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Water managers and policy makers need accurate estimates of real (actual) irrigation applications for
effective monitoring of irrigation and efficient irrigation management. However, this information is
not readily available at field level for larger irrigation areas. An innovative inverse modeling approach
was tested for a field in an irrigation scheme in southern Spain where observed actual evapotranspira-
tion by satellites was used to assess irrigation application amounts. The actual evapotranspiration was
used as the basis for an optimization procedure using the physical based SWAP model and the param-
pain
otton
emote sensing
WAP
EST
utureWater

eter optimization tool PEST. To evaluate the proposed techniques two steps were taken. First, actual
observed evapotranspiration from remote sensing was used to optimize two parameters of the SWAP
model to determine irrigation applications. Second, a forward–backward approach was applied to test
the minimum overpass return time of satellites and the required accuracy of remotely sensed actual
evapotranspiration for accurate assessment of irrigation applications. Results indicate that irrigation

be es
the a
application amounts can
of 15 days or shorter and

. Introduction

Appropriate planning in water resources, and more specifi-
ally in irrigation, is becoming increasingly important given the
hallenges of already-stressed water resources, climate change,
rowing population, increased prosperity, and potential food short-
ges. However, policy makers and water managers are often
onstrained in this context of increasing complexity by insufficient
nowledge of current agricultural water management practices.
nsufficient knowledge of actual irrigation applications in partic-
lar hampers the assessment of water management practices of
ifferent agricultural crops.

Global estimates of water consumption by sector indicate that
rrigated agriculture is responsible for 85% of the water-use and
hat consumption in this sector will increase by 20% by 2025
Shiklomanov, 1999). Gleick (2004) presented estimates of the
mount of water required to produce daily food requirements
er region. According to his figures there are large differences
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

etween regions, ranging from 1760 l per person per day for
ub-Saharan Africa to 5020 for North America. In 2050 the total
mount of water evaporated in crop production would amount
o 12,000–13,500 km3, almost doubling the 7130 km3 of today

∗ Corresponding author. Tel.: +31 6 4879 4729.
E-mail address: p.droogers@futurewater.nl (P. Droogers).

378-3774/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.agwat.2010.03.017
timated reasonably accurately, providing data are available at an interval
ccuracy of the signal is 90% or higher.

© 2010 Elsevier B.V. All rights reserved.

(Molden, 2007). The increase in food and water requirements
coincides with evidence of increased water scarcity and thus
the need for more accurate information on water consump-
tion and especially on actual irrigation applications (Dam et al.,
2006).

Irrigated agriculture is a very important global food pro-
ducer. Irrigated land comprises less than one-fifth of the total
cropped area of the world but produces about two-fifths of
the world’s food (WWAP, 2009). This sector however competes
heavily for the already limited water resources in irrigation
regions.

Closely related to food production and irrigation is the amount of
actual water consumed in the form of evapotranspiration. Review
papers on evapotranspiration mapping for water management
have been prepared for Asia by Bastiaanssen and Harshadeep
(2005) and for the Western US by Allen et al. (2005, 2007). Use
of spatial estimates of actual evapotranspiration in climatic studies
is reported by for instance van den Hurk et al. (1997), Mohamed
et al. (2005), and Anderson et al. (2007). A number of studies
deal with the assimilation of evapotranspiration data in hydro-
logical models to facilitate model calibration (e.g. Schuurmans et
tion application by remotely sensed evapotranspiration observations.

al., 2003; Droogers and Bastiaanssen, 2002). The performance of
hydrological models can also be improved by calibrating model
parameters by optimizing the difference between modeled and
remotely sensed observed evapotranspiration. Typical examples
of model parameter optimization are provided by Ines and Honda

dx.doi.org/10.1016/j.agwat.2010.03.017
http://www.sciencedirect.com/science/journal/03783774
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2005), Immerzeel et al. (2008), Immerzeel and Droogers (2008).
astiaanssen et al. (2007) reviewed studies where remotely sensed
vapotranspiration observations in irrigation systems were used to
alibrate hydrological models.

Folhes et al. (2009) demonstrated that by combining observed
rrigation applications and remotely sensed derived evapotranspi-
ation a clear picture of the performance of systems can be obtained.
owever, in their approach it was assumed that the applied irriga-

ion amount has to be known, which is as they admit, often not
lear at field scale level. A comparable study was undertaken for
he Gediz Basin in Turkey (Karatas et al., 2009), where irrigation
erformance was assessed using remotely sensed derived evap-
transpiration. In this study it was also indicated that the actual
rrigation application at field level was one of the missing data
arameters.

A first attempt to assess actual irrigation applications based on
emotely sensed evapotranspiration observations was presented
y Ramos et al. (2006). The authors used the Surface Energy Balance
lgorithm for Land (SEBAL) remote sensing technique to assess

he actual evapotranspiration and to compute net water volumes
nd net irrigation volumes by introducing a water application effi-
iency factor. They concluded that it is possible to assess actual
rrigation application based on actual evapotranspiration observa-
ions. One key question remained however: what is the required
ccuracy and temporal frequency for effective use of these tech-
iques?

These kind of studies are often referred to as inverse modeling,
hich can be defined as the quintessential problem of determining

n unknown parameter (e.g. hydraulic conductivity) from a set of
bservations (e.g. hydraulic head). This is usually achieved through
ystematic fitting of parameter values to match measured values
Pinault and Schomburgk, 2006). Substantial progress in inverse

odeling in the domain of water resources has been achieved
y obtaining soil characteristics based on observations of water,
olutes and/or heat fluxes. A comprehensive overview is provided
y Friedel (2005).

It should be emphasized that this inverse modeling approach
s fundamentally different from calibration (Ines and Droogers,
002). The latter has the sole objective of minimizing the difference
etween observed and simulated data by adjusting a set of cali-
ration parameters (Droogers and Immerzeel, 2006). The objective
f inverse modeling is to obtain the value of a physically defined
arameter by automatically changing this physical parameter till
bserved and simulated values are within a defined minimum. The
orresponding parameter value can be considered as the true value.
bviously, this approach requires a physically based simulation
odel.
For more theoretical studies on inverse modeling a synthetic

et of “observed” values are sometimes used (e.g. Friedel, 2005;
eddes et al., 1993). The “observed” values are in these cases gen-
rated by a simulation model. One of the main advantages of
uch an approach is that the real parameter values are exactly
nown and the performance of the inverse modeling process can be
ssessed. This technique is often referred to as forward–backward
pproach (Feddes et al., 1993). Note that terms “inverse modeling”
nd “forward–backward approach” are not interchangeable. The
rst one refers to the technique of obtaining the value of a physi-
ally based parameter, while the latter is a testing methodology if
easurements are lacking.
In summary the main objectives of the study are to evalu-

te what the impact of the observation interval and accuracy of
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

emotely sensed evapotranspiration is on the determination of
ctual irrigation applications. This has been explored using a combi-
ation of observations of actual evapotranspiration from satellites
nd synthetically constructed actual evapotranspiration data from
validated physically based simulation model.
 PRESS
anagement xxx (2010) xxx–xxx

2. Materials and methods

2.1. General setup

The general setup of the study is based on three main tools
applied to one irrigated field in an irrigation scheme in southern
Spain. For this irrigated scheme SEBAL (Surface Energy Balance
Algorithms for Land) was applied to assess the actual evapotran-
spiration based on Landsat remote sensing images. The model
SWAP (soil–water–atmosphere–plant) was setup for one partic-
ular field to estimate the daily actual evapotranspiration based
on the prevailing conditions of the field. However, since actual
irrigation applications were unknown, the SWAP model was not
able to estimate the same actual evapotranspiration as observed
from the satellite. Using the PEST (Parameter ESTimation) package
the SWAP input regarding irrigation applications were adjusted in
order to obtain the same actual evapotranspiration as observed
from the satellite. The derived input for SWAP can be con-
sidered as a representation of the real irrigation applications.
Particulars of the applied tools will be described in more detail
hereafter.

2.2. Genil-Cabra Irrigation Scheme

The Genil-Cabra Irrigation Scheme (GCIS) is located in the
southern part of Spain, near the town of Cordoba (Fig. 1) and
currently irrigates around 23,000 ha divided in three irrigation
districts. The irrigation district called “Colectividad de Santaella”
covers about 6800 ha of irrigated land and was developed around
1990, and being under full water supply since 1995. The climate
is Mediterranean continental with an annual average precipita-
tion of 610 mm, and a rainless summer. The average temperature
ranges from 10 ◦C in winter to 27 ◦C in summer. The predomi-
nant soils in the district are loamy soils. Cropping patterns are
fairly diverse. Dominant crops in the area during 2004/2005
were wheat, cotton and olive, representing 23, 18, and 14% of
the irrigated area, respectively. Various other crops are grown
including maize, sugar beet, beans, garlic, sunflower, and other
vegetables. The area is serviced by a modern pressurized irri-
gation system, which allows complete flexibility in frequency,
rate, and duration of water delivery as long as water is avail-
able. The irrigation application method is crop dependent. Thus,
crops such as wheat or sunflower are irrigated with hand-move
sprinkler systems, while horticultural crops or olives are mainly
irrigated with drip systems. In maize and cotton, approximately
half of the area is drip irrigated and the rest with sprinkler sys-
tems.

This study covered the year 2005 which was very dry; seasonal
rainfall was 271 mm compared to an average of 529 mm over the
previous 15 years. The average irrigation depth applied in the irriga-
tion scheme during the 2005 irrigation season was 420 mm, which
is much higher than the previous decade average of 260 mm.

Within the Colectividad de Santaella one field was selected for
the study (Fig. 2). This field, locally known as 1086-C3 (16.8 ha), was
selected because only one crop was grown during 2005, soils rep-
resent dominant soils in the area, and the field was well irrigated.
The crop that was cultivated was cotton and the growing season
was from 23 March to 1 October 2005.

Irrigation of the cotton field followed common practice in the
region. At the onset of the growing season 4 times an amount of
25 mm was applied to ensure effective germination and crop estab-
tion application by remotely sensed evapotranspiration observations.

lishment. During mid-season no irrigation was applied to support
seedling establishment. Finally irrigation was resumed in July to
support cotton lint growth. However, exact irrigation applications
were not monitored for fields and the question is whether remote
sensing can support monitoring of real irrigation applications. A

dx.doi.org/10.1016/j.agwat.2010.03.017
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Fig. 1. Location of the Genil-Cabr

etailed description of the study area is beyond the scope of this
aper but can be found elsewhere (Lorite et al., 2004, 2007).

.3. Satellite observed actual evapotranspiration

Advances in remote sensing techniques for estimating actual
vapotranspiration have been significant over the last decade and
ome of these techniques are applied operationally nowadays. Most
f these techniques are based on a combination of various wave-
engths of sensors, including thermal infrared to determine the
nergy balance and thus producing estimates of actual evapotran-
piration (Bastiaanssen et al., 1998; Allen et al., 2007). METRIC
Mapping EvapoTranspiration with high Resolution and Inter-
alized Calibration) is an evapotranspiration estimation model
eveloped by the University of Idaho, USA (Allen et al., 2007) and
ased on the SEBAL (Surface Energy Balance Algorithms for Land)
odel of Bastiaanssen et al. (1998). The SEBAL model has been

pplied and tested at a large number of locations around the world
Bastiaanssen et al., 2005a,b) while METRIC has been applied in
he western United States (Allen et al., 2005, 2007) to produce
igh resolution actual evapotranspiration maps. Estimates of actual
vapotranspiration by METRIC have been compared with a series
f lysimeter evapotranspiration measurements at two locations in
he northwest US showing that satellite observed actual evapo-
ranspiration can be considered as reliable (Tasumi et al., 2005).
owda et al. (2008) reported overall estimation accuracy of vari-
us methods varying from 67 to 97% for daily evapotranspiration,
nd greater than 94% for seasonal evapotranspiration. SEBAL, and
he derived METRIC is described in detail in more recent publica-
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

ions such as Bastiaanssen et al. (2002, 2005a,b) and Teixeira de
astro et al. (2008).

For the GCIS 11 Landsat 5 TM images were obtained, covering
andsat path 201 and row 34. The Landsat images originated from 5
arch, 22 April, 8 May, 9 June, 25 June, 11 July, 12 August, 28 August,
ation Scheme in southern Spain.

13 September, and 29 September 2005. These images were pro-
cessed using the METRIC energy balance computation procedure
(2006 version) of Allen et al. (2007) to obtain daily actual evapo-
transpiration for each image date at a resolution of 120 m. Typical
examples of these analyses are shown in Fig. 2. Spatial variation
in actual evapotranspiration is quite high due to variation in crops
and different timings of irrigation. Accuracy of the observed actual
evapotranspiration was not determined, but given the fact that con-
ditions and methods are similar to the ones described before, it is
expected that accuracy will be greater than 90%. Further details
of the evapotranspiration estimation are beyond the scope of this
paper but can be found in Santos et al. (2008).

2.4. SWAP model

The SWAP (soil–water–atmosphere–plant) model was applied
to explore the impact of temporal data resolution on estimating
actual irrigation applications. SWAP is an integrated physically
based simulation model for water, solute, and heat transport in
the saturated–unsaturated zone in relation to crop growth. A first
version of the SWAP model was developed in 1978 (Feddes et al.,
1978) with continuous development since. The version used for this
study is SWAP 3.2 and is described by Kroes et al. (2008).

The core part of the model is the modeling of vertical flow of
water in the unsaturated–saturated zone, which can be described
by the well-known Richards’ equation:

∂�

∂t
= ∂

∂z

[
K(�)

(
∂h

∂z
+ 1

)
− S(h)

]
(1)
tion application by remotely sensed evapotranspiration observations.

where � denotes the soil water content (cm3 cm−3), t is the time (d),
h (cm) is the soil matrix head, z (cm) is the vertical coordinate, taken
positive upwards, and K is the hydraulic conductivity as a function
of water content (cm d−1). S (d−1) represents the water uptake by
plant roots (Feddes et al., 1978), and defined for a uniform root

dx.doi.org/10.1016/j.agwat.2010.03.017
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ig. 2. Satellite derived actual evapotranspiration on 12 August 2005 (top) and 29
eptember 2009 (bottom).

istribution as:

(h) = ˛(h)
Tpot

|zr| (2)

here Tpot is the potential transpiration (cm d−1), zr is the rooting
epth (cm), and ˛ (−) is a reduction factor as a function of h and
ccounts for water and oxygen deficit. Total actual transpiration,
act, is calculated as the depth integral of the water uptake func-
ion S. Note that the potential transpiration is used here, which
s defined as the amount of transpiration that would occur if the
pecific crop under the current conditions is fully watered.

The SWAP model has been applied and tested already for many
ifferent conditions and locations and has been proven to pro-
uce reliable and accurate results (e.g. Bastiaanssen et al., 2005a,b;
einen, 2006; Varado et al., 2006; Droogers et al., 2000, 2008;
itzinger et al., 2004). A more detailed description of the model
nd all its components are beyond the scope of this paper, but can
e found in Kroes et al. (2008).
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

SWAP requires various data as input which can be divided into
tate variables, boundary conditions (model forcing) and calibra-
ion/validation data. The most important state variables are related
o soil and crop characteristics.
 PRESS
anagement xxx (2010) xxx–xxx

The field selected for our study is locally known as 1086-C3.
This specific field was selected as there was only one crop and
the spatial variability within the field was low according to the
satellite images (Fig. 2). The crop grown on this particular field in
2005 was cotton. It was known that irrigation applications of cotton
in the area were divided into three stages, but the actual amount
applied on the field was unknown. During the early crop stages
(April–May) cotton is irrigated quite frequently for effective ger-
mination and crop establishment. During seedling establishment in
early June irrigation stopped, but was resumed to ensure high cot-
ton lint growth. Planting was done on 23rd of March and harvesting
at 1st of October.

This irrigation practice was simulated using two of SWAP’s irri-
gation simulation options. The first one is defining four fixed date
pre-irrigation applications of 25 mm in April and May. Second, dur-
ing cotton lint development irrigation was scheduled automatically
using the SWAP’s automatic irrigation scheduling option. The level
of soil water shortage during drought was diagnosed from a thresh-
old defined by the ratio of reduced transpiration (Tr) to potential
transpiration (Tp). Irrigation was applied whenever reduced tran-
spiration was lower than the threshold:

Tr <= f1 × Tp

where Tr is the transpiration reduced by drought (mm d−1), Tp is
the potential transpiration (m d−1), f1 (−) is a user defined factor
for allowable daily stress.

It should be emphasized that the irrigation application as
referred to in this study is the actual amount delivered to the field
and does not include any conveyance or other water requirements.
Moreover, it is assumed that irrigation was provided completely
homogenous to the field.

2.5. PEST

Model calibration was performed using the PEST program. PEST
is a non-linear parameter estimation package that can be used to
estimate parameters for just about any existing computer model
(Doherty, 2005). PEST runs a model as many times as necessary to
adjust its parameters until selected model outputs match a com-
plementary set of field or laboratory measurements as closely as
possible.

PEST uses the Gauss–Marquardt–Levenberg (GML) algorithm to
optimize the model. The theory underlying the GML method is
derived from the linear parameter estimation theory. The relation
between a hydrological model (X), a set of parameters (p), a set
of observations (H), and residuals in the observations (ε) can be
described as:

X · p = H + ε (3)

The goal of PEST is to find that p value that minimizes the objec-
tive function, which is defined as the sum of squared deviations
between model-generated values and experimental observations
and is expressed as:

˚ = (H − Xp)t Q (H − Xp) (4)

where Q is the proportional to the inverse of C(ε), the covariance
matrix of measurement noise. The objective function used in PEST
can be converted to the commonly used root mean square error
(RMSE) through:

( ) 1
tion application by remotely sensed evapotranspiration observations.

N

Ф is minimized when

p = (XtQX)
−1

Xt Qh (6)

dx.doi.org/10.1016/j.agwat.2010.03.017
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Fig. 3. Comparison between simulated actual evapotranspir

Optimization of linear models can be achieved in one step,
hereas for non-linear modeling an iterative process is required.
t the beginning of each iteration the relationship between model
arameters and model-generated outputs is linearized by formu-

ating a Taylor expansion about the currently best parameter set;
ence, the derivatives of all observations with respect to all param-
ters must be calculated. This linearized problem is then solved for
better parameter set, and the new parameters tested by running

he model again.
However, one of the most relevant restrictions in the GML algo-

ithm, a gradient based method, is sensitivity to local minima.
ecent advances in the GML algorithm have improved the capabil-

ty to identify the global minimum in surface water models (Skahill
nd Doherty, 2006). The most pronounced advantage of the GML
ethod is that it can generally complete a parameter estimation

rocess with an extremely high level of model run efficiency.
A detailed description of PEST is beyond the scope of this publi-

ation; however, PEST can be considered as the de facto standard in
arameter estimation and is widely used in various water related
pplications, such as macropore flow (Schaik et al., 2010), variable
aturated flow (Dam et al., 2008) and water quality modeling (Ellis
t al., 2009).

.6. Optimizations

This study includes two different optimization tests. The first
ne is a straightforward optimization of the SWAP model using
he five daily remotely sensed derived actual evapotranspiration
alues as objective function. The two parameters to be optimized
re: (i) initial pre-irrigation application during the first phase of the
rowing season in mm and (ii) threshold value for the daily stress
f1) when irrigation starts during growing season, expressed as the
ctual transpiration over potential transpiration.

The second optimization is referred to as the forward–backward
ptimization. Since continues daily estimates of remotely sensed
ctual evapotranspiration were not available and moreover, actual
ccuracy is impossible to assess, this so-called forward–backward
pproach has been applied. In such an approach model output is
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

ltered and used as input data for calibration. In this specific case
he daily actual evapotranspiration during the cropping season was
sed to this end.

The following optimization tests were setup to meet the main
bjectives of the study:
ETact) and satellite derived evapotranspiration (ET Metric).

• Actual evapotranspiration observations at an interval of 1, 2, 3,. . .,
40 days.

• Actual evapotranspiration observations with a random error of 1,
2, 3,. . ., 50%.

It is well known that optimization algorithms are sensitive for
local optimizations, especially in non-linear systems and if cal-
ibration data are scarce. To avoid the effects of local minima,
each optimization was performed five times using different initial
parameter values. The best performing optimization was selected
and used in the subsequent analysis.

The two parameters which were included in the inverse mod-
eling and which largely determine actual applied irrigation are (i)
initial pre-irrigation application during the first phase of the grow-
ing season in mm and (ii) threshold value for the daily stress (f1)
when irrigation starts during growing season, expressed as the
actual transpiration over potential transpiration.

3. Results

3.1. Initial runs

The SWAP model was setup for the year 2005 using existing data
without performing any optimization. Examples of typical output
of a SWAP run are plotted in Fig. 3, based on realistic estimates of
four times a pre-irrigation value of 25 mm, and 0.95 for the stress
threshold value. Clearly three crop stages can be observed dur-
ing the growing season. At the beginning of the growing season
the actual evapotranspiration is substantially lower than potential
evapotranspiration as the crop is not yet fully developed. The fig-
ure indicates that the model simulated the observed satellite actual
evapotranspiration well, based on the assumed pre-irrigation and
stress threshold value. The r2 of the observed and modeled actual
evapotranspiration is 0.76, but when the first observation point,
which is located before the actual growing season, is excluded r2

increases to 0.91.
The extensive output of the SWAP model makes it possible to

evaluate model performance in great detail and to understand the
tion application by remotely sensed evapotranspiration observations.

natural processes much better. A typical example is the soil mois-
ture profile as shown in Fig. 4. During the beginning of the year
relatively dry conditions occurred, followed by spring rains and
initial irrigation for effective germination and crop establishment.
During seedling establishment irrigation ceased and dry soil con-

dx.doi.org/10.1016/j.agwat.2010.03.017
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application in the forward step was 600 mm. In other words, using
actual evapotranspiration observations at this interval and accu-
racy, in combination with the SWAP–PEST approach, one is able
to estimate the actual irrigation application within an accuracy of
90%.
Fig. 4. Soil moisture profile (m3 m

itions occurred. Finally irrigation was resumed in July to support
otton lint growth resulting is fairly wet soil conditions.

.2. PEST optimization

Optimization was performed using the PEST algorithm as
xplained before. Two parameters were optimized: pre-irrigation
nd daily stress irrigation threshold values. The pre-irrigation
mount parameter range was set between 0 and 100 mm, and
he range for daily stress irrigation threshold values between 0
nd 1. A typical example of a PEST optimization, based on this
orward–backward approach, is shown in Fig. 5. Two parameters
ere optimized using 214 daily actual evapotranspiration val-
es as generated in the forward step. A total of 15 optimization
teps were taken, requiring 84 model calls. After these 15 opti-
ization steps the process terminated because relative parameter

hanges were less than 0.01 and no further improvement could
e expected. Fig. 5 (top) shows a steady reduction in RMSE dur-

ng the first seven optimization steps, followed by a somewhat
ore irregular pattern in RMSE improvement. The two parame-

ers being optimized: pre-irrigation amount and stress threshold
alue, reflect a similar pattern. During the initial phase of opti-
ization the parameters follow a more or less linear pattern

owards the optimum value. Once these optimum values are within
ange, a more random behavior in the search process can be
bserved.

One of the advantages of the forward–backward approach is
hat the optimum parameter values are exactly known, since these
re the parameters used to generate the calibration values. In this
pecific case the values are 25 mm for the pre-irrigation and 0.95
or the stress threshold value. In the example shown, the opti-

ization resulted in a pre-irrigation value of 31 mm and a stress
hreshold value of 0.98. Although quite close to the original values,
EST was not able to find the optimum values exactly. A typical
xplanation often given is the non-uniqueness of the parameters
nvolved. However, in this case a more physically based reason
an be provided. The 25 mm pre-irrigation application used in
he forward step is already sufficient to have almost no water
tress conditions. Values higher than 25 mm will therefore have
limited effect on actual evapotranspiration. Also, the difference

n the actual evapotranspiration caused by the threshold values
f 0.95 (original) and 0.98 (optimized) to start irrigation is not
ery high. In other words, if the analysis is successful under these
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

onditions, actual irrigation application estimates might even be
etter under dryer conditions since parameters will be more sen-
itive.

The overall objective of this research is to see whether actual irri-
ation applications can be observed using a combination of actual
p to 1 m depth for the year 2005.

evapotranspiration and model optimization. For this example the
estimated irrigation application was 652 mm, while the original
tion application by remotely sensed evapotranspiration observations.

Fig. 5. Typical example of optimization results: reduction in RMSE (top), changes
in parameters (middle) and performance of optimization (bottom).

dx.doi.org/10.1016/j.agwat.2010.03.017
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ig. 6. RMSE as a function of the observation interval included in the optimization
rocess.

.3. Forward–backward optimization: observation interval

One of the restrictions in observing actual evapotranspiration by
emote sensing is the return period of satellite overpasses. Although
or some satellites the return period is small, e.g. 1 day for MODIS,
hese satellites have a resolution too coarse to be used for individ-
al field observations. Satellites observing with resolutions higher
han 50 m, such as Landsat, are still restricted in terms of return
nterval of overpass. It is therefore of interest to explore the rela-
ion between the so-called observation interval and the ability to
se these data to monitor actual irrigation applications.

Observation intervals of actual evapotranspiration between 1
nd 40 days have been used in the optimization process. Fig. 6
ndicates that there is a clear trend in the RMSE (between actual
vapotranspiration observed and the actual evapotranspiration
imulated) with increasing observation intervals. As long as obser-
ation intervals are more frequent than 15 days, the RMSE is
onstant at a value of around 0.15 mm (is less than 4% error). The
xception shown using intervals of 11 days is most likely the impact
f a local minimum in which the optimization routine was trapped.

At intervals longer than 15 days RMSE increases and the model is
ess accurate in simulations of observed actual evapotranspiration.
owever, for some cases of more than 15 days the RMSE is also
uite low (e.g. interval days 24 and 33), but given the big variation
ompared to other interval days this good fit can only be attributed
o a coincidence, rather than to a stable optimization.
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
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Since the observed actual evapotranspiration values were gen-
rated in the forward step, exact parameter values are known, and
an therefore be compared with the optimized values as a function
f the observation interval. From Fig. 7 it is clear that the parameter

Fig. 7. Parameter error as a function of the observation interval.
Fig. 8. Irrigation application as a function of observation interval. Lines indicate two
times standard deviation based on a moving interval of 5.

error is relatively low provided the observation interval is within
15 days (with the exception of day 11). Beyond this, parameters
cannot be accurately optimized. Similar as to the RMSE, the param-
eter error is relatively small for some interval days. However, given
the overall variation, these small parameter errors are probably
coincidental.

The ultimate objective of this study is to evaluate the ability to
assess actual irrigation applications as a function of the observa-
tion interval. The real irrigation obtained using the forward SWAP
simulation was 600 mm. Fig. 8 indicates that independently to the
observation interval all obtained irrigation applications, with the
exception of one, are within 500–700 mm. There is however a clear
trend which indicates that if the observation interval is shorter
than 15 days, irrigation applications can be assessed at an accu-
racy of about 95%. If observations are less frequent than these 15
days accuracy decreases to about 85%.

3.4. Forward–backward optimization: signal accuracy

It is well known that, despite advances in the observation
of actual evapotranspiration from satellites, accuracies can vary
depending on the algorithm used, satellite sensor, and atmospheric
conditions. The actual evapotranspiration values from the forward
SWAP simulations, referred to as the actual evapotranspiration
observed, were modified by imposing a random error ranging from
maximum 1 to 50% on the daily actual evapotranspiration. Note
that this random error can be positive or negative and was selected
for each day independently. In other words, this error reflects a
non-systematic error in the observation of actual evapotranspi-
ration from satellites. It was selected to focus on non-systematic
errors only as these occur regularly by clouds and atmospheric
disturbance.

Fig. 9 (top) shows the resultant irrigation application, based on
the daily observed actual evapotranspiration, with an error ranging
from maximum 1% up to maximum 50% (positive or negative). It
is clear that the original irrigation application of 600 mm can be
assessed reasonably accurately even if error levels are up to 50%. It
is somewhat surprising that even under these high error levels this
result can be obtained. However, the random error was applied for
every day which means that the total growing season error is close
to zero.

The same random error between 1 and 50% was applied to actual
evapotranspiration being observed only every 5 days. Reliable esti-
tion application by remotely sensed evapotranspiration observations.

mates of irrigation applications would than be possible as long as
this error is smaller than about 10% (Fig. 9, middle). Higher random
errors in the actual evapotranspiration observations make estima-
tions of actual irrigation applications difficult.

dx.doi.org/10.1016/j.agwat.2010.03.017
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water is less, as water managers’ interests in obtaining irrigation
ation for observation intervals of 1 day (top), 5 days (middle) and 15 days (bottom).
ines indicate the running minimum and maximum based on two times the standard
eviation.

If actual evapotranspiration is observed at intervals of 15 days
Fig. 9, bottom) actual irrigation applications can be assessed with
n accuracy of about 90% provided the error in the actual evap-
transpiration signal is below 10%. Lower accuracies in actual
vapotranspiration observations result in errors of more than 20%
n actual irrigation application assessments.

. Conclusions

There is a clear need for water managers and policy makers to
ssess and monitor the amount of actual applied irrigation at field
evel. However, accurate observations are scarce and estimates are
ften crude and based on crop water requirements rather than on
ctual observations. Actual observations from e.g. pumping hours
r from detailed irrigation canal monitoring are in most cases not
vailable for entire irrigation districts. Water releases from reser-
oirs for large scale irrigation are usually known, but information
t field level is lacking. In this research an innovative approach was
Please cite this article in press as: Droogers, P., et al., Estimating actual irriga
Agric. Water Manage. (2010), doi:10.1016/j.agwat.2010.03.017

xplored, where actual evapotranspiration observations by remote
ensing were used. These actual evapotranspiration observations
y satellites are increasingly applied operationally and are becom-

ng more accurate.
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A forward–backward optimization approach was used for one
field in an irrigation district in southern Spain to explore the
minimal observation interval and the minimum required accu-
racy for actual evapotranspiration observations by satellites. It
has been demonstrated that actual irrigation applications can be
assessed relatively accurately provided actual evapotranspiration
observations are available at intervals of 15 days or smaller. If
observation intervals are less frequent than 15 days, assessment
of irrigation applications is less accurate. In terms of practical
applications this means that satellites should overpass an area
at least twice a month, provided all images are cloud free. The
Landsat satellite can therefore be used to monitor actual irriga-
tion applications under cloud free conditions during the irrigation
season.

The selection of SEBAL, SWAP and PEST as our main tools
was based on three grounds. First, these tools are well known
and described widely in the international literature. Second, the
tools have been calibrated and validated extensively for a wide
range of conditions. Finally, the tools were geared towards the
tasks required. SEBAL is specifically developed to estimate actual
evapotranspiration; SWAP is a physically based soil–water–plant
simulation model with strong water management options; and
PEST is the ultimate tool for model independent parameter esti-
mation. Obviously, other tools might be used as well as long as
they are similar in behavior as the ones used here.

The accuracy of the remotely sensed actual evapotranspiration
signal was explored by distorting the signal with random errors
between 1 and 50% for every observation. If daily actual evapotran-
spiration observations are available for the optimization process,
these errors up to 50% are not effecting actual irrigation application
assessments. However, daily actual evapotranspiration observa-
tions are scarce and in reality data at 15 days intervals are available
only. Under these conditions actual irrigation applications can be
assessed at an accuracy of about 90% provided the error in the
actual evapotranspiration signal is below 10%. It is important to
note that these imposed errors are non-systematic daily errors and
not accumulative, so total actual evapotranspiration over the grow-
ing season is error free.

The advantage of generating a synthetic set of “observed” actual
evapotranspiration values with the forward–backward optimiza-
tion approach is that the “real” irrigation application is known. The
ability of the inverse modeling method to generate a particular
irrigation application can thus be tested. The forward–backward
process has however a drawback in that model assumptions are
reflected in the synthetically derived evapotranspiration data and
in the optimization process as well. However, the applied model
SWAP is physically based, so model assumptions are considered to
be realistic.

For irrigation management in practice the developed approach
brings significant advances in semi-real time applications. Man-
agers could setup an operational system which provides not only
the actual evapotranspiration and water shortage for the crop
from remote sensing, but can also assess simultaneously the actual
amount of irrigation applied. Accuracy of the method requires
however additional research with preferable well monitored field
calibration and validation data.

The study as presented here is valid for the particular field in
southern Spain given the conditions prevailing in 2005. These con-
ditions were: a relatively dry year with abundant irrigation water
available. It would be valuable to extend the analysis to other envi-
ronments and especially to conditions where available irrigation
tion application by remotely sensed evapotranspiration observations.

applications will be specifically high under such conditions. More-
over, the number of parameters used in the optimization, testing
of parameter uniqueness, optimization techniques, etc. required
further studies.

dx.doi.org/10.1016/j.agwat.2010.03.017
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Finally, the study has practical application for water managers
nd policy makers in that assessment of actual applied irrigation
mounts can be reasonably accurate, providing remotely sensed
vapotranspiration data are available at an interval of 15 days or
ower, and accuracy of the signal is 90% or higher.
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