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a b s t r a c t

Quantifying rainfall at spatial and temporal scales in regions where meteorological stations are scarce is
important for agriculture, natural resource management and land-atmosphere interactions science. We
describe a new approach to reconstruct daily rainfall from rain gauge data and the normalized difference
vegetation index (NDVI) based on the fact that both signals are periodic and proportional. The procedure
combines the Fourier Transform (FT) and the Wavelet Transform (WT). FT was used to estimate the lag
time between rainfall and the vegetation response. Subsequently, third level decompositions of both
signals with WT were used for the reconstruction process, determined by the entropy difference
between levels and R2. The low-frequency NDVI data signal, to which the high frequency signal (noise)
extracted from the rainfall data was added, was the base for the reconstruction. The reconstructed and
the measured rainfall showed similar entropy levels and better determination coefficients (>0.81) than
the estimates with conventional statistical relations reported in the literature where this level of
precision is only found for comparisons at the seasonal levels. Cross-validation resulted in �10% entropy
differences, compared to more than 45% obtained for the standard method when the NDVI was used to
estimate the rainfall in the same pixel where the weather station was located. This methodology based
on high resolution NDVI fields and data from a limited number of meteorological stations improves
spatial reconstruction of rainfall.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Rainfall is a major driving force in the water cycle and the most
important factor in promoting vegetation growth in rain-fed agri-
culture and natural grasslands and forests of the world. Accurate
rainfall data with sufficient spatial resolution are of key importance
in assessing basin scale hydrology but in many developing coun-
tries, adequate gauged data is seldom available.

Remote sensing can provide spatial precipitation patterns.
Ground radar systems can also provide spatial precipitation infor-
mation but validation of its data products is a major challenge for
general hydrologic applications (Krajewski and Smith, 2002).
Ground radar systems also have a limited range and are generally
aimed at monitoring extreme events over limited time spans,
making their use less suitable for long term assessments. Satellite
remote sensing is a better source of spatial precipitation data,
which are generally readily available over longer periods and large

areas. Many different algorithms and types of sensors aboard
a variety of satellites exist. Adler et al. (2001) provide an extensive
overview and inter-compare 25 satellite based products to four
model based, and to two climatological products. As many of these
products have either a poor spatial resolution (w100 km) or a poor
temporal resolution (w1 month), there is a need to develop
a robust downscaling methodology for precipitation.

Many studies have used the intuitive correlation between
rainfall and plant biomass, particularly in arid and semi-arid
environments, to fill in this rainfall data gap (see Richard and
Poccard, 1998; Kawabata et al., 2001; Lotsch et al., 2003;
Nicholson and Farrar, 1994; Farrar et al., 1994; Nicholson et al.,
1990; Eklundh, 1998; Martiny et al., 2006; Chamaille-Jammes
et al., 2006; Dinku et al., 2008). However, the vegetation response
to precipitation is highly variable in space, mainly due to soil and
other influencing factors. There is also a delayed response in time,
termed lag time (Farrar et al., 1994), which is defined as the time
required for a volume of water equal to the annual mean of
exchangeable soil moisture to be depleted by the combined
processes of runoff and evapotranspiration. This lag time varies for
different agro-ecologies; in semi-arid regions it is usually of the
order of 2e3months (Nicholson and Lare,1990). This process is also
described by Entekhabi et al. (1996) and Brunsell and Young (2008),
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who stated that the surface affects the role of soil moisture by
acting as a low-pass filter to the high frequency rainfall signal into
a near immediate moisture effect and then slowly into a vegetation
effect.

Most studies have sought statistical relationships between
rainfall and NDVI but they seldom go beyond simple correlation
analysis (Brunsell and Young, 2008). A linear relationship between
rainfall and NDVI has been reported for areas with precipitation
ranging from 200 to 1200 mm per year (Nicholson et al., 1996). In
other areas the upper limit is attained at lower annual precipita-
tions (Martiny et al., 2006). Above the upper threshold, the index
“saturates” and NDVI increases only very slowly with increasing
rainfall or becomes constant. Statistical relationships to estimate
rainfall seem to be meaningless when applied to dekadal or daily
data, especially when autocorrelations are removed (Eklundh,
1998). In spite of the lack of accuracy of the statistical relation-
ship between these two signals, this is the standard method of
using satellite information to estimate rainfall in arid and semi-arid
regions. Thus, current procedures for estimating rainfall from NDVI
are of limited use in applications in modeling agricultural
production and land-atmosphere interactions studies, where dek-
adal or daily rainfall is required.

The present study aimed at 1) developing a procedure for
generating daily precipitation data, using reconstructions that
combine wavelet-filtered signals containing the low-frequency lag-
corrected vegetation greening signal, extracted from NDVI time
series, and the high frequency portion of the daily rainfall data; and,
2) test whether daily rainfall events can be approximated for
neighboring areas where only NDVI data is available.

2. Materials and methods

2.1. Study area

The Altiplano is a high Andean plateau centered around Lake Titicaca in the
Peruvian-Bolivian border. The plateau rises from the lake level at 3800meters (m) to
over 4500 m altitude. The rainfall varies from less than 400e600 mm yr�1; average
minimum temperature drops to �10 �C, droughts can last up to 150 d yr�1, while
frost-free days are around 150. The dominant vegetation is natural grasslands with
cultivated areas mainly near the lake (Quiroz et al., 2003).

Convective activity and precipitation in the Altiplano occur almost exclusively
during the austral summer and are associated with the seasonal expansion of the
upper-air easterlies and related near-surface moisture influx from continental
lowlands to the east. Precipitation from the west is rare because Pacific moisture is
trapped vertically by large-scale subsidence and a stable low-level inversion at
900 hPa, and laterally by the coastal escarpment (Vuille and Keimig, 2004).

2.2. Climate data

Rain-gauge daily data from 10 weather stations (Fig. 1) were obtained from the
Peruvian national meteorology and hydrology service (SENAMHI). Data for the
period from January 1st 1999 through December 31st 2002 was included in the
analysis. The raw data (Fig. 2) was checked for inconsistency and outliers. The
analysis was conducted for the ten sites where the weather stations were located.

2.3. NDVI data

A dataset containing 180 10-day (dekad) composite NDVI images derived from
the SPOT-4 and SPOT-5 VEGETATION instruments was used, spanning the period
January 1999eDecember 2003. The VGT1 sensor aboard the SPOT-4 satellite
provided the data for the January 1999eJanuary 2003 period whereas the remaining
period was covered with data from the VGT2 sensor aboard the SPOT-5 satellite.
Both sensors have the same spectral and spatial resolution. The red spectral band
(0.61e0.68 mm) and the near-infrared (NIR) spectral band (0.78e0.89 mm) were
used to calculate the NDVI (NIR � RED/NIR þ RED) and the imagery had a spatial
resolution of 1 km. The synthesized preprocessed S10 NDVI product, which is
a geometrically and radiometrically corrected 10-day composite image (Immerzeel
et al., 2005), was used. The periods were defined according to the civil calendar:
from the 1st day to the 10th; from the 11th to the 20th; and from the 21st to the end
of each month.

The GPS coordinates of the weather stations were co-registered with the NDVI
imagery data corresponding to each site. Therefore, for each location a vector

containing 180 NDVI values, one for each civil calendar dekad, was extracted and
used in the analysis. The dekadal NDVI value was repeated for each day within the
respective dekad to match the daily observations in the rainfall data, generating
1826 NDVI daily values for the entire period. Given the difference in magnitude of
the two signals, and for visual comparison purposes, the NDVI values were multi-
plied by the ratio of the mean value of both signals to generate magnitudes
comparable to those registered for rainfall (Yarlequé, 2009).

2.4. Data pre-processing

2.4.1. Fourier analysis
Fourier or harmonic analysis is a mathematical technique used to decompose

a complex static signal into a series of individual cosinewaves, each characterized by
a specific amplitude and phase angle. Several authors have successfully applied
Fourier analysis in analyzing time series of NDVI imagery (e.g. Azzali and Menenti,
2000; Roerink and Menenti, 2000; Jakubauskas et al., 2001, 2002; Moody and
Johnson, 2001; Immerzeel et al., 2005).

A stationary process can be represented by a series of harmonic functions,
whose frequencies are multiples of a base frequency. This series of harmonic func-
tions is called a Fourier series. Assuming that the process can be described by
a function S, the usual form of the Fourier series is (Pipes and Harvill, 1971):

SðtÞ ¼ A0

2
þ

Xn¼N

n¼1

AncosðnutÞ þ
Xn¼N

n¼1

BnsinðnutÞ (1)

Where t ¼ time and A and B are the Fourier coefficients.
The constant term in Eq. (1) is always equal to the mean value of the S(t), (the

mean NDVI value in a series of satellite imagery) and u ¼ 2pf0, where f0 is the base
frequency. Eq. (1) can be written in different forms, following basic mathematical
laws (Pipes and Harvill, 1971). In this research it was decided to transfer Eq. (1) to
a form that only contains cosine terms, which facilitates interpretation. Eq. (1) can
also be written as

SðtÞ ¼ A0

2
þ

Xn¼N

n¼1

Cncosðnut� qnÞ (2)

Eq. (2) now has a convenient form with only cosine terms. The signal is
decomposed in a series of cosine terms, each with its own amplitude (Cn) and phase
angle (qn), and a constant term (A0/2). When a signal is described using Fourier
analysis the values for the coefficients Cn need to be found. An algorithm to recover
those coefficients from a discrete signal is the Fast Fourier Transform (FFT). In this
case we analyzed a signal comprised of 1826 discrete NDVI daily values to estimate
the Fourier coefficients Cn. The result of the FFT is a complex vector, with a real part
containing the A coefficients and an imaginary part containing the B coefficients of
Eq. (1). The coefficients C of Eq. (2) can be derived from A and B by calculating the
length of the vector. There are a few limitations to the FFT related to the underlying
mathematics. Firstly, to correctly recover a signal from the Fourier transform of its
samples, the signal must be sampled with a frequency of at least twice its bandwidth
(Nyquist frequency). Secondly, the signal needs to be sufficiently static to permit the
analysis under the assumption that the wave is static (intrinsic assumption of the
FFT) which means that both amplitude and phase of the individual terms should not
vary significantly over time.

2.4.2. Determination of the lag time
The lag time between the onset of the rainy season and the greening of the

vegetation was assessed with the Fourier analysis. Both rainfall (SRain) and NDVI
(SNDVI) signals were reconstructed with the six first harmonic components (n ¼ 1 to
6 in Eq. (2)) of the Fourier series, with sizes N and M, respectively. By including six
harmonics in the simulation of rainfall and NDVI signals, most of the variance in the
original data is explained (Immerzeel et al., 2005). These smoothed Fourier trans-
form (SFT) signals were used to estimate the lag time between the two primary
signals. A new independent variable was generated through the simulation of the
SFT for different periods T (where T 3 Zþ). Out of all possible periods, T ¼ 15, 30, 91,
121, 182, and 365 d were used for the analysis. Partitions PT ¼ {0, T, 2T,., kT}, k 3 Zþ,
with respect to T and kT < N,M, were defined. Each partition divided both signals
(SRain and SNDVI) into several sub-intervals. These intervals were used to search for
the lags. Fig. 3 shows this concept with a sample of two sub-intervals; i and iþ 1. For
each sub-interval the time difference between the peaks of the signals SRain and
SNDVI were registered as the lag time for that sub-interval (lagi and lagiþ1). Then the
average lag time over the k-sub-intervals was obtained as:

LagðTÞ ¼ hlagki ¼ hDtki (3)

where the <> symbolizes average over k. Thus, we are estimating the lag time as
a new function Lag(T) (Eq. (3)), of the period T. The best coefficient of determination
was used for estimating the lag time for each meteorological station. Once the lag
time was considered, only four complete raining seasons spanning five years were
suitable for the analysis, comprising a data set of 1421 daily data pairs (NDVI,
rainfall)
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2.5. Wavelet analysis

2.5.1. The wavelet transform (WT)
The wavelet transform (WT) is a mathematical technique introduced in signal

analysis in the early 1980s (Goupillaud et al., 1984; Grossmann and Morlet, 1984). It
is a method based on expressing functions or signals as sums of ’little waves’. These
waves are used like the sines and/or cosines in a Fourier series. Contrary to the
Fourier transform, thewavelet transform is localized both in time and frequency and
it has compact support. This property of wavelets is called time-frequency

localization (Foufoula-Georgiou and Kumar, 1994). It enables one to study features
on the spatial series locally with a detail matched to their scale, i.e., broad features
on a large scale and fine features on a small scale. This characteristic is especially
useful for spatial variations that are significantly non-stationary, have short-lived
transient components and features at different scales, or have singularities, which is
perfectly suitable for displaying small fluctuations in signals. Due to this property,
wavelet analysis has wide applications, from fluid dynamics (Farge,1992; Gao and Li,
1993; Liu, 1994; Katul and Vidakovic, 1996) to geophysics or hydrology (Kumar and
Foufoula-Georgiou, 1993; Labat et al., 2000).

Fig. 1. Distribution of weather stations in the high plateau of Peru.
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A family of wavelets can be constructed from amother wavelet function, which is
ideally confined in a finite interval. Thus, we have small support for high-frequency
features and large support for low-frequency or large wavelength features. This
property enables one to zoom in on the irregularities of a function and characterize
them locally in either spatial or frequency domains. This analysis is performedwith the
Wavelet Transform (WT), defined as (Foufoula-Georgiou and Kumar, 1994):

WTSðl; sÞ ¼
ZN

�N

SðtÞjl;sðtÞdt; (4)

where,

jl;sðtÞ ¼ 1ffiffiffi
l

p j

�
t � s
l

�
; (5)

Here l > 0 represents the scaling factor (the wavelet’s width) and s the shifting
factor (the wavelet’s position). The mother wavelet function (j(t)) is generally
chosen to be well localized in space (or time) and frequency (or scale). Not every
function can qualify to be a mother wavelet (Mallat, 1999); it must meet the
admissibility condition, described by Foufoula-Georgiou and Kumar, 1994.

2.5.2. The inverse wavelet transform (IWT)
The continuous wavelet transform is reversible due to the admissibility condition,

which is satisfied even though the basis functions in general may not be ortho-
normal (Mallat, 1999). The reconstruction or inverse wavelet transform (IWT) is
possible by using the following reconstruction formula on the signal transformed
WTS(l,s) to obtain the original signal S(t) (Prasad and Iyengar, 1997):

SðtÞhIWTSðtÞ ¼ 1
sj

ZN

�N

ZN

0

l�2WTSðl; sÞjl;sðtÞdlds; (6)

and j satisfies the admissibility condition:

sj ¼ 2p
ZN

�N

j:FjðwÞj:2
j:wj: dw < N; (7)

where Fj is the FT of j .

2.5.3. Multi-resolution analysis with wavelet (MRA)
Multi-resolution analysis (Mallat and Zhong, 1992), as implied by its name,

comprises the evaluation of the signal at different frequencies with different reso-
lutions. The MRA allows the decomposition of a signal into various resolution levels
which retain themain features of the original signal. The filtering approach tomulti-
resolution WT is to form a series of half-band filters that divide a spectrum into
a high-frequency band (retain information about the higher-frequency components)
and a low-frequency band (contain information about lower-frequency compo-
nents). It is formulated on a scaling function or low-pass filter (LP) and a wavelet
function or high-pass filter (HP). These filters initially act on the entire signal band at
the high frequencies (small-scale) filters and gradually reduce the signal band at
each stage (see Fig. 4).

Fig. 2. Gauged rainfall signals in the ten weather stations used in the study.

Fig. 3. Description of the Lag model for some i-intervals in one fixed T-period.
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In the present work orthogonal wavelets, which permit to separate effectively the
low- and high-frequency signal contents at each resolution level, are used. These
particular wavelet transforms re-express a correlated series in terms of some
combination of uncorrelated variables (Jaffard, 2004).

The non redundant representation and perfect reconstruction of the original
signal can be performed only through compactly supported wavelets. Thus, using
the orthonormally conditions of the wavelet function j, it can be related to the
scaling function 4 (Daubechies, 1990; FoufoulaeGeorgiou and Kumar, 1994), which
generates a functions’ family 4. When this scaling function, where j and 4 are in the
same vector sub-space is used, the orthogonal wavelet transform conditions on
vectorial space L2(R) are satisfied (Jaffard, 2004). There are some techniques to
obtain 4efunctions from thewavelet j in order to implement thewavelet transform
on sampled signals (see FoufoulaeGeorgiou and Kumar, 1994 for details).

Thus, WT is expressed through all the finite functions S(t) as a linear combina-
tion of the orthonormal wavelet base functions (Daubechies, 1990; Foufoula-
Georgiou and Kumar, 1994):

SðtÞ ¼ EðtÞ þ NðtÞ (8)

where:

EðtÞ ¼
XN

k¼�N

rm0 ;kfm0 ;kðtÞ; NðtÞ ¼
Xm0

m¼�N

XN
k¼�N

xm;kjm;kðtÞ (9)

and,

rm0 ;k ¼
Z

f ðtÞfm0 ;kðtÞdt; xm;k ¼
Z

f ðtÞjm;kðtÞdt (10)

Where m and k are integer numbers related to the scaling and shifting factors as:
l ¼ l0

m and s ¼ s0k. The E(t) and the N(t) signals will be called “Base or Trend” and
“Noise” respectively. The Base represents all the characteristics of the S(t) process
which are approximated through a linear combination of the k translations of the
scaling function 4(t) with the fix scale in 2m0 . The Noise conveys the details to be
added as the scale is reduced to values less than 2m0 in the analysis process and the
wavelet j(t) translations (Kumar and Foufoula-Georgiou, 1993). Eq. (8) represents
the signal decomposition and its inverse, the reconstruction (Fig. 4).

The process described above for FFT and MRA were implemented and run, first
in MATLAB, and then programmed in Cþþ.The software can be downloaded from
http://inrm.cip.cgiar.org/home/downmod.htm.

2.6. Validation methods

The information entropy has been extensively studied in communication theory
(Andraud et al., 1994). Shannon and Weaver (1949) defined the information of the
system by its entropy. If a system has Z different possible states with probability of
occurrence pi, i ¼ 1,2, ., Z, then the gain in information from observing the
occurrence of the event (i) is defined as:

IðpiÞ ¼ ln
1
pi

(11)

This definition follows from the fact that for two independent events with
probabilities p, q we have I(pq)¼ I(p)þ I(q); from the fact that for certain event with
p ¼ 1 we have I(1) ¼ 0; and from the requirement I � 0.

The expected value of such a gain in information is defined as the entropy (H) of
the system:

H ¼
XN
i¼ 1

piIðpiÞ0H ¼ �
XN
i¼1

pilnpi (12)

where pi is the probability that the system assumes its ith possible outcome.
Entropy concepts were used for 1) helping decide at which decomposition

level to stop and to assess at which level the reconstruction should start, 2)
comparing similarities between gauged and reconstructed daily rainfall signals. For
the first aim, entropy differences between the bases, DH ¼ H(NDVI Basei) � H
(RAIN Basei) such that DH / 0 was the criteria used. That is, when the internal
information of the NDVI base is similar to the rainfall base. For the second aim, the
entropy differences between the gauged and the reconstructed signals either from
the conventional statistical method or the IWT were compared. The entropy
metric was used because systems with identical values are in a certain sense
isomorphic to each other and thus expected to have identical statistical laws of
motion (Feng and Tse, 2008).

Several other metrics were also used to complement entropy and as reference to
readers who use them: cumulative probability functions, R2, the relative mean
absolute error (MAE) and bias (Dinku et al., 2008).

3. Results and discussion

3.1. Decomposition with MRA

Fig. 5 shows an example of rainfall (panel a) and NDVI signal
decomposition duly de-lagged. On the left hand column the low-
frequency pass signals (low-pass), generated by the scaling func-
tion of the Symlet2 wavelet (Graps, 1995) are shown. They are
labeled as RAIN Basei and NDVI Basei for rainfall and NDVI,
respectively, for each decomposition level i ¼ 1,2,3,4 and 5. These
signals correspond to the trend at each level of decomposition or
resolution. On the right hand column, the high-frequency pass
signals (high-pass) for both series (RAIN Noisei and NDVI Noisei) are
also shown. These signals provide information on the noise or
variance contribution at each resolution i.

3.2. Multilevel wavelet decomposition

Table 1 presents different metrics for describing the degree of
association between the bases of NDVI and rainfall signals at
different levels of wavelet decomposition (as described in Section
3.1). The rightmost column contains the coefficient of determina-
tion. Based on this metric, a decomposition level 4 or 5 is needed to
attain an acceptable determination coefficient.

Entropy and entropy differences were also used to determine
the most suitable decomposition level. There was a steep decline

Fig. 4. Multi-resolution analysis processes. a) Decomposition or “up-scaling” process. b) Reconstruction or “down-scaling” process. The algorithm and themotherwavelet (j) for both
processes is the same. i ¼ 0,1,2,. is the finite process level (decomposition (a) and reconstruction (b)) which define the scale as l ¼ 2i and 4 is the scaling function associated to j.
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in DH until the third level of decomposition. The entropy
difference from this level onwards seems to level off (Table 1).

The two metrics (entropy and R2) do not corroborate each other
to make a clear-cut level of decomposition. On the first hand,
entropy metrics seems to suggest that when the NDVI and rainfall
signals are broken down to a third level of awavelet decomposition,
at this lower resolution, the bases or low-pass signals are similar to
each other. This degree of similarity seems sufficient to initiate the
reconstruction process, a process described below. The scale
parameter at the third decomposition level equals 8 days, which is
a time interval that corresponds well to the rain characteristics of
the Altiplano (slow convective systems). On the other hand, the
coefficient of determination increases substantially even at the fifth
level of decomposition. The coefficient of determination assesses
the pair-wise comparison between the low-frequency decomposi-
tion levels of rain and NDVI.

3.3. Rainfall reconstruction

An inverse wavelet transform can accurately reconstruct the
original signal since all the information is contained in the base and

noise vectors at each decomposition level (see Fig. 4b). Since our
interest is to combine the vectors from two different signals (NDVI
and rainfall) to reconstruct daily rainfall events, it is desirable to use
theminimum level of decompositionwhere both base signals show
similarities while avoiding loosing the level of details provided by
the noise signal, which is flattened at higher decomposition levels.
That is, a level of decomposition where the stationary or quasi-
stationary properties of the base signals are maintained, while the
noise signal maintains cyclic variations and other regular and
irregular random events that differentiate one site from other.

Based on entropy and R2 metrics (Table 1), used to assess the
decomposition levels, the reconstruction started from the third
level upwards.

Fig. 6 graphically portrays an example of how the reconstruction
looks like e using the inverse wavelet transform function (IWT, Eq.
(6) and the Symmlet 2 wavelet) e when the process is initiated at
level 3. The low-pass signal from the third decomposition level of
the NDVI (NDVI Base3, in Fig. 5b), is combined with the high-pass
signal from the same level of the rainfall (RAIN Noise3, in Fig. 5a).
This combination produces the signal labeled R2. A second level
reconstruction follows; for this step the reconstructed low-pass
signal (R2) is then combined with the high-pass signal from the
rainfall (RAIN Noise2, in Fig. 5a) to produce the R1 signal. The same
procedure is repeated in level one to produce the reconstructed
rainfall signal (S). To make sure no artificial rainfall is added to the
reconstructed signal, during the periods where there is no rain,
whenever the high-pass signal from the decomposition of the
gauged signal was equal to zero, the reconstructed signal in
the process described above (IWT) was also zero. This was based on
the fact that when there is no rainfall there is no perturbation, so
there is no high frequency signal.

The reconstructed rainfall signal is overlaid with the gauged
rainfall signal. A visual inspection indicates a good match between
reconstructed and measured daily rainfall. The determination

Fig. 5. Signal decomposition at 5 levels, using the MRA technique. (a) Rainfall (b) NDVI.

Table 1
Entropy, entropy difference, and determination coefficients for the NDVI and rainfall
bases for different decomposition levels.

Level
(i)

Scale
(l)

H NDVI
Basei

H RAIN
Basei

DH [DH/max
(DH)] � 100%

R2 from Base
NDVIi vs
Base RAINi

0 1 day 149.41 273.82 124.4 100 0.18
1 2 days 46.37 129.67 83.30 66.95 0.26
2 4 days 8.36 50.67 42.30 34 0.36
3 8 days 5.22 16.12 10.90 8.76 0.45
4 16 days 4.54 5.55 1.01 0.81 0.58
5 32 days 3.87 3.97 0.10 0.08 0.64
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coefficient and the entropy difference were used as a metrics to
ascertain the adequacy of the reconstruction. The underlying
assumption for R2 is that the generated data should correspond to
precisely the same gauged event. This is not necessarily true since
the reconstruction process generates rainfall data containing the
distributional parameters obtained from the gauged rainfall events.
Therefore, a pair-wise comparisonwhere the simulated events for ti
do not correspond to the measured event for that particular time,
might generate a low determination coefficient in spite of the
similarities encountered for the original and reconstructed distri-
butions using other tests such as the KolmogoroveSmirnov or the
multifractal spectrum. On the other hand, the entropy is estimated
over the entire distribution and as such seems to be a more
appropriate metric to define the reconstruction level to be used.

As explained above, the entropy analysis suggested that the
level three was the minimum level recommended to obtain an
acceptable reconstruction. The reconstructions were conducted
from levels one through four. The increments in the proportion of
the variance in measured daily rainfall explained by the recon-
structed signal for each reconstructionwere assessed (Table 2). The
table shows both the determination coefficient and the additional
explanation (DR2 ¼ [(R2(iþ1)�Ri

2)/Ri2]*100%) produced when the
decomposition level started at a higher level (i ¼ 1 through 4).

As expected, R2 increases as the level of reconstruction (i) moves
from 1 to 4. It can be seen that when the reconstruction starts at
level two R2 increases in 28%, compared to the reconstruction
starting in level 1. This DR2 substantially decreases when the
reconstruction starts at levels 4 or higher (not shown). Level 3 is an
appropriate starting point for reconstruction since the gain by
starting in level 4 is marginal and the quality of the reconstruction
is better than any estimation of daily rainfall from NDVI found in
the literature. As a matter of fact, the robustness for estimating
daily rainfall with this procedure is similar or better than monthly
and seasonal estimations based on conventional statistical rela-
tionships, reported in the literature,. The comparative analysis
between the reconstructed signal -combining NDVI Base and RAIN
Noise e with the gauge data is shown in Table 3. NDVI bases were
estimated from the pixel where the weather stations were located.
Over 89% of the gauged signal variance was explained by the
reconstructed signals and the errors were relatively low. The
entropy difference was also low, as will be explained below. It is
important to highlight that the estimation of daily rainfall using the

Fig. 6. Rainfall reconstruction process initiated at level 3, using the data shown in Fig. 5.

Table 2
Changes in the determination coefficient as affected by the level where rainfall
reconstruction starts: Mazo Cruz, with Lag(T) ¼ 53 and T ¼ 121.

Level where the
reconstruction started (i)

Reconstruction
vs rainfall r2

DR2

(%)

1 0.57 e

2 0.73 28.06
3 0.82 11.21
4 0.85 4.42

Table 3
Determination coefficient for reconstructed versus gauged rainfall data and lag time
for different sites in the high plateau.

Station R2 T (days) Lag(T) (days) MAEa Bias

Azangaro 0.89 365 19 0.87 1.12
Chuquibambilla 0.90 121 82 0.85 1.13
Desaguadero 0.87 121 57 1.22 1.23
Huancané 0.90 121 74 0.86 1.11
Huaraya Moho 0.88 121 86 1.16 1.11
Ilave 0.86 121 76 1.16 1.18
Macusani 0.93 91 84 0.58 1.10
Mañazo 0.87 365 47 0.98 1.19
Mazo Cruz 0.86 121 56 0.83 1.25
Tahuaco Yunguyo 0.85 121 43 0.99 1.19

a MAE ¼ relative mean absolute error.
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statistical conventional method, explained less than 20% of the
variance (data not shown).

3.4. Lag time

Table 3 shows the lag times estimated for SRain and SNDVI time
series using different periods T. It also presents the correlations
between the measured rainfall time series and the reconstructed
one using three decomposition levels. T ¼ 121 d was the best time
resolution for analyzing the lag time acrossmost sites. Only three of
the sites showed better fit for other periods, Mañazo, Azángaro and
Macusani (T ¼ 365 d for the first two and 91 d for the latter).
Nonetheless, the coefficients of determination for T¼ 121 were also
high and significant; 0.82, 0.84, and 0.90 for the three respective
sites.

The lag time or Lag (T) was analyzed for a range of periods T. This
lag time varied from 42 to 86 d. It was shown that there was a good
correlation between the reconstructed and gauged daily rainfall
(0.91 > R2 > 0.81). The MAE is lower than values reported for
monthly data (Dinku et al., 2008) and the bias show a slight
underestimation

Sites with shorter lag times were associated with sandy loam or
loam soils; whereas longer lag times coincided with sandy clay
loam soils. Lag time did not vary significantly with topography,
mean temperature, and land use.

Similar lag times were found in semi-arid regions in Africa with
similar rainfall patterns (Farrar et al., 1994; Nicholson and Lare,
1990; Entekhabi et al., 1996 and Brunsell and Young, 2008).

3.5. Cross-validation

It is important to highlight the diversity in daily rainfall events
when all the seasons and sites are combined (See Fig. 2).
Notwithstanding, the KolmogoroveSmirnov test showed that all
the rainfall events registered across gauge stations were samples of
the same distribution, thus allowing us to “extrapolate” the noise
from the gauged data to areas without physical measurements. Our
comparison across 10 sites in the high plateau of Peru, using the
entropy difference between the gauged and the reconstructed
signals, is shown in Table 4. The comparison is based on recon-
struction initiated at level 3. Several aspects of the comparison are
presented. The rightmost column depicts the entropy difference (as
percent) between the gauged signal and the one estimated using
the conventional statistical relationship between gauged rainfall
and NDVI of the pixel where the weather station is located. Note
that the entropy difference ranged from 45 to 64%, indicating that
the signals compared were different. The rest of the table contains
the results of the cross-validation analyses, with the exception of

the main diagonal which portrays the results where the NDVI Base
comes from the pixel where the weather station was located. The
entropy difference in this main diagonal is attributed to the use of
the NDVI Base, rather than a RAIN Base, which would provide
a reconstruction of the original signal.

The entropy difference values off-main diagonal are the cross-
validation, where the RAIN Noise is taken from the vertical stations
and the NDVI Base from the horizontal stations. The matrix is non-
symmetrical since neither the bases nor the noises are similar. For
instance, taking the RAIN Noise from Desaguadero to reconstruct
Azangaro (NDVI Base from Azangaro) generated an entropy
difference of 1.03% (value in row 3, column 1). On the other hand,
using the RAIN Noise from Azangaro to reconstruct Desaguadero,
generates an entropy difference of 5.22% (row 1, column 3). All in
all, entropy differences between signals reconstructed with
detailed information given by any other weather station in the
Altiplano, even when the two sites were over 200 km apart, were
less than 11 percent. It is hypothesized that the gauged and
reconstruct signals with the IWT may be controlled by similar
statistical laws of motion (Feng and Tse, 2008). For this particular
case this might be associated to the fact that the rainfall in the
entire Altiplano and surroundings is controlled by the Bolivian high
(Vuille and Keimig, 2004).

4. Conclusions

In this paper we showed a new reconstruction tool to generate
daily rainfall from NDVI data. The tool is supported by the Wavelet
Transform that maintains the same distributional properties of the
measured events. The results obtained for the highly variable
rainfall of the Andean highlands were superior to reconstructions
based on conventional statistical relations reported in the litera-
ture. Actually the explanatory power of the reconstructed signal is
comparable to exercises conducted at the seasonal level, using
conventional statistical relationships between the two data sets.

Entropy analysis of the signals was a good metric to select the
level of wavelet decomposition needed to maintain the dis-
tinguishing feature of rainfall events across space (point estimates
within a region in this exercise) and time thus assuring a better
representation of the phenomena being reconstructed. Entropy
was also successfully used for assessing similarities between
gauged and reconstructed rainfall signals.

Wavelet analysis proved to be a very flexible technique. It
allowed the viewing of a data series as it would be observed at
different resolutions, referred to as “levels of decomposition”
(Brunsell and Young, 2008). The analysis provided the mechanism
for separating the trend from the noise thus providing information
on when an event occurs and its relative importance or variance.

Table 4
Cross-validation of daily rainfall reconstruction using percentage entropy values.

Rain Noise From Station xa NDVI Base From Station ya Classic Model Results

1 2 3 4 5 6 7 8 9 10

1 8.31 10.12 5.22 9.92 8.53 10.80 5.76 6.13 5.01 6.23 59.71
2 8.37 10.02 3.92 9.28 7.72 10.17 4.30 5.40 3.34 4.37 63.81
3 1.03 3.24 L2.19 2.95 1.53 3.10 �2.08 �1.72 �2.73 �2.00 45.69
4 5.45 6.94 1.90 6.26 5.57 6.80 2.34 2.73 1.54 2.73 54.67
5 5.96 7.85 2.70 6.89 7.36 8.06 2.92 3.31 2.10 2.89 61.65
6 7.68 9.85 3.98 8.85 8.05 9.13 4.42 5.36 3.67 4.52 56.50
7 3.89 5.39 �0.27 5.09 4.23 6.25 0.66 1.19 �0.81 0.05 57.38
8 4.40 7.42 1.02 6.16 4.52 6.52 1.34 1.70 0.56 1.66 57.06
9 4.83 7.78 1.34 6.04 5.07 7.03 1.67 2.15 0.89 2.01 45.44
10 2.49 5.04 �1.72 3.24 2.43 4.88 �1.18 �0.41 �2.03 L0.57 58.97

The diagonal portrayed by the values in bold represent the NDVI base and the rain noise corresponding to the same station.
a Station x or y: 1¼ Azangaro; 2¼ Chuquibambilla; 3¼Desaguadero; 4¼Huancane; 5¼HuarayaMoho; 6¼ Ilave; 7¼Macusani; 8¼Mañazo; 9¼Mazo Cruz; 10¼ Tahuaco

Yunguyo.
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The method described in this paper is suitable for reconstruct-
ing daily rainfall events through combining two signals, the trend
from NDVI time series and the detailed variance of daily rainfall
events, from gauge measurement in neighboring sites. This is
suggested by the fact that it was feasible to reconstruct rainfall
signals using the high frequency detail obtained from the gauged
information extracted from anyweather station evenwhen this site
was over 200 km apart from the site where the NDVI was extracted.
The extrapolation domain for weather stations was not formally
addressed in this research, since the spatial anisotropy of rainfall
events must be analyzed. This investigation is being conducted in
our laboratory using multifractal analysis.

References

Adler, R.F., Kidd, C., Petty, G., Morissey, M., Goodman, H.M., 2001. Intercomparison of
global precipitation products: the third precipitation intercomparison project
(PIP-3). Bulletin of the American Meteorological Society 82 (7), 1377e1396.

Andraud, C., Beghdadi, A., Lafait, J., 1994. Entropic analysis of randommorphologies.
Physica A: Statistical and Theoretical Physics 207 (1e3), 208e212.

Azzali, S., Menenti, V., 2000. Mapping vegetation-soil-climate complexes in
southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data.
International Journal of Remote Sensing 21 (5), 973e996.

Brunsell, N.A., Young, C.B., 2008. Land surface response to precipitation events using
MODIS and NEXRAD data. International Journal of Remote Sensing 29 (7),
1965e1982.

Chamaille-Jammes, S., Fritz, H., Murindagomo, F., 2006. Spatial patterns of the
NDVI-rainfall relationship at the seasonal and interannual time scales in an
African savanna. International Journal of Remote Sensing 27 (23), 5185e5200.

Daubechies, I., 1990. The wavelet transform, time-frequency localization and signal
analysis. IEEE Transactions on Information Theory 36 (5), 961e1005.

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S.J., Ropelewski, C.F., 2008. Validation
of high-resolution satellite rainfall products over complex terrain. International
Journal of Remote Sensing 29 (14), 4097e4110.

Eklundh, L., 1998. Estimating relations between AVHRR NDVI and rainfall in East
Africa at 10-day and monthly time scales. International Journal of Remote
Sensing 19 (03), 563e570.

Entekhabi, D., Rodríguez-Iturbe, I., Castelli, F., 1996. Mutual interaction of soil mois-
ture state and atmospheric processes. Journal of Hydrology 184 (1e2), 3e17.

Farge, M., 1992. Wavelet transforms and their applications to turbulence. Annual
Review of Fluid Mechanics 24, 395e458.

Farrar, T.J., Nicholson, S.E., Lare, A.R., 1994. The influence of soil type on the rela-
tionships between NDVI, rainfall, and soil moisture in semiarid Botswana. II.
NDVI response to soil moisture. Remote Sensing of Environment 50 (2),
121e133.

Feng, J.C., Tse, C.K., 2008. Reconstruction of Chaotic Signals with Applications to
Chaos-Based Communications. TsinghuaUniversity Press and World Scientific
Publishing Co. Pte. Ltd.

Foufoula-Georgiou, E., Kumar, P. (Eds.), 1994. Wavelets in Geophysics. Academic
Press, p. 373.

Gao, W., Li, B.L., 1993. Wavelet analysis of coherent structure at the atmosphere-
forest interface. Journal of Applied Meteorology 32 (11), 1717e1725.

Goupillaud, P., Grossmann, A., Morlet, J., 1984. Cycle-octave and related transforms
in seismic signal analysis. Geoexploration 23 (1), 85e102.

Graps, A., 1995. An introduction to wavelets. IEEE Computational Science and
Engineering 2 (2), 50e61.

Grossmann, A., Morlet, J., 1984. Decomposition of Hardy functions into square
integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis
15 (4), 723e736.

Immerzeel, W.W., Quiroz, R.A., De Jong, S.M., 2005. Understanding precipitation
patterns and landuse interaction inTibet using harmonic analysis of SPOT VGT-S10
NDVI time series. International Journal of Remote Sensing 26 (11), 2281e2296.

Jaffard, S., 2004. Wavelet techniques in multifractal analysis, fractal geometry and
applications. In: Proceedings of Symposia in Pure Mathematics, AMS, Provi-
dence, RI.

Jakubauskas, M.E., Legates, D.R., Kastens, J.H., 2001. Harmonic analysis of time-
series AVHRR NDVI data. Photogrammetric Engineering & Remote Sensing 67
(4), 461e470.

Jakubauskas, M.E., Legates, D.R., Kastens, J.H., 2002. Crop identification using
harmonic analysis of time-series AVHRR NDVI data. Computers and Electronics
in Agriculture 37 (1e3), 127e139.

Katul, G., Vidakovic, B., 1996. The partitioning of attached and detached eddy
motion in the atmospheric surface layer using Lorentz wavelet filtering.
Boundary Layer Meteorology 77 (2), 153e172.

Kawabata, A., Ichii, K., Yamaguchi, Y., 2001. Global monitoring of interannual
changes in vegetation activities using NDVI and its relationships to temper-
ature and precipitation. International Journal of Remote Sensing 22 (7),
1377e1382.

Krajewski, W.F., Smith, J.A., 2002. Radar hydrology: rainfall estimation. Advances in
Water Resources 25 (8e12), 1387e1394.

Kumar, P., Foufoula-Georgiou, E., 1993. A multicomponent decomposition of spatial
rainfall fields: 1. Segregation of large- and small-scale features using wavelet
transform. Water Resources Research 29 (8), 2515e2532.

Labat, D., Ababou, R., Mangin, A., 2000. Rainfall-runoff relations for karstic springs.
Part. II: continuous wavelet and discrete ortoghonal multiresolution analyses.
Journal of Hydrology 238 (3e4), 149e178.

Liu, P.C., 1994. Wavelet spectrum analysis and ocean wind waves. In: Foufoula-
Georgiou, E., Kumar, P. (Eds.), Wavelets in Geophysics. Academic Press, New
York, pp. 151e166.

Lotsch, A., Friedl, M.A., Anderson, B.T., Tucker, C.J., 2003. Coupled vegetation-
precipitation variability observed from satellite and climate records. Geophys-
ical Research Letter 30 (14), 1774.

Mallat, S., 1999. A Wavelet Tour of Signal Processing, second ed.. Academic Press,
p. 637.

Mallat, S., Zhong, S., 1992. Characterization of signals from multiscale edges. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14 (7), 710e732.

Martiny, N., Camberlin, P., Richard, Y., Philippon, N., 2006. Compared regimes of
NDVI and rainfall in semi-arid regions of Africa. International Journal of Remote
Sensing 27 (23), 5201e5223.

Moody, A., Johnson, D.M., 2001. Land-surface phenologies from AVHRR using the
discrete Fourier transform. Remote Sensing of Environment 75 (3), 305e323.

Nicholson, S.E., Davenport, M.L., Malo, A.R., 1990. A comparison of the vegetation
response to rainfall in the Sahel and East Africa, using normalized difference
vegetation index from NOAA AVHRR. Climatic Change 17 (2e3), 209e241.

Nicholson, S.E., Farrar, T.J., 1994. The influence of soil type on the relationships
between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI
response to Rainfall. Remote Sensing of Environment 50 (2), 107e120.

Nicholson, S.E., Lare, A.R., Marengo, J.A., Santos, P., 1996. A revised version of Lettau’s
evapoclimatonomy model. Journal of Applied Meteorology 35 (4), 549e561.

Nicholson, S.E., Lare, A.R., 1990. A climatonomic description of the surface energy
balance in the central Sahel. Part II: the evapoclimatonomy submodel. Journal
of Applied Meteorology 29 (2), 138e146.

Pipes, L.A., Harvill, L.R., 1971. Applied Mathematics for Engineers and Physicists,
third ed.. McGraw-Hill, Singapore, p. 1015.

Prasad, L., Iyengar, S.S., 1997. Wavelet Analysis with Applications to Image Pro-
cessing. CRC Press, p. 279.

Quiroz, R., León-Velarde, C., Valdivia, R., Zorogastúa, P., Baigorria, G., Barreda, C.,
Reinoso, J., Holle, M., Li Pun, H., 2003. Making a difference to Andean livelihoods
through an integrated research approach. In: Harwood, R.R., Kassam, A.H.
(Eds.), Research towards Integrated Natural Resources Management. CGIAR,
Rome, pp. 111e122.

Richard, Y., Poccard, I., 1998. A statistical study of NDVI sensitivity to seasonal and
interannual rainfall variations in Southern Africa. International Journal of
Remote Sensing 19 (15), 2907e2920.

Roerink, G.J., Menenti, M., Verhoef, W., 2000. Reconstructing cloud free NDVI
composites using Fourier analysis of time series. International Journal of
Remote Sensing 21 (9), 1911e1917.

Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication.
University of Illinois Press, Urbana, IL, p. 125.

Vuille, M., Keimig, F., 2004. Interannual variability of summertime convective
cloudiness and precipitation in the central Andes derived from ISCCP-B3 data.
Journal of Climate 17 (17), 3334e3348.

Yarlequé, C., 2009. Análisis de campos de biomasa del altiplano usando wavelet y
parámetros universales multifractales. Tesis de Licenciatura en Física: Uni-
versidad Nacional del Callao, Perú. pp. 202.

R. Quiroz et al. / Environmental Modelling & Software 26 (2011) 201e209 209


