (2008)). 

 

To determine the calibration parameters, a sensitivity analysis was first carried out using the 

parameters shown in Table 7. These five parameters were altered within realistic ranges 

(Neitsch et al. 2005), showing that the model was most sensitive to ALPHA_BF, GW_DELAY, 

SOL_AWC, and SOL_K.  
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ALPHA_BF is the baseflow recession coefficient, and is a direct groundwater flow response to 

changes in recharge. Values range from 0.1-0.3 for land with slow responses to 0.9-1.0 for land 

with fast responses. The GW_DELAY parameter determines the time lag between the moment 

the water leaves the soil storage and the moment it becomes available in the aquifer storage. It 

is difficult to infer this parameter from measurable soil and hydro-geological characteristics, 

especially at the basin-scale. The SOL_AWC and SOL_K parameters are also known to be very 

heterogeneous. In Section 3.4.3 it was mentioned that the SOL_AWC parameter is extremely 

low for a very large part of the basin. With the calibration this parameter will be adjusted to a 

more realistic value. 

 

Table 7: Parameters used for sensitivity analysis. 

Parameter Unit Variable 

ALPHA_BF Days Baseflow alpha factor 

GW_REVAP - Groundwater “revap” 

coefficient 

SOL_AWC mm water/mm soil Available water holding 

capacity of the soil layer 

GW_DELAY Days Groundwater delay time 

SOL_K mm/hr Saturated hydraulic 

conductivity 

 

The calibration was performed for the upstream sub-catchments (Figure 38) of each of the 

selected streamflow gauges. The calibration was performed on a monthly basis, because 

observations were only available on a monthly time-scale. The SWAT model was calibrated 

using three performance coefficients, and visual comparison of the observed and simulated 

discharges. The performance coefficients which were used are the Nash-Sutcliffe coefficient, 

the Normalized Root-Mean-Squared-Error (NRMSE), and the bias. 
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Figure 38: Sub-catchments which were used for calibration of the SWAT model. 

 

The Nash-Sutcliffe coefficient is defined as: 
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where Qo is observed discharge, and Qm is modelled discharge. Qo
t
 is observed discharge at 

time t. Nash–Sutcliffe efficiencies can range from −∞ to 1. An efficiency of 1 (E = 1) corresponds 

to a perfect match of modelled discharge to the observed data. An efficiency of 0 (E = 0) 

indicates that the model predictions are as accurate as the mean of the observed data, whereas 

an efficiency less than zero (E < 0) occurs when the observed mean is a better predictor than 

the model. 

 

The Normalized Root-Mean-Squared-Error is the RMSE divided by the maximum difference in 

the observed streamflow values, and is expressed by the following equation: 

 

minmax )()( obsobs XX

RMS
RMSNormalized


  

 

The Normalized RMSE is expressed as a percentage, and is a more representative measure of 

the fit than the standard RMSE, as it accounts for the scale of the potential range of data 

values. For example, an RMSE value of 1.5 will indicate a poor calibration for a model with a 

range of observed values between 10 and 20, but it will indicate an excellent calibration for a 

model with a range of observed values between 100 and 200. The Normalized RMSE value for 
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the first model would be 15%, while the Normalized RMSE for the second model would be 

1.5%.  

 

The BIAS is defined as the average simulated streamflow divided by the average observed 

streamflow. This performance coefficient indicates whether the model simulates too much or too 

little streamflow in comparison with the observed streamflow. 

 

Table 8 shows the performance coefficients of the calibrated streamflow gauges. It is clear that 

the calibration is quite satisfactory; all stations show improved NS-coefficients, BIAS coefficients 

and Normalized RMSE. Stations with the IDs 788, 581 and 2551 had negative NS-coefficients 

before calibration took place. This implies that the observed mean is a better predictor than the 

model. Considering the BIAS coefficient of these stations, it can be seen that the average 

simulated streamflow is greater than the average observed streamflow. This can also be seen in 

Figure 39, which shows the observed and simulated streamflow for gauges 581 and 2551. 

Graphs with observed and simulated streamflow from the remaining stations are shown in 

Appendix A. One explanation for the larger simulated streamflow is that the soil layers hold little 

water (low AWC, see Section 3.4.3), resulting in little evapotranspiration, and more surface 

runoff. By increasing the AWC, more water is available for evapotranspiration, resulting in a 

decrease in simulated streamflow. Due to the calibration, the NS-coefficients improved 

considerable. For station 581, however, the NS-coefficient improved, but is still very small 

(0.13). The model seems unable to capture both the high and low observed flows, in the 

situation where the observed low flows are relatively high compared to the other stations. 

Currently this remains unclear and needs to be further investigated during future phases of 

GWC. As can be seen in Table 8, the NS-coefficients of the remainder of the streamflow 

gauges are good - even above 0.70 for some stations. The Normalized RMSE also decreased 

for all stations, meaning that the difference between the monthly observed and simulated 

streamflow has been minimised.  

 

Table 8: Performance coefficients of the streamflow gauges before the calibration, and 

after the calibration (denoted with cal). 

Station ID 788 1000 581 2551 1436 1217 260 

Simulation uncal Cal uncal cal uncal cal uncal cal uncal cal uncal cal uncal cal 

Normalized 
RMSE 

0.21 0.10 0.15 0.13 0.32 0.19 0.31 0.08 0.20 0.17 0.16 0.11 0.21 0.18 

NS-
coefficient 

-0.13 0.77 0.41 0.54 -1.59 0.13 -2.04 0.77 0.05 0.33 0.41 0.71 0.21 0.44 

BIAS 1.53 1.11 0.86 0.96 1.20 1.00 2.76 1.29 0.94 0.62 1.53 1.33 1.13 0.99 
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Figure 39: Observed and simulated monthly streamflow for station IDs 581 and 2551. 

 

A further analysis evaluates the average observed monthly discharge and average simulated 

monthly discharge for each of the stations. These are shown in Appendix B. When comparing 

these results, it is obvious that for most stations, the average calibrated monthly streamflow is 

closer to the average observed streamflow than the uncalibrated. As a final result, the average 

observed monthly streamflow of all stations has been plotted (Figure 40) against the average 

simulated monthly streamflow (calibrated). This figure shows that there is a good relationship 

(R
2
 = 0.81) between the observed and simulated average monthly streamflow. 
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Figure 40: Scatter plot (log axis) of average observed monthly discharge vs. average 

(calibrated) simulated monthly discharge. 

 

4.4 Crop-based assessment 

To explore the most relevant land use classes regarding Green Water Credits, results were 

aggregated for each land use class. The following results have been plotted: 

 

 The total amount of water consumed by vegetation (transpiration) and water lost by soil 

evaporation (Figure 41). 

 T-fraction: percentage of total evapotranspiration used for crop transpiration (green 

water). This factor indicates the effectiveness of the vegetation in using the green water 

source (Figure 42). 

 Blue water: water entering the streams by surface runoff, drainage and return flow (i.e. 

groundwater discharge) (Figure 43). 

 Erosion: gross erosion rates (Figure 44). 

 

Evapotranspiration is the sum of water consumed by the plants (transpiration) and the water lost 

through evaporation, mainly from the soil surface (evaporation also occurs by rainfall 

interception but this process was not included in the analysis).  Soil evaporation can be 

considered a non-beneficial loss of water from the system. The water gained by reducing soil 

evaporation can be either used for crop transpiration or can infiltrate and serve as groundwater 

recharge.  
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Figure 41: Annual evapotranspiration split into transpiration and soil evaporation for 

each land cover class, averaged over 2001-2010. 

 

The crops with the highest potential to respond to the implementation of green water 

management practices are those that are cultivated in the upstream areas. The crops of interest 

should also demonstrate the potential to reduce the amount of soil evaporation and reduce 

erosion. Figure 41 and Figure 42 provide insight into which part of total evapotranspiration is 

used beneficially for the crops and which part is lost through soil evaporation. From these 

figures it can be concluded that the main agricultural crops that show potential for the 

implementation of green water management practices are: 

 Wheat 

 Barley 

 Broad beans 

 

It is clear that losses are especially large from the areas where broad beans are grown. Only 

30-33% of the total evapotranspiration in these areas is used for crop transpiration. 

 

 

Figure 42:  Percentage of total evapotranspiration used for crop transpiration, averaged 

over 2001-2010. 

 

Figure 43 shows the large differences between different land covers in terms of groundwater 

recharge, runoff, and drainage (all blue water sources). Part of the water that reaches the 
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ground surface is routed as rapid runoff. A second part is routed through sub-surface flow to the 

streams, generally showing a slower response than runoff. The third component is the water 

that percolates through the soil reservoir and recharges the groundwater aquifers. The aquifers 

show a much slower response due to the longer travel times, but secure a more continuous and 

reliable water source. Enhancement of groundwater recharge is therefore of importance, 

especially for downstream water users. The variation between the land covers is caused by the 

different vegetation, soil and topographical characteristics and conditions at each site. Surface 

runoff is undesirable, because this often results in erosion and thus sedimentation in the 

reservoirs. More surface runoff also means less infiltration, and thus less groundwater recharge. 

Therefore areas with a considerable proportion of runoff (in relation to groundwater recharge) 

are also potential areas for effective implementation of green water management measure. 

Considering Figure 43 it is clear that – as noted above – wheat, barley and broad beans are the 

crops where there is the greatest potential for benefits accruing from the implementation of 

green water management practices. 

 

 
Figure 43:  Water entering the streams by groundwater recharge, surface runoff, and 

drainage, averaged over 2001-2010. 

 

Figure 44 shows the sediment yields for the different land covers, where it is clear that bare soil 

shows the highest erosion rate. Considering the agricultural crops, potential green water 

management practices which reduce soil erosion, will be most effective under wheat and barley 

and to a lesser extent broad beans. Barley is mainly grown in the northern region of the basin, 

which is very mountainous and receives large amounts of rainfall. Therefore this region is very 

prone to soil erosion. The gross erosion rate for barley is roughly 47 t ha
-1

 yr
-1

. If we take the 

unit weight for soil as 1600 kg/m
3
, then this corresponds to a gross erosion rate of 2.9 mm yr

-1
 

soil depth. These numbers confirm that there is a great potential for green water management 

measures to reduce the erosion rates so as to limit the loss of fertile lands and mitigate the 

sedimentation of downstream reservoirs. The preliminary scenario analysis done so far within 

this study confirms that sediment yields can be reduced significantly. According to the ABHS 

(ABHS 2006) gross erosion rates can be up to 60 t ha
-1

 yr
-1

 in the Riff mountains. This 

corresponds well to our results for bare soil. 
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Figure 44:  Total actual sediment loss per crop, averaged over 2001-2010. 

 

4.5 Spatial analysis 

The distributed modelling approach that was chosen for the bio-physical assessment of Green 

Water Credits in the Sebou basin gives the ability to assess the water and sediment flows at a 

high spatial detail. For the Proof-of-Concept phase, this will give insight into the areas where 

green water management implementation is most significant in terms of benefits. To provide 

insight into the output that will form the basis for the green water management biophysical 

analysis, the following maps have been plotted, based on averages from 2001-2010: 

 

 Annual precipitation: spatial distribution of the annual precipitation sum; 

 Annual evapotranspiration: total amount of water consumed by vegetation and water 

lost by soil evaporation; 

 Annual actual transpiration: total amount of water that is used by vegetation (agricultural 

as well as natural vegetation) to produce biomass; 

 Annual soil evaporation: total amount of water that is lost by soils. This includes bare 

soils, but also areas partly covered by vegetation. This soil evaporation can be 

considered as a non-beneficial loss as it does not serve any function; 

 T-fraction: percentage of total evapotranspiration used for crop transpiration. This factor 

quantifies the effectiveness of the crop to use the green water source; 

 Annual water yield: water entering the streams by surface runoff and sub-surface 

drainage; 

 Annual groundwater recharge: water that contributes to the groundwater aquifer and 

eventually becomes baseflow; 

 Annual erosion rate: total actual sediment loss. 
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Figure 45: Annual precipitation, averaged over the period 2001-2010. 

 

The spatial pattern of annual precipitation is shown in Figure 45. The distribution of annual 

precipitation is based on the corrected TRMM precipitation data. It is clear that the largest 

precipitation rates are found in the northern part of the basin. Annual precipitation in this area 

can be up to 1000 mm. The western coastal area also receives reasonably large amounts of 

precipitation, while the southern part of the basin is the driest area. This area receives 400-450 

mm per year. 

 

The distribution of annual evapotranspiration rates, averaged over the period 2001-2010, is 

shown in Figure 46. This is the sum of water consumed by vegetation (transpiration) and water 

lost by evaporation. The largest evapotranspiration rates are found in the Riff mountains, and in 

the irrigated areas. The main crop type in these regions is winter wheat. It is, however, more 

interesting to know which part is transpiration and which part is evaporation, because 

evaporation from the soil surface can be considered as a loss. Therefore, the average annual 

transpiration and evaporation are shown in Figure 47 and Figure 48, respectively. The areas 

with the greatest potential for green water management practices are the areas with high 

evaporation rates. From Figure 48, it is clear that areas with high evaporation rates are located 

in the south-eastern and central part of the basin. This is where broad beans and winter wheat 

are the main crops. These areas were already marked in Section 4.4 as having potential for 

green water management practices. The cities of Rabat, Meknes, Fes and Taza are also clearly 

visible in Figure 48. This is because there is almost no transpiration from these cities because 

of the lack of vegetation in urban areas. 
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Figure 46: Annual evapotranspiration, averaged over 2001-2010. 

 

 
Figure 47: Annual transpiration, averaged over 2001-2010. 
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Figure 48: Annual soil evaporation, averaged over 2001-2010. 

 

The proportion of transpiration relative to total evapotranspiration is defined here as the T-

fraction. The lower this percentage, the more water is lost by evaporation. The average annual 

T-fraction is shown in Figure 49. Again the south-eastern region with mainly broad beans, and 

the central region with mainly winter wheat, is clearly visible. In these areas, more water is lost 

through evaporation than through transpiration. 

 

The average annual water yield (sum of runoff, sub-surface flow and baseflow) is shown in 

Figure 50. The largest water yields are found in the northern part of the basin (Riff mountains). 

Water yield is closely correlated with annual precipitation. Figure 45 already showed that the 

Riff mountains receive the largest amount of annual precipitation. That explains the large water 

yields in these areas. Besides the high water yield in the Riff mountains, the irrigation area, 

located east of Meknes, also shows high water yields. This can be explained by the fact that the 

soils in this area have a lower AWC, causing more water stress in crops. This leads to greater 

irrigation demand in this area, and as a result the water yield will be higher as well. 

 

The average annual groundwater recharge is shown in Figure 51. Again, these are very closely 

correlated with the rainfall amounts. Thus large groundwater recharge volumes are found in the 

regions with high rainfall amounts. The groundwater recharge also depends on the land use and 

soil type. Soil types with low permeability hardly allow the water to percolate to the saturated 

zone. A large part of the groundwater recharge will eventually become baseflow and finally 

enter the streams. 
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Figure 49: Transpiration as percentage of total evapotranspiration, averaged over 2001-

2010. 
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Figure 50: Annual water yield (runoff, sub-surface flow and baseflow), averaged over 

2001-2010. 

 

 

 

 
Figure 51: Annual groundwater recharge, averaged over 2001-2010. 

 

The sediment yield in a sub-catchment is mainly dependent on the rainfall intensity, the land 

use, the slope, and soil type. The average annual sediment yield is shown in Figure 52. 

Sediment yields are largest in the northern area of the basin. This is a result of the combination 

of high rainfall intensities, steep slopes, and erodible soils. A point of attention is the soil map 

used in this study. For the northern and western part, the soil map is more detailed than in other 

parts of the basin. That explains the high spatial detail obtained in these areas. According to the 

ABHS (2006), erosion rates are lower in the Middle Atlas. They mention an erosion rate of 5-10 

t ha
-1

 yr
-1

in the Middle Atlas. This corresponds very well to our results as shown in Figure 52. 
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Figure 52: Annual erosion rate, averaged over 2001-2010. 
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5 Future management options for GWC 
 

5.1 Potential benefits 

Green Water Credits is about meeting the interests of upstream land users and downstream 

water users at the same time. By linking downstream water users and upstream farmers, green 

water management enhances the overall water management of the basin and benefits both 

parties. These potential benefits need to be quantified in order to transform them to an 

institutional and financial arrangement that sustains GWC implementation. Different land 

management options have been studied and evaluated in order to opt for the most optimal 

implementation scheme.  

 

The principal potential benefits that need to be quantified for upstream farmers are: 

 

- Transpiration determining crop production and reduction of non-productive soil 

evaporation 

- Water infiltration and retention in the soil reservoir 

- Reduction of gross erosion rates and loss of fertile soils 

 

For downstream water users (irrigators, hydropower, industrial and domestic use) the principal 

potential benefits that have to be assessed can be summarised as follows: 

 

- Total water flowing from the mountainous areas into the reservoirs 

- Enhancement of groundwater discharge because of increase soil infiltration and 

groundwater recharge  

- Reduction of sediment input into the reservoirs and preserve storage capacity 

 

These benefits will be quantified by introducing a set of key outcome indicators, as will be 

explained in the following sections. 

 

 
Figure 53: Example of potential upstream and downstream benefits. 

 

A major problem in basin-scale water management is coping with the irregular rainfall and flow 

regimes that lead to floods in some seasons and drought in others. Infrastructural solutions 

such as dams, canals and diversions are able to hold certain amounts of water temporarily so 

as to redistribute the water available during the drier seasons and to lessen hazardous peak 
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flows. The soil and groundwater storages regulate flows and their capacity is, in most basins, 

much larger than man-made reservoirs. Due to land use change and inappropriate land 

management, the use of these natural reservoirs is usually not at its full potential. By changing 

to better land management practices, the use of these “free reservoirs” can be enhanced.  

 

The main strength of green water management is that both upstream as well as downstream 

stakeholders have profits. Aiming at only one single stakeholder group would lead to other 

solutions (fertilizers, sediment traps, artificial groundwater recharge, etc). Green Water Credits 

aims at a sustainable mechanism to be implemented by enabling the interaction between up- 

and downstream stakeholders. 

 

Different land and water management options are available as possible candidates for 

incorporation in the Sebou case. These have to be selected, studied and evaluated. A first 

selection has been conducted in the following section. Also, a first indicative analysis was 

carried out in order to show the methodology and outcomes of this part of the assessment. 

 

5.2 Selection of management options 

The World Overview of Conservation Approaches and Technologies (WOCAT) is a programme 

whose objective is to use existing knowledge and funds more efficiently to improve decision-

making for optimising land management. It is a framework for collecting databases of successful 

SWC experiences concerning technologies, approaches and aerial distribution through the use 

of standardised and simplified questionnaires worldwide. All data are readily analysed, and can 

be disseminated and prepared for presentation, evaluation and monitoring. WOCAT can be 

used as a tool in land management for all land users (stakeholders) with benefits that are 

multiple and mutual through the improved WOCAT decision support system. 

 

A selection was made of three management practices from the WOCAT database of measures 

that have shown large potential in previous GWC assessments. They are presented here and 

will be projected with the local stakeholders and representatives in order to initiate the 

quantitative scenario analysis and determine the upstream and downstream benefits. The 

following management options were selected: 

 

1. Stone lines (cordons de pierres) 

2. Bench terraces (banquettes) 

3. Contour tillage 

 

With the agro-hydrological model SWAT, the impacts and possible trade-offs of these practices 

can be studied and quantified. The following paragraphs give a more detailed explanation on 

these practices. 

 

5.2.1 Stone lines 

Stone lines (in French: cordons de pierres) (Figure 54) are small structures (WOCAT: NIG01
13

 

and NIG02
14

) of stones, where the stones are placed in a horizontal line across the slope. The 

distance between the lines is a function of the slope and availability of stone.  

                                                      
13

 http://www.fao.org/ag/agl/agll/wocat/wqtsum.asp?questid=NIG01 

14
 http://www.fao.org/ag/agl/agll/wocat/wqtsum.asp?questid=NIG02e 
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Stone lines are intended to slow down runoff. They thereby increase the rate of infiltration, while 

simultaneously protecting the planting pits from sedimentation. Often grass establishes between 

the stones, which helps increase infiltration further and accelerates the accumulation of fertile 

sediment. Wind-blown particles may also build up along the stone lines due to a local reduction 

in wind velocity. The accumulation of sediment along the stone lines in turn favours water 

infiltration on the upslope side. This then improves plant growth, which further enhances the 

effect of the system.  

 

Construction does not require heavy machinery (unless the stones need to be brought from afar 

by lorry). The technique is therefore favourable to spontaneous adoption. Stone lines may need 

to be repaired annually, especially if heavy rains have occurred. 

 

 

Figure 54: Example of stone lines (source: www.wocat.net). 

 

5.2.2 Bench terraces (in French: banquettes) 

This measure (Figure 55) is an embankment constructed along the contour by the use of stone 

and soil as a construction material (WOCAT: ETH32
15

). The technology is used in areas where 

there is not sufficient stone and where the soil shallow. Terraces are established by excavating 

soil, and using this to shape the embankment. Stone is used to face the downslope side (the 

terrace “riser”) for reinforcement. Vegetation is planted on the upper part of the embankment 

when there is sufficient soil.  

 

                                                      
15

 http://www.fao.org/ag/agl/agll/wocat/wqtsum.asp?questid=ETH32 

http://www.wocat.net/
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Figure 55: Example of bench (bund/banquette) terraces (source: www.wocat.net). 

 

The purpose is to reduce runoff, decrease slope length, increase infiltration rate and thus 

minimise soil erosion. The structures require regular maintenance, since the embankments are 

often made of small stones, which are unstable. In order to properly stabilise the structure 

livestock should not be allowed to graze where the structures are placed. Checking for breaks 

after heavy storms is necessary.  

 

In terms of bio-physical processes this measure will have the following impact: 

 Reduction in soil loss by erosion 

 Reduced overland flow 

 

5.2.3 Contour tillage 

This green water management option comprises contour ploughing (WOCAT: HUN2
16

) often 

combined with soil bunds (WOCAT: ETH43
17

). The basis of the technology is the annual 

ploughing. The ploughing and all other cultivation is carried out along the contour lines. This can 

significantly decrease erosion. Rotary cultivation aims to reduce wind and water erosion, to 

control weed and to develop a good seedbed. On very low slopes contour tillage may be 

adequate on its own without bunds.  

 

                                                      
16

 http://www.fao.org/ag/agl/agll/wocat/wqtsum.asp?questid=HUN2 

17
 http://www.fao.org/ag/agl/agll/wocat/wqtsum.asp?questid=ETH43 

http://www.wocat.net/
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Figure 56: Example of contour tillage (source: www.wocat.net). 

 

On slopes of more than 3%, soil bunds can be supplemented to the contour cultivation. Stone, 

and stone faced, bund height depends on the availability of stones. On average the base width 

is 1.0 -1.2 m and height is 0.6 - 0.7 m. Bunds reduce the velocity of runoff and soil erosion, 

retain water behind the structure and allow it to infiltrate. This further helps in ground water 

recharging.  

 

Planning is carried out by initial community/group and individual discussion, and a consensus 

reached on layout, spacing, implementation modalities and management requirement. The 

technology is applicable in areas where soil is moderately deep and stones are available. 

 

5.3 Analysis of green water management options 

A preliminary analysis has been carried for each of the selected green water management 

options. In order to compare these scenarios with the baseline current situation, a set of 

indicators is introduced that gives insight into the impact of the practices.  

 

Stakeholder consultations showed that the key challenges in the basin are maintaining the 

upstream water source, reducing flooding and decreasing the siltation of the reservoirs. Rapid 

runoff, erosion and sedimentation are a result of upstream forest degradation. Previous studies 

have showed that the lifespan of the main reservoirs is seriously threatened by these practices. 

The sedimentation of reservoirs is reported to have increased during recent years.  Water 

scarcity is an issue: competition between irrigators and urban water supply has caused some 

schemes to be blocked by irrigation interests. 

 

Key indicators showed the water and sediment inflow of three principal reservoirs in the basin; 

Allal El Fassi, Idriss 1Er, and Al Wahda. To quantify the effect of the green water management 

scenarios on these reservoirs, the change in surface runoff, sediment loss, and sediment inflow 

has been analysed. Besides the effect on the reservoirs, the change in plant transpiration, soil 

evaporation, and groundwater recharge has also been evaluated. A reduction in soil 

evaporation and an increase in plant transpiration will result in increased crop growth, and thus 

higher yields per hectare. Groundwater recharge, which eventually becomes baseflow, feeds 

the streams and reservoirs. Therefore, an increase in groundwater recharge will result in more 

water in the reservoirs and streams. This means that more water is available for the people 

living downstream, who utilise the water extensively for irrigation and other uses.  

http://www.wocat.net/
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For the preliminary assessment, it has been assumed that the practices are implemented in all 

areas where the potential crops identified in Section 4.4 are cultivated, these being: 

 Barley, rainfed; 

 Broad beans, rainfed; 

 Winter wheat, rainfed; 

 

The SWAT model parameters, which were used for the scenario analyses, were based on 

expert knowledge, and previous GWC studies (e.g. Hunink et al. 2011). The parameters used 

for the baseline (current situation) scenario, and three selected green water management 

scenarios are shown in Table 9. 

 

Table 9: Parameter values and changes for each of the green water management 

scenarios. 

Nr Scenario Land use ESCO P_USLE CN2 SLOPE OV_N FilterW 

0 Baseline Barley rainfed 0.90 1.0 73 100% 0.14 0.0 

  Broad bean rainfed 0.90 1.0 77 100% 0.14 0.0 

  Winter wheat rainfed 0.90 1.0 73 100% 0.14 0.0 

1 Stone lines Barley rainfed 0.91  71   0.5 

   Broad bean rainfed 0.91  75   0.5 

   Winter wheat rainfed 0.91  71   0.5 

2 Bench terraces Barley rainfed   0.8 71 80%   

   Broad bean rainfed   0.8 75 80%   

   Winter wheat rainfed   0.8 71 80%   

3 Contour tillage Barley rainfed   0.9 66  0.42  

   Broad bean rainfed   0.9 70  0.42  

   Winter wheat rainfed   0.9 66  0.42  

 

The description of these parameters is as follows: 

 ESCO: soil evaporation compensation coefficient: a higher value results in reduced soil 

evaporation, making more water available for transpiration or as blue water. 

 P_USLE: support practice factor for soil loss: a lower value results in reduced soil 

erosion and increased groundwater recharge. 

 CN2: runoff curve number: a lower value results in reduced soil erosion and increased 

groundwater recharge. 

 SLOPE: average slope steepness: a lower value will reduce the overland flow and 

erosion, and will increase the groundwater recharge. 

 OV_N: Manning’s “n” value for overland flow: a higher value means more resistance to 

flow, lower flow velocities and less erosion. 

 FILTERW: width of edge-of-field filter strip: represents buffer zone around HRU area. 

Higher values mean less erosion, more infiltration, and less overland flow. 

 

The results of the three selected green water management scenarios and the baseline scenario 

are shown in Table 10. The principal water balance components of the potential green water 

management practices areas (barley, rainfed; broad beans, rainfed; and winter wheat, rainfed) 

are also shown, as well as the entire basin balance. It can be concluded that all three green 

water management scenarios result in a decrease in sediment inflow into the three reservoirs. 

Sediment inflow decreases by 22% for Allal El Fassi, by 14% for Al Wahda, and by 18% for 
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Idriss 1 Er. Contour tillage has the most significant effect on the decrease of sediment inflow 

into the reservoirs. Bench terraces, however, reduce sediment loss less than than contour 

tillage. It is likely that this is related to the spatial variation in sediment loss reduction. Because 

contour tillage leads to a greater reduction in sediment inflow into the reservoirs, this measure 

would probably have more effect upstream of the reservoirs, than bench terraces. Another 

positive effect of all the green water management practices is the decrease in surface runoff, 

and increase in groundwater recharge. The decrease in surface runoff is similar for stone lines 

and bench terraces, but is most significant for contour tillage. Contour ploughing allows more 

water to infiltrate, leading to less surface runoff. For the green water management measure of 

“contour tillage” this leads to an increase in groundwater recharge of 24% for rainfed barley, 

45% for rainfed broad beans, and 28% for rainfed winter wheat. 
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Table 10: Key outcome indicators for green water management scenarios (averages 

2001-2010). 

Baseline

Key indicators change % change change % change change % change

Inflow Allal El Fassi  (MCM/y) 525 535 9.9 2% 533 8.6 2% 550 25.6 5%

Sediment Inflow Allal El Fassi  (Mton/y) 1.47 1.33 -0.1 -9% 1.30 -0.2 -12% 1.15 -0.3 -22%

Inflow Al Wahda (MCM/y) 2131 2141 10.4 0% 2138 7.4 0% 2152 21.3 1%

Sediment Inflow Al Wahda (Mton/y) 3.96 3.76 -0.2 -5% 3.73 -0.2 -6% 3.40 -0.6 -14%

Inflow Idriss 1 Er (MCM/y) 851 858 6.9 1% 855 3.7 0% 862 11.4 1%

Sediment Inflow Idriss 1 Er (Mton/y) 2.96 2.62 -0.3 -11% 2.46 -0.5 -17% 2.42 -0.5 -18%

Surface Runoff in mountain areas (mm/y) 151 140 -10.8 -7% 140 -11.0 -7% 114 -36.5 -24%

Crop Transpiration (mm/y) 262 263 0.4 0% 263 0.4 0% 263 0.4 0%

Soil Evaporation (mm/y) 119 119 -0.5 0% 119 -0.1 0% 119 0.0 0%

Groundwater Recharge (mm/y) 127 130 2.2 2% 130 2.7 2% 134 6.8 5%

Sediment loss (ton/ha/y) 25 22 -3.6 -14% 20 -5.0 -20% 22 -3.3 -13%

Basin Balance

Area (km2) 39,021 39,021 39,021 39,021

Precipitation (MCM/y) 24,178 24,178 0.0 0% 24,178 0.0 0% 24,178 0.0 0%

Transpiration (MCM/y) 10,233 10,249 16.2 0% 10,249 15.9 0% 10,249 16.4 0%

Evaporation (MCM/y) 4,656 4,636 -20.8 0% 4,654 -2.6 0% 4,657 0.5 0%

Barley rainfed

Area (km2) 1,242 1,242 1,242 1,242

Crop Transpiration (mm/y) 254 255 0.4 0% 255 0.8 0% 255 0.5 0%

Soil Evaporation (mm/y) 126 125 -0.9 -1% 127 0.9 1% 127 1.0 1%

Groundwater Recharge (mm/y) 146 157 11.3 8% 162 16.0 11% 181 35.3 24%

Surface Runoff (mm/y) 200 186 -13.7 -7% 186 -13.5 -7% 154 -45.7 -23%

Sediment Loss (ton/ha/y) 47 31 -16.4 -35% 25 -22.7 -48% 33 -14.7 -31%

Broad beans rainfed

Area (km2) 2,494 2,494 2,494 2,494

Crop Transpiration (mm/y) 106 106 0.3 0% 106 0.2 0% 106 0.4 0%

Soil Evaporation (mm/y) 232 231 -1.0 0% 233 1.6 1% 234 2.9 1%

Groundwater Recharge (mm/y) 48 55 7.7 16% 56 7.8 16% 69 21.4 45%

Surface Runoff (mm/y) 102 94 -7.9 -8% 93 -8.5 -8% 74 -27.2 -27%

Sediment Loss (ton/ha/y) 24 16 -8.4 -35% 13 -11.5 -48% 16 -8.3 -35%

Winter wheat rainfed

Area (km2) 14,887 14,887 14,887 14,887

Crop Transpiration (mm/y) 283 284 0.8 0% 284 0.6 0% 284 0.8 0%

Soil Evaporation (mm/y) 115 114 -1.3 -1% 116 0.5 0% 116 0.8 1%

Groundwater Recharge (mm/y) 91 99 8.4 9% 100 9.6 11% 116 25.3 28%

Surface Runoff (mm/y) 119 110 -9.1 -8% 110 -9.2 -8% 89 -30.3 -25%

Sediment Loss (ton/ha/y) 42 27 -14.6 -35% 22 -19.9 -47% 29 -13.4 -32%

Stone lines Bench terraces Contour tillage
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6 Conclusions 
 

 

Green Water Credits (GWC) is a mechanism for payments to land users in return for specified 

soil and water management activities that determine the water supply to stakeholders in the 

basin. Within the Sebou river basin there are various interrelated issues related to water 

scarcity, reservoir sedimentation and flooding that offer unique opportunities for implementation 

of green water management measures. The implementation of these management options can 

enhance the water availability and reduce problems related to flooding and erosion. However, 

farmers need incentives to sustainably implement these measures. At the same time, 

downstream users may be unaware of the benefits they might gain through farmer 

implementation of these measures in upstream areas. This Proof-of-Concept phase is meant to 

demonstrate and quantify the potential benefits to all stakeholders in the basin. 

 

The GWC methodology was applied to the Sebou river basin. Data was gathered, prepared and 

verified to set up a bio-physical assessment tool (SWAT) to quantify the upstream-downstream 

interaction in the basin. First estimates of the main GWC output variables, such as soil 

evaporation, transpiration, gross erosion rates, etc., are presented in this report. Three green 

water management scenarios were analysed, in order to evaluate the effect of these scenarios 

on soil evaporation, crop transpiration, surface runoff, sediment inflow into the reservoirs, and 

groundwater recharge. The GWC scenarios analysed were: 

 

 Stone lines (cordons de pierres) 

 Bench terraces (banquette) 

 Contour tillage 

 

For the scenarios analysed, Contour tillage showed the largest decrease in sediment inflow into 

the reservoirs. The other two scenarios also showed decreases in sediment inflow. Another 

positive effect is the decrease in surface runoff, and increase in groundwater recharge. The 

increase in groundwater recharge is especially large for the areas where rainfed broad beans 

are grown. The increase in groundwater recharge leads to more water inflow into the reservoirs. 

This increases the water availability for farmers who use the water extensively for irrigation 

purposes. 

 

This report summarises the bio-physical analysis of the Proof-of-Concept for GWC Morocco. 

Data preparation and verification, model building, model calibration, results and green water 

management measures were analysed and described. Further improvements of the various 

steps have been identified and will be summarised here.  

 

The following data gaps were identified during this phase and are being addressed currently: 

1. A more detailed land use dataset is in preparation with the Moroccan counterparts and 

should be included in the consequent follow-up analysis. 

2. Currently only the northern and western parts of the basin are covered a detailed soil 

map (from INRA). For the future, similar detailed soil maps should be obtained from 

INRA for the remainder of the basin. 

3. More detailed information on the crop cycles, planting, harvest dates and overall 

agricultural practice is needed to enhance the reliability of the assessment of the  green 

water management measures. 
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4. For precipitation we have an accurate corrected dataset with high spatial detail. For 

temperature, however, only four stations with a daily maximum and minimum 

temperature were available (GSOD). It is desired to have more temperature stations for 

follow-up analysis. 

5. Currently the Hargreaves method is used to calculate the reference evapotranspiration. 

This method was used because the more accurate Penman-Monteith method requires 

more climatological input (humidity, radiation, wind speed, temperature) data, which 

was not available at a high spatial resolution. For future analysis, it would be an 

improvement to have these meteorological input data to make the calculation of the 

reference evapotranspiration more accurate. 

6. The SWAT model has the possibility of incorporating reservoir capacity at both the 

normal spillway, and at the emergency spillway. We only obtained the reservoir 

capacities and surface areas at the normal spillway. Therefore the emergency spillway 

capacity and surface area are taken the same as the normal spillway capacity and 

surface area. For future analysis, the addition of the emergency spillway capacity and 

surface area would improve the model results. 

7. The results of the three selected GWC practices should be discussed and evaluated in 

detail with the stakeholders, in order to validate the results. 
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Appendix A: Observed and simulated 
monthly streamflow for the selected 

streamflow gauges 
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Appendix B: Average observed and 
simulated monthly streamflow (uncalibrated 

and calibrated) 
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