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Preface 
 
 
Green Water Credits create a market mechanism between upstream farmers and downstream 
water users. A proof-of-concept in the Tana basin, Kenya, confirmed the feasibility of the 
financial mechanism and showed that the implementation of Green Water Credits can 
significantly reduce the problems related to water scarcity in the basin, improve basin storage 
capacity, at the same time giving opportunities to the rural poor.  
 
This study is part of the second phase of Green Water Credits (co-ordinated by ISRIC and 
supported by the International Fund for Agricultural Development (IFAD) and the Swiss Agency 
for Development and Cooperation (SDC)) focusing on operational design and aiming at a more 
detailed assessment of the Green Water Credits mechanisms. This report resumes the 
biophysical assessment prepared during this phase and quantifies the impact of Green Water 
Credits practices on the green and blue water and sediment fluxes in the basin. This leads to 
the identification of potential target areas that will be the baseline for the following studies on the 
socio-economic and institutional aspects for pilot operation. 
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Summary 
 
This biophysical assessment quantifies the impact of Green Water Credits practices on the 
green and blue water and sediment fluxes in the Upper Tana basin. The analysis leads to 
identification of potential target areas for GWC pilot operation on biophysical grounds. This 
required a distributed modeling approach (SWAT) accounting for the heterogeneities in the 
basin in terms of precipitation regime, topography, soil characteristics and land use. The 
developed tool quantifies the benefits of the management practices on erosion reduction and 
green and blue water flows in the basin.  
 
The analysis revealed that basin-wide implementation of tied ridges leads to a reduction of 
sediment input into the Masinga reservoir of about a million tons. Mulching leads to a reduction 
of unbeneficial soil evaporation of more than 100 million cubic meters per year. The 
enhancement of groundwater recharge through the different practices will improve the usage of 
the natural storage capacity in the basin by about 20%. These benefits were quantified crop-
specific as well as site-specific. 
 
The distributed approach allowed assessing the spatial distribution of the extent to which each 
practice contributes to the different GWC objectives. The most effective practices were 
determined for each response unit (unique in topography, soil and land use) and the maximum 
reachable change was assessed. This gives detailed insight on the location of the optimum 
sites for pilot operation from a biophysical point of view. 
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1 Introduction 
 
 
Green Water Credits (GWC) is a mechanism for payments to land users in return for specified 
soil and water management activities that determine the supply of fresh water at source and 
reduction of soil erosion from rainfed fields. These activities are presently unrecognized and un-
rewarded. Direct payment will enable better management and therefore less damaging runoff, 
more beneficial infiltration, more groundwater recharge and more stream base flow, particularly 
in the dry season. At the same time, GWC will provide a reliable, predictable diversification of 
rural incomes, enabling communities to adapt to economic, social and environmental change 
through asset-building in the shape of stable soils, more reliable local water supply, improved 
crops and infrastructure. 
 
GWC focus is on a market failure in water supply: farmers and pastoralists manage all fresh 
water and land at source but their land and water management activities are unrecognized and 
unrewarded. Green Water Credits rectifies the market failure by supporting upstream water 
producers in return for specified water management services that determine supplies to 
consumers downstream (Figure 1).   

 
Figure 1: Green Water Credits bridging the gap in the water cycle 
 
GWC is implemented in the following program components: 

• Phase I, Proof of Concept: Completed for the Upper Tana basin in 2007 
• Phase II, Pilot Operation: Operational design, management information system, 

capacity building, and communications strategy by the end of 2011. Fund-raising for 
Phase III is included in Phase II. 

• Phase III, Implementation: 2011 onwards 
• Phase IV, Regional and global up-scaling 

 
In Kenya, proof-of-concept studies during Phase I showed that the implementation of Green 
Water Credits can significantly reduce the problems related to the growing demands for hydro-
power generation, municipal water utilities, and irrigators. Different green water management 
options were analyzed and showed that considerable improvements could be obtained in terms 
of water security for both upstream as downstream stakeholders.  
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Based on the proof-of-concept phase it was concluded that regarding the biophysical analysis 
the following refinements are required during Phase II: 

• A smaller focus area from Upper and Middle Tana to Upper Tana only. 
• A higher spatial detail so that smaller areas could be assessed. 
• Focus on more recent years. 
• Improved accuracy and higher spatial (from 25 km to 1 km) and temporal (from month 

to day) resolution of rainfall data. 
• Applying more recent streamflow validation data. 
• Extensive emphasis on knowledge transfer. 
• Using a more user-friendly modeling interface. 

 
This report describes the development and results of this improved biophysical analysis, 
including all these bullet points.  
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2 Baseline information 
 

For the pilot operational design of the Green Water Credits concept it is crucial to fully 
understand and quantify the up- and downstream interactions in terms of water flows and 
sediment transport. Consequently good data on the interfering variables of the current situation 
are needed and have to be analyzed with the appropriate tool. During the Proof of Concept 
phase different tools were assessed and the Soil and Water Assessment Tool (SWAT) resulted 
to be the most useful tool for this biophysical analysis, given the importance of studying the 
influence of land use on the water dynamics in the basin.  
 
This chapter reviews the available datasets necessary for the building of a distributed 
hydrological model applied to the Upper Tana basin, using the Soil and Water Assessment 
Tool. Different datasets are compared and evaluated in order to make an appropriate dataset 
selection and obtain maximum accuracy in the quantification of the interactions relevant for the 
scope of Green Water Credits mechanism. 

2.1 Basin delineation 

2.1.1 Data source 

Digital Elevation data are obtained from the Shuttle Radar Data Topography Mission (SRTM) of 
the NASA’s Space Shuttle Endeavour flight on 11-22 February 2000. SRTM data were 
processed from raw radar echoes into digital elevation models at the Jet Propulsion Laboratory 
(JPL) in California.  
 

   
Figure 2:  The SRTM Digital Elevation Model at 250 m resolution 
 
SRTM data at 3 arc-second (90 meters) is currently available for global coverage between 60 
degrees North and 56 degrees South latitude. The product consists of seamless raster data and 
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is available in geographic coordinates (latitude/longitude) and is horizontally and vertically 
referenced to the EGM96 Geoid (NASA 1998). 
 

The SRTM-DEM data have been obtained using the USGS Seamless Data Distribution System 
(USGS 2004). 

2.1.2 Methodology 

The original SRTM-DEM data are provided at a resolution of 90 m. However, the basin size and 
the numerical limitations of SWAT required this dataset to be resampled to a spatial resolution 
of 250 m (Figure 6). The basin outlet was defined at the location of the to-be-built Low Grand 
Falls dam. Consequently, all the tributaries of the Aberdares mountain range and of Mount 
Kenya belonging to the basin are included in the analysis.  
 
The DEM forms the base to delineate the catchment boundary, stream network and create sub 
basins. This is performed by the pre-processing module of SWAT and requires a so-called 
threshold area. This refers to a critical source area defining the minimum drainage area required 
to form the origin of a stream. The determination of an appropriate threshold area has to be in 
accordance with the desired level of detail. 
 
An appropriate threshold area of 2,000 ha was found to provide a good balance between the 
level of detail and the computational constraints in the lower part of the basin. However, 
applying this threshold area resulted in very prolonged subbasins in the higher regions of the 
Aberdares and Mount Kenya (Figure 3). This implies a large difference between the minimum 
and maximum elevation within the subbasin, reaching differences of around 3000 meters within 
one single subbasin. 
 

 
Figure 3:  Subbasin delineation with a threshold area of 15.000 ha  
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Considering the importance of the orographic precipitation regime in the basin, it was necessary 
to implement a second delineation step for the higher mountain catchments. This will allow a 
correct implementation of the heterogeneous rainfall distribution in SWAT. This second 
delineation step divides the prolonged subbasins using elevation intervals of 500 meters.  The 
SRTM dataset was used to extract the contour lines with this interval (Figure 4). 
 

The process of subdividing the higher mountain subbasins was performed by adding watershed 
nodes in the prolonged original watersheds, using the contour lines as a reference. These 
nodes further subdivide and delineate the prolonged subbasins of the higher mountain areas. In 
spite of this procedure, a few prolonged subbasins with a large elevation range persisted. For 
this reason it was necessary to make a few manual additional subdivisions to obtain a correct 
and consistent subbasin distribution. 
 

 
Figure 4:  Contour lines (500 m) used for the subdivision of the upstream subbasins 

2.1.3 Results 

With the proposed modified delineation methodology the stream network (Figure 5) and 
subbasins were defined. This resulted in a subbasin distribution with a slightly denser 
distribution in the higher mountain areas (Figure 6) which will allow a correct simulation of the 
orographic precipitation regime. The result of the analysis showed that the total basin area is 
17,420 km2 and a total of 564 subbasins were delineated. 
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Figure 5:  The derived stream network 
 

The adjusted frequency distribution of the elevation range now shows that most of the 
subbasins have an elevation range of less than 500 meters (Figure 7) as this was the interval 
used to make the subdivisions using the contour lines. Within this elevation interval it is 
reasonable to assume that there are no important changes in the precipitation regime. Most of 
the subbasins with a large elevation difference were subdivided by this method, although still a 
few subbasins cover an elevation difference of around 1000 meters. These subbasins, however, 
correspond to the lower lying subbasins that contain irregularities in terrain morphology of which 
can be assumed that they are too small to alter the precipitation regime locally. 
 

    
Figure 6:  The delineated subbasins using the modified delineation methodology 
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Figure 7:  Frequency distribution of the difference in elevation within each subbasin, 
without and with refinement using contour lines. 
 

2.2 Climate 

2.2.1 Climate conditions 

The upper Tana basin has two wet seasons and two dry seasons as a result of the monsoon. 
From mid-March to June the heavy rain season, known as the long rains, brings approximately 
half of the annual rainfall in the basin. This is followed by the wetter of the two dry seasons 
which lasts until September. October to December bring the so-called short rains when the 
mountain receives approximately a third of its rainfall total. Finally the time between December 
to mid-March is the driest period of the precipitation regime. 
 
Figure 8 shows the main agro-climatic zones which are based on the balance between 
precipitation and evapotranspiration (Sombroek et al. 1982). The Upper and Middle Tana basin 
(outlet at Garissa) encompasses seven main climatic zones ranging from humid to very arid. 
Comparing this distribution with the contour lines of Figure 4 it becomes clear that there is a 
close correlation between elevation and climatic zones; in other words, the rainfall regime 
follows the elevation gradient.  
 
Figure 9 presents the agro-ecological zones according to the Farm Management Handbook of 
Kenya (Jaetzold and Schmidt 1983). This map shows more detail than Figure 8, although the 
number and the boundaries of the main zones are very similar. This map characterizes the AEZ 
according to the main land use, e.g. humid tea zone, arid rangeland zone etc. 
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Figure 8: Agro-climatic zones of the Upper and Middle Tana Basin 

 
Figure 9:  Agro-ecological zones of the Upper and Middle Tana basin 
 

2.2.2 Data needs 

The SWAT model requires meteorological data to be available at a daily time step. The 
following variables are needed:  
 

- accumulative daily rainfall  
- minimum and maximum daily temperature 
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- solar radiation  
- wind speed 
- relative humidity  

 
Several methods can be used to calculate the potential evapotranspiration. The most complete 
method available, which is the Penman-Monteith method, requires data on temperature, solar 
radiation, wind and humidity for the calculation of the spatially distributed potential 
evapotranspiration rates. 
 
This watershed has a particular strong orography, which causes strong meteorological 
gradients within the basin. Mount Kenya and the Aberdares mountain range cause a strong 
orographic precipitation regime. This can be observed in Figure 10 showing the isohyets in the 
study area. Rainfall amounts in the upper mountains are about 2 times the amounts in the lower 
parts. This fact requires an appropriate distributed approach for the rainfall input in the 
hydrological model and this was taken into account during the delineation of the subbasins (as 
explained in paragraph 2.1.3).  
 

 
Figure 10:  Isohyetal map of the Rainfall distribution in the Upper Tana River Basin 
(Source: MWD 1992) 
 

2.2.3 Data sources 

2.2.3.1 Documents 

An extensive inventory of historical data can be found in the Study on the National Water 
Master Plan (MWD, 1992).  The accompanying databook contains data statistics and metadata 
on the meteorological and discharge information available until approximately 1985. Also some 
measurements are included on the suspended loads analyzed from samples taken around the 
year 1980.   
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The information on meteorological data concerns monthly statistics averaged over the full 
available data period. In some cases the time span of the dataset is very short, around 5 years. 
Also the discharge data given in this report are monthly averages over the whole data period. 

2.2.3.2 Locally obtained station data 

For the Proof of Concept phase of Green Water Credits local data were obtained of various 
meteorological stations in the basin. All the data have a monthly time basis. The following table 
gives a summary of their characteristics and Figure 11 represents their spatial distribution in the 
basin: 
 

Table 1: Characteristics of locally obtained meteorological stations 

Name 
Elevation 

(m) 
Start
(year) 

End
(year) 

Variables* 

Chogoria forest station 1388 1960 2003 P 

Embu 1494 1977 2005 T, MMSH 

Karatina agricultural office 1784 1960 2003 P 

Karatina hombe forest station 2159 1960 2003 P 

Kerugoya castle forest station 2066 1960 2003 P 

Kerugoya district water office 1598 1960 2003 P 

Kitiri chief's camp, Embu 1157 1960 2003 P 

Meru forest station 1604 1960 2003 P 

Mwea irrigation agrometeorology station 1172 1960 2003 P 

Mwea irrigation scheme (Tebere) 1234 1960 2003 P 

Njukiini forest station, Embu 1388 1960 2003 P 

Nyeri met station 1780 1978 2005 P, T, MMSH 

Sagana fish culture farm 1234 1960 2003 P 

Sagana state lodge   1850 1969 2003 P 

Thika meteorological station 1480 1981 2005 T, MMSH 

* P=precipitation, T=minimum and maximum temperature, MMSH=Mean Monthly Sunshine Hours 

 

 
Figure 11:  Location of the stations with locally obtained data 
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2.2.3.3 The Weather Underground database 

The Weather Underground archive (www.wunderground.com) has an extensive amount of data 
available for downloading of stations from all over the world. However, within the study basin 
only 1 station can be found, which is the station Meru, shown in the northeastern part of Figure 
12. Besides, the stations present in Nairobi (south) and the station Nakuru (northwest) are 
relatively close to the basin. 
 

 
Figure 12:  Availability of stations in the Weather Underground archive 
 

2.2.3.4 The GSOD database 

Meteorological data from weather stations all over the world can be found at the public domain 
Global Summary of the Day (GSOD) database archived by the National Climatic Data Center 
(NCDC). This database offers a substantial number of stations with long-term daily time series. 
The GSOD database submits all series (regardless of origin) to extensive automated quality 
control. Therefore, it can be considered a uniform and validated database where errors have 
been eliminated. 
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Figure 13:  Location of the active meteorological weather stations 
 

In the study basin there are three active stations of which the data can be downloaded (Figure 
13). A shortcoming of these three weather stations is that their location is more or less in the 
same climatic zone. Table 2 shows the elevation of the stations, ranging from 1493 until 1759 
m.a.s.l (Table 2). No active or inactive weather stations can be found in the lower semi-arid 
areas or in the humid high mountain areas.  
 

Table 2: Characteristics of meteorological stations 
Station name Latitude Longitude Elevation Data

MERU 0.08 37.65 1554 1914 - 2009 

NYERI -0.50 36.97 1759 1920 - 2009 

EMBU -0.50 37.45 1493 1908 - 2009 

 

2.2.3.5 The CRU dataset 

The Climate Research Unit (CRU) data set of the University of East Anglia gathered the CRU 
TS 2.0 data-set that comprises 1200 monthly grids of observed climate, for the period 1901-
2000, and covering the global land surface at 0.5 degree resolution. There are five climatic 
variables available: cloud cover, DTR, precipitation, temperature and vapour pressure.  
 
The observed grids are based exclusively on meteorological measurements from individual 
stations and no remote sensing information was included. Coverage of the stations used for the 
interpolation of the grids was sparse on the African continent. Therefore, it was assumed that if 
there is no adjacent station information available the best estimate of a certain point in the grid 
is the long-term average value. The interpolation method used to create the continuous grids is 
called 'relaxation to the climatology'. 
 
The fact that the interpolated grids are only based on scarce station information on the African 
continent makes this dataset less reliable for hydrological modeling of an area with large 
climatic differences as the Tana basin. 
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2.2.3.6 The FEWS network 

One day estimates of precipitation for the African continent are prepared operationally at the 
Climate Prediction Center (CPC) for the United States Agency for International Development 
(USAID) as a part of the Famine Early Warning System Network (FEWS NET). The algorithm 
for the rainfall estimates uses Meteosat 7 geostationary satellite infrared data that are acquired 
in 30-minute intervals, and areas depicting cloud top temperatures of less than 235K are used 
to estimate convective rainfall. Two other satellite rainfall estimation instruments are 
incorporated into the algorithm, being the Special Sensor Microwave/Imager (SSM/I) on board 
Defense Meteorological Satellite Program satellites, and the Advanced Microwave Sounding 
Unit (AMSU). All satellite data are first combined using a maximum likelihood estimation 
method, and then GTS station data are used to remove bias. Warm cloud precipitation 
estimates are not included in the algorithm. 
 

 
Figure 14:  Rainfall estimate obtained from the FEWS network (24/11/2000) 
 

CPC/FEWS Estimates are available from October 2000 until present with a spatial resolution of 
0.1 degree. Figure 14 shows an example of the rainfall estimate covering whole Africa. 
 

2.2.4 Dataset evaluation 

2.2.4.1 Data Availability 

The following Table 3 resumes the characteristics of the different available data sources.  
Especially the temporal and spatial resolution of the datasets are of importance for a consistent 
model implementation.  
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Table 3: Characteristics of different meteorological data sources 

Name Type Format 
Temporal 
resolution 

Nr. stations*

/ Spatial 
resolution 

Availa-
bility 

Variables** 

Presently 

available Local 

Data 

Observed Station Monthly 8 
1960 -  

2003 

P, Tmax, Tmin, 

MSHM 

Weather 

Underground 

Archive 

Observed Station Daily 1 
-  

present 

P, Tmax, Tmin, 

DEWPT, 

WNDAV, 

GSOD 

database 
Observed Station Daily 3 

-  

present 

P, Tmax, Tmin, 

DEWPT, 

WNDAV,  

CRU 

interpolation 

grids 

Interpolated 

with station 

data 

Grid Monthly 0.5° -  2000 
P, CC, DTR, T, 

VP 

FEWS grid 

estimates 

Estimated 

with RS 
Grid Daily 0.1° 

2000 -  

present 
P 

* The number of available stations present within the study basin 

** P=precipitation, Tmax=maximum temperature, Tmin= minimum temperature, T= temperature, MSHM=mean sunshine 

hours month, DEWPT=Dew point, WNDAV=Average wind speed, CC=Cloud cover, DTR=Diurnal temperature range, 

VP=Vapour pressure 

 

As can be seen from the previous table, only the FEWS precipitation estimates and the GSOD 
database provide daily data. For this reason, the following dataset evaluation was exclusively 
based on these datasets. 

2.2.4.2 Missing values 

An important issue to deal with is the number of missing values and the methodology to fill 
them. A few years in the dataset from the GSOD database contain a considerable number of 
missing values while the estimates of the FEWS network do have a more constant coverage. 
Besides, most of the missing values found in the FEWS dataset are during the dry month of July 
in 2006, which means that these missing values are of minor importance. Table 4 shows the 
missing values found in both datasets.  
 
Table 4: Missing values in the estimated (FEWS) and observed datasets 

Year 
FEWS 
grids 

Embu 
station 

Meru 
station 

Nyeri 
station 

2001  56 7 47 
2002  48 10 40 
2003 1 85 4 87 
2004 1 208 26 132 
2005  140 40 80 
2006 15 60 22 30 
2007 1 49 25 16 
2008  72 59 23 
2009  24 4 10 
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2.2.4.3 Evaluation of daily data 

To be able to compare both datasets, time series were extracted from the daily FEWS grids for 
the location of the 3 weather stations. Consequently, the time series of the observed values 
from the GSOD database were compared with the estimates of the FEWS network. It was 
observed that there is a 1 day time lag between both datasets, which means that apparently the 
timestamp of one of both datasets contains a small error. This was corrected for the 
comparative analysis. 
 
Figure 15 shows the daily values during a wet month for the Embu station. It is clear that there 
is a high correspondence between both datasets. Also the scatterplots in Figure 16 confirm that 
there is a strong correlation as the majority of the points is located around the imaginary x = y 
line. Some strong rainfall events either measured or estimated are not represented in the other 
dataset. These differences can be explained by either 
 

1. Outliers in the observed data due to errors in the measurements 

2. Erroneous estimates due to scale and resolution issues 

 

 
Figure 15:  Daily rainfall during March 2001 of the EMBU station according to the 
observations (GSOD) and the estimates (FEWS) 
 

The r2 correlation coefficient for the 3 stations ranges from 0.28 (Nyeri) until 0.47 (Meru). 
Especially in the Nyeri datasets discrepancies for the large rainfall events can be found. The 
correlation coefficient is strongly affected by these discrepancies and consequently the 
coefficient is relatively low for this station while in the scatterplot a very clear correlation can be 
observed (Figure 16), although the FEWS estimates slightly underestimate the actual values.  
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Figure 16:  Scatterplots of observations (GSOD) and the estimates (FEWS) of the Nyeri 
station (left) and the Embu station (right) 
 

The FEWS daily rainfall estimates are primarily based on observations of cloud top 
temperatures, which in turn are related to vertical motion and convection. Short rains due to 
convection and orographic precipitation might not always be detected by the FEWS algorithm. 
This type of rainfall occurs mostly in the wet season around the month April and the month 
November. The FEWS dataset showed that especially during these months discrepancies occur 
when heavy rainfall events are measured as shown in the GSOD dataset.  
 

2.2.4.4 Evaluation of monthly totals 

The monthly accumulated totals were calculated using both datasets. In Figure 17 the observed 
and estimated monthly totals are shown in a scatterplot. It becomes clear that it depends on the 
weather station how well the FEWS estimates perform compared to the observations. On one 
hand, for the wet months the FEWS estimates seem to underestimate rainfall at Meru station. A 
slight overestimation is however observed for the dryer months at Embu. In general, the 
diagram shows a good correlation between both datasets as is confirmed by the fairly high r2 
correlation coefficients. The general tendency is that the FEWS estimates underestimate the 
monthly rainfall amounts.  
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Figure 17:  Scatter plot of observed and estimated monthly accumulated rainfall 
 

Long-term monthly averages of the FEWS dataset were also compared to the long-term 
monthly averages from three stations. The long-term record of monthly totals for the three 
stations was obtained from the TanDaBa database that was set up during the proof of concept 
phase of Green Water Credits.  It contains rainfall data from 1960 until 2005. The monthly 
averages of this time span were compared with the monthly averages from 2000 until 2009 from 
the FEWS dataset. Figure 18 compares the monthly average rainfall amounts measured at the 
stations, with the averages of the monthly accumulated FEWS estimates.  
 

 
Figure 18:  Comparison of monthly averages measured at the 3 weather stations with the 
accumulated FEWS estimates.  
 

In general, both data sources show the same precipitation regime over the year, at each of the 
weather station locations. However, especially during the wet months the differences between 
the observed and estimated averages are clear. It confirms that the FEWS algorithm does not 
detect all the strong rainfall events and that for this reason the monthly averages are lower than 
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those from the climatological record. Also a careful look on the daily data shows that some local 
heavy rainfall events are not represented in the FEWS dataset.  
 
This seasonal effect can also be observed by analyzing the residual mean defined as the 
average difference between the observed values from the weather stations and the estimated 
values of the FEWS grids. Figure 19 shows the residual mean for every month in the time 
series, to give insight in the difference between observation and estimate on a monthly basis. It 
can be observed that especially during the rainy months the differences are present. Moreover, 
the difference between both datasets is almost always negative, which means that on average 
the FEWS estimates have lower values as the observed GSOD dataset.  
 

 
Figure 19:  Residual (estimate - observed) mean per month of the 3 stations  
 

Winds with an easterly component dominate the Kenyan tropics. The northeasterly monsoons 
are most prevalent from December to April while the southeasterly monsoon dominates from 
April to October (Gatebe et al. 1999). The monthly accumulated FEWS grids (Figure 20) show 
that the orographic precipitation caused by these winds is detected on the west side of Mount 
Kenya. Around the Aberdares mountain range this orographic effect is only lower as can be 
observed from the following figure. 
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Figure 20:  Monthly total of April 2002 from the FEWS rainfall estimations  

2.2.4.5 Evaluation of yearly totals 

A comparison between FEWS and GSOD annual totals is made as well. The daily datasets 
were used to obtain the yearly accumulated total rainfall amounts for each of the three weather 
stations and for the corresponding pixels from the FEWS gridded estimates. The years that 
contained too many missing values were filtered out depending on whether the missing values 
were recorded during a wet or a dry period in the year. Figure 21 shows the results for both 
datasets for the years 2001, 2002 and 2006 – 2008.  
 

 
Figure 21:  Observed (GSOD) and estimated (FEWS) yearly total rainfall amounts of the 
Meru station 
 
As can be seen in the previous figure, in almost all cases the yearly totals of the FEWS 
estimates are below the ones recorded at the weather station. For this reason it was decided to 
apply a correction factor to the FEWS estimates in order to make the yearly totals in good 
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correspondence with the records at the weather stations. Accordingly, the daily rainfall amounts 
were incremented by 25% over the entire FEWS record. 
 
Although the yearly accumulated totals show a significant bias between both datasets, it has to 
be noted that the FEWS grids detect correctly the annual spatial rainfall pattern. Figure 22 
shows the accumulated grid for the year 2002. A gradient in rainfall amounts from the 
northeastern to the southwestern part of the basin can also be detected in the yearly totals in 
Figure 21 for this particular year.  
 

 
Figure 22:  Total rainfall of 2002 in mm, accumulated with the FEWS rainfall estimations 
 

2.2.5 Conclusion 

The precipitation estimates from the FEWS dataset have to major advantages: firstly, they are 
available on a daily time basis, giving a continuous coverage in time. And secondly, the dataset 
gives information on the spatial patterns within the basin, with a fairly good resolution. The 
station data of the GSOD database contain quite a lot of missing values that would have to be 
filled using statistical methods.  
 
The gauged spatial patterns are well reproduced by the FEWS dataset. The comparative 
analysis showed that a good correlation between the gauged and the satellite-derived product. 
This correlation implies that the FEWS dataset can be adjusted by a (seasonally invariant) 
factor. This assures a better correlation with the rainfall amounts. A similar conclusion was 
made comparing the FEWS dataset with gauged estimates by Asadullah et al. (2008). Also in 
this study, the FEWS dataset resulted to underestimate the gauged amounts by about 25%. For 
Green Water Credits, the dataset was adjusted by a factor 1.25, leading to an excellent 
correspondence with the gauged dataset.  
 



 

29 

The rest of the required data for the SWAT model as temperature, solar radiation, wind velocity 
and relative humidity were obtained from the stations from the GSOD database. The 
temperature lapse rate was set to -6oC/km. These meteorological data are available on a daily 
time scale. Therefore, there is sufficient information to apply the Penman-Monteith method in 
the model to determine the potential evapotranspiration rates, leading to better estimates of this 
negative term of the basin water balance.  

2.3 Land cover 

2.3.1 Data sources 

2.3.1.1 The Africover dataset 

The GWC Phase I studies used the best available maps, based on the FAO Africover project 
(FAO 2000) which designates land use/land cover for points on an approximately 2400 x 4800 
m irregular grid. The effective scale is about 1: 250 000. The land cover has been produced 
from visual interpretation of digitally enhanced LANDSAT TM images (Bands 4,3,2) acquired 
mainly in the year 1999. The land cover classes have been developed using the FAO/UNEP 
international standard LCCS classification system.  

2.3.1.2 The Globcover dataset 

GlobCover is an ESA initiative in partnership with JRC, EEA, FAO, UNEP, GOFC-GOLD and 
IGBP. The GlobCover project has developed a service capable of delivering global composite 
and land cover maps using as input observations from the 300m MERIS sensor on board the 
ENVISAT satellite mission. The GlobCover service has been demonstrated over a period of 19 
months [December 2004 - June 2006], for which a set of MERIS Full Resolution (FR) 
composites (bi-monthly and annual) and a Global Land Cover map are being produced. 
 
The GlobCover composites are derived from a set of processing made on the MERIS FR 
images such as cloud detection, atmospheric correction, geolocalisation and re-mapping. The 
GlobCover Land Cover map is compatible with the UN Land Cover Classification System 
(LCCS). 
 
The use of medium resolution data brings a considerable improvement in comparison with other 
global land cover products at lower spatial resolution as for example the GLC2000 dataset. 
However, the quality of the Globcover product is highly dependent on the reference land cover 
database used for the labelling process and on the number of valid observations available as 
input. When the reference dataset is of higher spatial resolution with a high thematic detail, the 
Globcover product also shows a high accuracy. On the other hand, the number of valid 
observations is a restrictive factor. The spatial coverage of the MERIS data clearly determines 
the quality of the temporal mosaics and therefore, of the land cover map. 

2.3.2 Dataset evaluation 

The Africover and Globcover dataset were produced using different methods and different 
sources of remote sensing information. A major difference is that the classification of the 
Africover dataset was based on visual interpretation of the satellite imagery, while the 
Globcover dataset used an automated classification approach using local reference datasets. In 
order to evaluate which of the two datasets is optimal for the hydrological model, both datasets 
were analyzed and compared with recent high resolution satellite imagery.   
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Agricultural areas are generally difficult to map using satellite information because of the high 
sub-pixel heterogeneity with different crop cycles. Also many areas have inter-annual variability 
with crop rotation and fallow grounds. Besides, in dry areas there is a high spectral similarity 
with grassland, which makes the classification even more complex. 
 
The Africover dataset is known to have a reasonable correspondence with national and 
subnational agricultural statistics. However, the Globcover dataset was produced using more 
recent data than the Africover dataset.  Thus, to assess the consistency of both datasets, it is 
important to verify accuracy of the mapped areas using recent remote sensing information. 
 
Figure 23 shows a detail of an area with rice, maize and mixed irrigated areas, close to the 
Masinga Dam. As can be observed, the delimitated features have not been altered significantly 
in the time between the Africover mapping (1999) and the more recent imagery (2005). Some 
rice fields seem to be out of use in the recent image, however, this seems to be a temporary 
state. 
 

  
Figure 23:  Evaluation of different mapped cultivated areas of the Africover dataset with 
recent satellite imagery (source: Google Earth) 
 

On the other hand, Figure 24 shows the areas mapped as being cultivated north of the Masinga 
Dam.  Here it is clear that the cultivated areas have been extended between the time of 
production of the Africover dataset (1999) and the satellite imagery (2005).  
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Figure 24:  Detail of mapped agricultural areas according to the Africover dataset (in 
green) with recent satellite imagery (source: Google Earth) 
 

Similar inconsistencies can be observed near the footslopes of Mount Kenya, however, in this 
case it seems more likely that these areas were misclassified. The Africover dataset shows 
large areas that have been classified as “Open trees with closed to open shrubs”. Satellite 
imagery of 2005/2006 shows that these areas are being cultivated almost completely (Figure 
25). In this case, the Globcover dataset seems to be more consistent as it shows that part of 
these areas are occupied with agricultural activities. 
 

 
Figure 25:  Detail of recent remote sensing imagery, classified in the Africover dataset as 
“open trees with closed to open shrubs” (source: Google Earth) 

 

However, in the Globcover dataset, the forest areas are continuously misclassified. Only a small 
part of the forested areas around Mount Kenya is correctly classified. A possible explanation is 
that the GLobcover dataset is known to show thematic errors in rugged terrain due to mountain 
shadows. 
 
It is also observed that the distinction between irrigated and flooded lands is very difficult in 
several regions, leading to an underestimation of cultivated areas. Especially when comparing 
the acreages of the irrigated areas, some considerable differences can be observed. Figure 26 
shows the difference between both datasets around the Masinga Dam. The Globcover dataset 
only classified a few pixels as irrigated, while the Africover dataset shows far larger areas with 
this land use type.  
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Actually, a large part of the irrigated areas of the Africover dataset are not even classified as 
croplands according to the Globcover dataset. Recent satellite imagery confirms that the areas 
were correctly classified by the Africover dataset and that the Globcover dataset tends to 
underestimate this class. 
 

 
Figure 26:  Units classified as irrigated area, (Africover – yellow; Globcover – red) around 
the Masinga Dam 
 

Finally, it’s noteworthy that, from the end users point of view, the Globcover land cover map 
contains a significant amount of mosaic classes, which limits the thematic sharpness of the 
Globcover product and its relevancy for hydrological modeling. For example, the Globcover 
dataset shows that the mountainous areas of the Aberdare Range are classified as a mosaic of 
vegetation and croplands. However, recent satellite imagery shows clearly that these areas are 
mainly forest and that no agricultural activities take place. Another major drawback of the 
Globcover dataset for hydrological modeling is that it is not crop specific. This would make it 
necessary to use more generic land use classes in the SWAT model.  
 

2.3.3 Conclusion 

Although the Globcover dataset was based on more recent information, the dataset evaluation 
showed clearly that the Africover dataset has much higher accuracy. The comparison of the 
mapped areas with recent satellite imagery showed that the delimited features have not been 
altered significantly since the production of the dataset, taking into account the working scale of 
the study. Therefore, it was decided to use the Africover dataset for the land cover input for the 
biophysical analysis using the model SWAT. However, it has to be noted that based on the 
visual comparison with the satellite imagery a number of polygons were corrected. According to 
the original dataset these polygons had a dominating natural land cover but the imagery 
showed that the agricultural activities in those areas are more significant, especially in terms of 
hydrology. Also the agricultural classification of some of the high mountain peak slopes of the 
Aberdares and Mount Kenya had to be corrected. Figure 27 shows the spatial distribution of the 
land covers as is used in the SWAT model. 
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Figure 27:  Landcover map  as used in the SWAT model, main source: Africover dataset, 
corrected by comparison with recent satellite imagery 
 

2.4 Soils 

2.4.1 Data sources 

2.4.1.1 The KenSOTER database 

The KenSOTER database at scale of 1:1 million (KSS 1996), holds data on landform, parent 
material and soils in a standardized digital format (van Engelen and Wen 1995). This database 
was updated by Kenya Soil Survey and ISRIC-World Soil Information (Batjes and Gicheru 
2004). This 2004 version was expanded for GWC with additional profile data with measured 
water retention values of the Upper Tana catchment. The current KENSOTER database 
contains now data of 340 soil profiles, of which 68 of the Upper Tana, we will refer to it as the 
KenSOTER-version 2 database (KSS and ISRIC 2007). 
 
The dominant soil types of the Upper Tana catchment are presented in Figure 28 and show a 
relationship with elevation. The higher slopes of Mt Kenya and the Aberdares are dominated by 
volcanic ash soils (Andosols). The middle foot slopes have mainly deep well structured nutrient 
rich clay soils (Nitisols). The lower foot slopes are dominated by very deep strongly leached 
poor clay soils (Ferralsols) and by less leached soils (Cambisols and Luvisols). At lower 
elevations, roughly below 1000m, Cambisols and sodic-alkaline soils (Solonetz) are the 
dominant soils (KSS 1996; Sombroek, Braun and van der Pouw 1982).  
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Figure 28:  Dominant soil types of the Upper Tana catchment (KenSOTER-version 2) 
 
Effective rootable depth and Available Water Content1 are key soil hydrological properties 
determining the water balance, which are used in SWAT (Table 5). The geographic distribution 
and the differences are shown in Figure 29 and Figure 30. Comparing soil types in the Upper 
Tana it appears there is a factor 5 to 10 difference between lowest and highest values of Total 
Available Water Content.  
 

Table 5: Average soil moisture characteristics of dominant soils in the Upper Tana 
catchment 

Dominant soil  
(and phase) 
 

Effective 
rooting 
depth 
(cm) 

Moisture at 
saturation 

(%)(a) 

Moisture 
at Field 

Capacity 
(%) 

Moisture 
at Wilting 

Point 
(%) 

Available 
Water 

Content(b) 
(%) 

Total 
Available 

Water(c) 
(mm) 

Acrisols 113 56 24 16 9 98 

Andosols 100 60 40 24 16 172 

Arenosols 100 53 16 3 13 130 

Chernozems 75 55 37 21 16 120 

Calcisols 40 41 16 10 6 24 

Cambisols 53 48 28 14 14 74 

Fluvisols 93 44 17 4 13 120 

Ferralsols 90 53 26 17 9 82 

Gleysols 45 56 37 21 16 72 

Leptosols 10 53 21 12 9 7 

Luvisols 80 47 25 13 12 95 

Lixisols 88 47 16 11 5 43 

Nitisols 104 53 31 22 9 98 

Phaeozems 80 56 38 26 12 98 

                                                      
1 Available Water Content is the amount of moisture held between pF2.3 and pF4.2 
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Planosols 25 50 35 22 13 33 

Regosols 37 48 19 9 10 33 

Solonetzs 28 45 28 13 15 42 

Vertisols 80 50 46 22 24 191 
(a) Volume percentages; (b) Available water or plant extractable water; (c) Total available water = Available Water 

Content over Effective rooting depth. 

 

Figure 29: Available Water Capacity of dominant soils of the Upper and Middle Tana 
catchment (KenSOTER-version 2) 

 
Figure 30:  Rootable depth of dominant soils of the Upper and Middle Tana catchment 
(KenSOTER-version 2) 
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2.4.1.2 Harmonized KENSOTER 

The harmonized KENSOTER database is a secondary dataset with median attribute values. 
Missing entries are based on pedotransfer rules (van Engelen et al. 2005). Following these 
taxotransfer rules (Batjes 2003), the median attribute values have been estimated using 
attribute data and aggregate these over five fixed depth intervals, all on basis of texture group 
and soil unit classification  (Batjes 1995). Soil classification follows the Revised Legend of the 
Soil Map of the World (FAO 1988). 
 
The harmonized KENSOTER database includes the total available water capacity of the soil, 
which data can be directly used in SWAT. A comparison of the two databases showed that the 
soil moisture contents given by the harmonized KenSOTER database are higher than those of 
the measured data in the KenSOTER-version 2 database. The rootable soil depth is directly 
extracted from the harmonized KenSOTER database. In a few cases the rootable depths of the 
harmonized KENSOTER is somewhat different of KenSOTER-version 2, because of the use of 
different criteria.  
 
The harmonized KENSOTER database contains most of the information necessary for the 
SWAT model. Therefore, it is convenient to use it as for the model input on soil characteristics, 
although some of the properties were derived and not fully consistent with the measured values. 
 

2.4.1.3 Pedo-transfer functions 

An important characteristics not provided in KenSOTER database is the saturated hydraulic 
conductivity. A well-developed technique to overcome this problem is to use so-called pedo-
transfer functions (PTF). A wide range of pedo-transfer functions have been developed and 
applied successfully over the last decades over various scales (e.g. field scale in (Droogers et 
al. 2001); basin scale at (Droogers and Kite 2001). 
 
Sobierja et al.( 2001) concluded from a detailed analysis that most PTFs were not very reliable 
and that the impact on runoff estimates could be considerable. The PTF that generated 
conductivity values close to measured ones was the Jabro equation (Jabro 1992):  
 
Ksat = exp(11.86 – 0.81 log(st) – 1.09 log(cl) – 4.64 BD) 
 
 Ksat is saturated hydraulic conductivity (cm h-1) 
 st is silt content (%) 
 cl is clay content (%) 
 
This equation was used to derive Ksat values from the KENSOTER database. 
 

2.4.2 Conclusion 

SWAT requires detailed spatially distributed information on soil characteristics and related soil 
parameters. The information available in the harmonized KENSOTER database resulted to be 
adequate for use in the SWAT model. The saturated hydraulic conductivity was obtained using 
the described methodology by means of pedo-transfer functions.  
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2.5 Streamflow 

2.5.1 Data source 

Discharge data of a couple of streamflow gauges were available in the study area. Figure 31 
shows the locations of gauging stations in the Upper Tana.  Figure 31 and Table 6 provide an 
overview of the gauging stations data that have been obtained and processed. Data were made 
available by Kenyan Soil Survey, University of Nairobi and some additional data from the Global 
Runoff Discharge Database. The most complete series of observed stream flow data is from 
1962-1977 (see Table 6). 

2.5.2 Dataset evaluation 

Data quality was poor, with missing records, unknown units and locations, conflicting names, 
etc. An example is station 4CC05 which is the inflow from Thika River in Masinga. A total of 15 
years (1966-1980) of daily data were available. Of the total 5479 records 1340 were missing 
which corresponds to almost 25%.  

 
Figure 31. Location of gauging stations for which data have been obtained. 
 
Data accuracy can also be hampered by the source the data was obtained from. One example 
is station Garissa, the outlet point of Middle Tana, where daily data were obtained from two 
sources (University of Nairobi and Global River Discharge Database). Data from UoN were daily 
records from 1941 to 1993 and data from GRDD covered 1934 to 1975, monthly. Figure 32 
shows the difference between these two data sources for the overlapping period of 1941 to 
1975. The scatter plot in the Figure indicates that quite some differences exist between the two 
datasets.  The time plot however reveals that patterns are quite comparable and especially 
peak and low flows are comparable for the two datasets. 
 
For stream flow station at Grand Falls, known as 4F13, two records of data were obtained from 
two different data sources as well (Figure 33). For these two datasets also some differences 
occur, but looking at the time plot these differences were restricted to some periods in the 
sixties and seventies. 
 

Besides data from gauging stations, reservoir data on inflow and outflow were available from 
various sources (University of Nairobi and KenGen). For Masinga inflow as well as outflow data 
were available, while for the other reservoirs (Kamburu, Gitaru, Kindaruma, Kiambere) only 
inflow and levels were obtained.  
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Flow data is available from either stream gauges (Table 6) or from reservoir measurements 
(Table 7). The location of the gauges can be observed in Figure 31. 
 
Table 6. Availability of flow data from stream gauges. 
Code River Location Interval Period Source 
4BE10 Sagana  Daily 1980-1994 UoN 
4CB04 Thika  Daily 1945-1997 UoN 
4CC05 Thika  Daily 1966-1980 UoN 
4DD01 Thiba  Daily 1948-2006 UoN 
4DD02 Thiba  Daily 1966-1993 UoN 
4EA07 Mutonga  Daily 1966-1990 UoN 
4ED03 Tana Kamburu Daily 1951-1972 UoN 
4F13 Tana GrandFalls Daily 1962-1995 UoN 
4F19 Kazita  Daily 1966-1994 UoN 
4G01 Tana Garissa Daily 1941-1993 UoN 
GAR Tana Garissa Monthly 1934-1975 GRDD 
GRF Tana GrandFalls Monthly 1962-1977 GRDD 
*UoN=University of Nairobi, GRDD=Global Runoff Discharge Data 

 
Table 7. Availability of reservoir related variables 
Reservoir Time basis Period Source Variables*

Masinga Monthly 1982-2005 UoN Qin, Qout, h 

Kamburu Monthly 1988-2005 UoN Qin, h 

Gitaru Monthly 1988-2005 UoN Qin, h 

Kindaruma Monthly 1988-2005 UoN Qin, h 

Kiambere Monthly 1988-2005 UoN Qin, h 

*Qin=Inflow, Qout=Outflow, h=level 

 

2.5.3 Conclusion 

There is only one gauge available with daily data of the last decade, the data of the other 
gauges are from before 1995 (see also Table 6). Also, recent data is available on the inflow of 
the Masinga Dam. The model should be calibrated with recent information to correctly simulate 
the current conditions in the basin. Given that this biophysical analysis is a basin scale 
assessment, the calibration with daily records of two gauging stations can be justified. However, 
to carry out a better validation of the model, it would be necessary to include more daily and 
recent timeseries on streamflow of the major branches in the basin.  
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Figure 32. Comparison between similar data from two sources at Garissa. GAR 
originates from Global Runoff Discharge Data and 4G01 from University of Nairobi. 
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Figure 33. Comparison between similar data from two sources at Grand Falls. GRF 
originates from Global Runoff Discharge Data and 4F13 from University of Nairobi. 
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Figure 34. Outflow from main reservoirs in Tana. 
 

2.6 Reservoirs  

There are several reservoirs along the stream network of the basin related to hydropower 
plants. Some of them are so-called mini hydro stations and can be neglected in terms of routing 
as they do not alter significantly the river flows on a basin scale. However, there are 5 reservoirs 
that were included in the network schematization, which are:  Masinga, Kamburu, Gitaru, 
Kindaruma and Kiambere (Figure 35). Besides, there are several planned reservoirs, 
downstream of these 5 main reservoirs. The planned Mutonga and the Low Grand Falls Dam 
are within the study basin.  
 
The following reservoir characteristics were used for the flow routing in the hydrological model: 

Table 8. Reservoir characteristics 
Name Unit Masinga Kamburu Kindaruma Gitaru Kiambere 

year of completion 1980 1974 1968 1978 1987 

height of dam m 69.5 56.0 24.3 30.0 112.0 

capacity MCM 1.560E+03 1.500E+02 1.600E+04 2.000E+01 5.850E+02 

area MCM 120,000 15,000 250 310 25,000 
emergency spillway 
surface area 

ha 1.440E+04 1.800E+03 3.000E+01 3.720E+01 3.000E+03 

emergency spillway 
volume 

m3 1.872E+03 1.800E+02 1.920E+01 2.400E+01 7.020E+02 
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Figure 35:  The 5 main reservoirs included in the basin delimitation 
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3 Baseline model analysis 
 

3.1 Introduction 

The Proof of Concept phase of Green Water Credits showed that the Soil and Water 
Assessment Tool (SWAT) was an appropriate tool to study and quantify the up- and 
downstream interactions in the basin, as well as the influence of land use and management on 
the water resources and sediment transport in the basin. For the current operational design 
phase a more accurate model was set up using the best available data sources, discussed in 
Chapter 2.  
 
The model was set up with data from the last 10 years (2000 until 2009) in order to obtain 
insight in the current basin situation and interactions. This is an improvement compared to the 
Proof of Concept phase, when historical datasets were used for the basin assessment.  
 
The main goal of this assessment is quantifying the impact of Green Water Credits 
management practices and identifying potential pilot areas from a biophysical point of view. This 
impact on the water and sediment balances in the basin depends on the water it receives 
through precipitation. For this reason, it is useful to assess the impact both during a dry as a wet 
year. to focus on the wettest and driest year of the 10-year timeseries in order to obtain insight 
in the effectiveness of management options during both extremes.  
 
From the last ten years, the year 2005 represents the last year of a drought period that started 
in 2004 (Figure 36). On the other hand, the year 2006 can be considered an extraordinary wet 
year with about 2 times more rainfall than in 2005. These two years were used to quantify how 
the different Green Water Credits management options affect the green and blue water 
resources in the basin. 
 

 
Figure 36:  Total yearly basin rainfall (FEWS precipitation estimates) 
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3.2 Model set up 

3.2.1 Distributed model input 

The evaluation of the available data sources on precipitation (Chapter 2.2) indicated that the 
use of the FEWS dataset implies a considerable improvement compared to the use of point 
data from the weather stations, as was done during the Proof of Concept phase. Therefore, this 
dataset was used as the forcing weather model input, after a bias correction with the observed 
weather station data. Other meteorological data required by the model as temperature, wind, 
radiation, etc were obtained from the measured timeseries at the 3 available weather stations in 
the basin. For the daily temperature throughout the basin a lapse rate was used of -6oC/km. 
 
The FEWS dataset gives a reliable estimate of the spatial distribution of the daily precipitation 
amounts throughout the basin. The methodology used to delineate the subbasins allowed to 
correctly incorporate this information allowing a fully distributed rainfall-runoff modeling 
approach. The daily rainfall grids were prepared for the model input and the different daily 
rainfall timeseries were assigned to each subbasin in the model. For the following figures the 
daily values were summed showing the total rainfall per subbasin for the dry (2005) and the wet 
year (2006).  
 

 
Figure 37. Total precipitation for 2005 (left) and 2006 (right) 

3.2.2 Hydrological response units 

For the spatial discretization of the subbasins, SWAT uses the concept of Hydrological 
Response Units (HRU) (Neitsch et al. 2002): portions of a sub basin that possess unique land 
use/management/soil attributes. In other words, an HRU is the total area in the sub basin with a 
particular land use, management and soil combination. While individual fields with a specific 
land use, management and soil may be scattered throughout a sub basin, these areas are 
lumped together to form one HRU. HRUs are used in SWAT runs since they simplify a run by 
lumping all similar soil and land use areas into a single response unit. The size of a HRU 
depends on the size of the total area under consideration. 
 
Implicit in the concept of the HRU is the assumption that there is no interaction between HRUs 
in one sub basin. Loadings (runoff with sediment, nutrients, etc. transported by the runoff) from 
each HRU are calculated separately and then summed together to determine the total loadings 
from the sub basin. If the interaction of one land use area with another is important, rather than 
defining those land use areas as HRUs they should be defined as sub basins. It is only at the 
sub basin level that spatial relationships can be specified.  
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The benefit of HRUs is the increase in accuracy it adds to the prediction of loadings from the 
sub basin. The growth and development of plants can differ greatly among species. When the 
diversity in plant cover within a sub basin is accounted for, the net amount of runoff entering the 
main channel from the sub basin will be much more accurate. 
 
In practice the HRUs are defined by overlaying three data layers: (i) sub basins, (ii) land cover 
(section 2.3), and (iii) soils (section 2.4). Due to computational constraints it is necessary to limit 
the total number of HRUs and filter out the minor land use and soil classes within each 
subbasin. For this analysis, a threshold of 10% for both layers was used. This means that if a 
certain land use and soil combination covers less than 10% in a certain subbasin, this HRU was 
filtered out. This way only the dominating units in terms of hydrological response within each 
subbasin are analyzed. A total of 2226 HRUs were determined using this procedure (Figure 38) 
which means a substantial improvement to the Proof of Concept model when 874 HRUs were 
defined, distributed over a larger basin (outlet Garissa). 
 

.  
Figure 38. The defined hydrological response units (HRUs). 
 

3.3 Calibration and model performance 

The FEWS precipitation estimates were available from the year 2000 (October) until 2009 
(April). Measured riverflow data were available until 2005 for two very relevant points in the 
basin. Additional calibration including more gauged points is scheduled to take place in a 
following-up study. For pilot operation of Green Water Credits, the key focus is to assess the 
impact of the GWC practices on the water and sediment fluxes in the basin, quantifying the 
differences between the studied scenarios and the current management situation (i.e. baseline 
scenario). In this sense, it is crucial to note that conclusions drawn from scenario analysis are 
much more reliable than absolute model predictions (relative vs. absolute model accuracy, e.g. 
Droogers et al. 2008). 
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To determine the calibration parameters, first a sensitivity analysis was carried out using the 
parameters shown in Table 9. These five parameters were altered within realistic boundary 
conditions, showing that the model output was most responsive to the soil available water 
capacity and the groundwater delay time. The second parameter determines the time lag 
between the moment the water leaves the soil storage and the moment it becomes available in 
the aquifer storage. It is difficult to infer this parameter from measurable soil and hydro-
geological characteristics, especially at the basin scale. Also the soil available water capacity is 
a parameter which is known to be highly heterogeneous.  
 
Table 9. Parameters used for sensitivity analysis 
SWAT Code Unit Variable

Alpha_BF Days Baseflow alpha factor 

GW_REVAP - Groundwater "revap" coefficient 

SOL_AWC mm H20/mm soil Available water capacity of the soil layer 

GW_DELAY Days Groundwater delay time 

SOL_K mm/hr Saturated hydraulic conductivity 

 

The soil available water capacity and the groundwater delay time were used to calibrate the 
model. It was assumed that the a priori estimates of these parameters represent the spatial 
distribution pattern but that the relative magnitudes of the parameters in each field need to be 
adjusted up or down via a single multiplier α. This is a common method to calibrate distributed 
hydrological models (e.g. Vieux et al. 2004). The following table shows the values of α used for 
the calibration:  
 
Table 10. Boundary values and calibrated value of multiplier used for calibration 
Parameter α lower limit α upper limit α final 
GW_REVAP 0.03 1.5 0.3 

SOL_AWC 0.3 1.5 1 

 

The calibration was done using the daily observations at the two gauges, each of them at a key 
location within the basin. The two gauges are located upstream of the reservoirs, which 
guarantees that streamflow reaching the gauges is not influenced by reservoir operations. 
Moreover, they allow the calibration of the two major parts of the basin.The data available on 
the inflow of the Masinga reservoir joins the Maragua and Sagana subbasins of the Aberdares 
mountain range. The second gauge (code 4DD01) in the Thika river covers an important part of 
the Mount Kenya subbasins draining into the Kamburu reservoir (Figure 39).  
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Figure 39:  Location of the calibration points in the basin 
 

The model calibration with the two parameters was done using three performance coefficients 
and visual comparison of the observed and simulated discharges. The correspondence 
between both records was assessed using the Pearson product-moment correlation coefficient, 
the Normalized Root Mean Square (RMS) and the Nash-Sutcliffe model efficiency coefficient 
(Table 11). 
 
The Normalized Root Mean Squared is the RMS divided by the maximum difference in the 
observed streamflow values, and is expressed by the following equation: 
 

minmax )()( obsobs XX
RMSRMSNormalized
−

=  

 
The Normalized RMS is expressed as a percentage, and is a more representative measure of 
the fit than the standard RMS, as it accounts for the scale of the potential range of data values. 
For example, an RMS value of 1.5 will indicate a poor calibration for a model with a range of 
observed values between 10 and 20, but it will indicate an excellent calibration for a model with 
a range of observed values between 100 and 200. The Normalized RMS value for the first 
model would be 15%, while the Normalized RMS for the second model would be 1.5%.  
 
The Nash–Sutcliffe model efficiency coefficient, the third measure to assess the performance of 
the SWAT model, is defined as follows: 
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where Qo is observed discharge, and Qm is modeled discharge. Qo

t is observed discharge at 
time t. 
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Nash–Sutcliffe efficiencies can range from −∞ to 1. An efficiency of 1 (E = 1) corresponds to a 
perfect match of modeled discharge to the observed data. An efficiency of 0 (E = 0) indicates 
that the model predictions are as accurate as the mean of the observed data, whereas an 
efficiency less than zero (E < 0) occurs when the observed mean is a better predictor than the 
model. 
 
The following table shows the three performance coefficients before and after calibration. As 
could be seen in Table 10, the a priori estimates of the soil available water capacity were not 
altered (α=1), as the parameter sets did not improve the model performance significantly. All the 
calibrated values of the three coefficients improve compared to the initial non-calibrated model. 
The normalized RMSE indicates a relative error of around 10% and the Nash Sutcliffe 
coefficient shows a fairly good match of modeled discharge to the observed data. 
 
Table 11. Performance coefficients for the calibration points 
 Gauge 4DD01* Inflow Masinga* 
 Initial Calibrated Initial Calibrated 
Normalized RMSE 15% 14% 12% 9% 
Pearson correlation coefficient 0.77 0.86 0.85 0.92 
Nash Sutcliffe coefficient 0.53 0.59 0.67 0.80 
* Rainfall period of November 2004 was omitted in the calculation  for mentioned reasons 

 
Observed and simulated monthly discharges from the two gauging stations can be seen in 
Figure 40 and Figure 41 (first year was used for model warming-up and is not represented). 
Also these figures confirm that the simulated model discharges correspond well with the 
observed monthly flow data. Overall, both low flows as high peak flows are well simulated by 
the model, although low flows seem to be slightly underestimated in some periods. A major 
striking discrepancy can be observed during the month November 2004. This month shows a 
large difference between observed and simulated streamflow, at both points. A comparison of 
daily precipitation estimates (FEWS) with the gauged values at the weather stations showed 
that particularly during this month the estimates failed to capture some strong rainfall events. As 
a result, this discrepancy can be interpreted as an irrelevant error in the model input rather than 
an error in the model itself. In general, a very good correspondence was observed between 
both rainfall datasets (see previous chapter).  
 

 
Figure 40:  Simulated and observed inflow of the Masinga Reservoir 
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Figure 41:  Simulated and observed inflow of the gauge 4DD01 (Thiba river, Kamburu 
Reservoir)  
 

 

3.4 Crop-based assessment 

To explore what the most relevant land use classes regarding Green Water Credits are, results 
were aggregated for each land use class. The most relevant items plotted are: 
 

• The total amount of water consumed by vegetation (crop transpiration) and water lost 
by soil evaporation (Figure 42). 

• T-fraction: percentage of total evapotranspiration used for crop transpiration (Green 
Water). This factor indicates the effectiveness of the vegetation to use the Green Water 
source (Figure 43). 

• Blue Water: water entering the streams by surface runoff and returnflow (i.e. 
groundwater discharge) that can be used for generating hydropower or being reused by 
downstream users (Figure 44). 

• Erosion: total actual sediment loss (Figure 45). 
 

Evapotranspiration is the sum of water consumed by the plants to grow (crop transpiration) and 
the water lost through evaporation, mainly from the soil surface (evaporation also occurs by 
rainfall interception but this process was not included in the analysis).  Soil evaporation can be 
considered an actual unbeneficial loss of water from the system. The water gained by reducing 
soil evaporation can be either used for crop transpiration or can be infiltrated and serve for 
groundwater recharge.  
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Figure 42:  Evapotranspiration split in crop transpiration (T) and soil evaporation (E) per 
crop for the dry year (2005) and the wet year (2006) (for meaning of codes, see Figure 27).  
 

The crops with potential for the implementation of Green Water Credits management practices 
are those that are cultivated in the upstream areas. Secondly, the crops of interest should also 
show the potential to reduce the amount of soil evaporation and reduce erosion. Figure 42 and 
Figure 43 give insight in which part of total evapotranpiration is used beneficially for the crops 
and which part is lost through soil evaporation. From these figures can be concluded that the 
main agricultural crops that show potential for the implementation of GWC practices are: 
 

• CORN: maize 
• COFF: coffee 
• AGRL: non specified agricultural crops 

 

 
Figure 43:  Percentage of total evapotranspiration used for crop transpiration for the dry 
year (2005) and the wet year (2006). 
 

Figure 44 shows the large differences in Blue Water coming from each of the crop cultivated 
areas between the dry year and the wet year. These differences are mainly caused by the 
balance between surface runoff and groundwater discharge. During the dry year, basically all 
the Blue Water comes from groundwater discharge, while during the wet year the main source 
for Blue Water is surface runoff. It becomes clear that there is a great potential to improve this 
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balance on a crop scale by implementing GWC practices. Stimulating groundwater recharge will 
reduce the large differences between the dry and the wet year and make the Blue Water a 
better manageable water source for downstream users. Moreover, an increase over 
groundwater recharge will reduce erosion substantially. 
 

 
Figure 44:  Water entering the streams by surface runoff and drainage (Blue Water) for 
the dry year (2005) and the wet year (2006).  
 

As can be seen from Figure 45, the selected crops for GWC are also those that show the 
highest sediment loss rates, especially during the wet year. The implementation of GWC might 
be able to reduce erosion significantly, as is confirmed by the scenario analysis in the following 
chapter. 
 

 
Figure 45:  Total actual sediment loss per crop for the dry year (2005) and the wet year 
(2006).  

3.5 Temporal responses 

Blue Water, of interest for the downstream water users, is mainly the sum of surface runoff and 
groundwater discharge (also called return flow or baseflow). Surface runoff has an immediate 
response to rainfall events while groundwater discharge shows a more delayed and gradual 
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response to the rainfall events. This is an effect of the natural water reservoir of the soil and 
aquifer.  
 
The differences in response of both Blue Water sources can be clearly observed in Figure 46. 
The surface runoff shows peak values in the same month as the peak rainfall value, while the 
groundwater discharge tends to show the maximum value a month after the highest rainfall. The 
percolated water needs a certain travel time before it enters the aquifer storage. This storage 
releases its water gradually, depending on its geo-hydrological characteristics.  
 

 
Figure 46:  Total basin precipitation and Blue Water, being the sum of surface runoff and 
groundwater discharge. 
 
Surface runoff, on the other hand, generates high peak flows which are only manageable 
through the reservoirs to a certain extent. This means that due to capacity limitations and 
especially during wet years water of strong rainfall events cannot be stored and has to be 
released from the reservoirs without giving the water any beneficial use.  This is actually 
confirmed by the measured data on reservoir outflow. Consequently, the Blue Water source 
becomes more predictable and manageable when direct runoff is reduced while at the same 
time stimulating groundwater discharge by enhancing infiltration and aquifer recharge.  
 
The potential of the natural storage in the reservoir is clearly illustrated when having a close 
look on the differences between the dry and the wet year of the basin scale water balance 
(Figure 47). The figure shows that the size and sign of the balance terms depends on the 
amount of incoming precipitation. During the dry year (2005) outflow is limited and more or less 
equal to the change in basin storage. In other words, most of the outflow during this year came 
from groundwater discharge and reservoir releases and thus from water stored during previous 
years. On the other hand, during the wet year 2006, precipitation is the only positive ‘incoming’ 
component of the water balance, and the storage compartments are refilled, due to groundwater 
recharge and the recovery of man-made reservoir storage capacity. This demonstrates that 
enhancing groundwater recharge during wet periods leads to more groundwater discharge 
during drought periods and thus more Blue Water when surface runoff is limited. 
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Figure 47: Main components of water balance of 2005 (dry) and 2006 (wet) 
 
The previous figure highlights the role of storage in the water balance of the basin. It is clear 
that the soil and aquifer reservoirs have a potential to improve the management of water 
resources in the basin as they assure a more continuous and reliable flow regime. Green Water 
Credits management options aim at maximizing the potential of these natural reservoirs.  

3.6 Heterogeneity and spatial distribution 

The distributed modeling approach that was chosen for the design phase of Green Water 
Credits gives the ability to assess Green and Blue water options at a high spatial resolution. 
This allows assessing how the potential sites for Green Water Credits are spatially distributed. 
The following maps are plotted here for the relatively dry (2005) and a relatively wet (2006) 
year: 
 

• Actual evapotranspiration: total amount of water consumed by vegetation (crop 
transpiration) and water lost by soil evaporation (soil evaporation). 

• Actual transpiration: total amount of water that is used by vegetation (agricultural as 
well as natural vegetation) to produce biomass. This can be considered as Green 
Water. 

• Actual soil evaporation: total amount of water that is lost by soils. This includes bare 
soils, but also areas partly covered by vegetation. This soil evaporation can be 
considered as a non-beneficial loss as it does not serve any function. 

• T-fraction: percentage of total evapotranspiration used for crop transpiration (Green 
Water). This factor indicates the effectiveness of the vegetation to use the Green Water 
source. 

• Blue Water: water entering the streams by surface runoff and drainage that can be used 
for generating hydropower or being reused by downstream users. 

• Groundwater recharge: water that contributes to the groundwater recharge. Only water 
that enters the deep groundwater is included. Water entering the shallow groundwater 
which will contribute to drainage is included in the previous item (Blue Water). 

• Erosion: total actual sediment loss. 
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Figure 48. Actual evapotranspiration for 2005 (dry) and 2006 (wet) in mm. 
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Figure 49. Actual transpiration for 2005 (dry) and 2006 (wet) in mm. 
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Figure 50. Actual soil evaporation for 2005 (dry) and 2006 (wet) in mm. 
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Figure 51. Percentage of total actual evapotranspiration used for Green Water for 2005 
(dry) and 2006 (wet)  
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Figure 52. Blue Water (water entering the streams by surface runoff and baseflow) for 
2005 (dry) and 2006 (wet) in mm. 
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Figure 53. Deep groundwater recharge for 2005 (dry) and 2006 (wet) in mm. 
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Figure 54. Erosion for a dry year (2005, top) and a wet year (2006, bottom) in ton/ha/yr 
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4 Options for Green Water Credits 
 

4.1 Potential benefits 

Water is a conservative resource, in other words, it cannot be created. However, the Proof of 
Concept phase of Green Water Credits showed that green water resources can be much 
increased and downstream delivery of blue water better regulated by increasing infiltration at 
the soil surface – cutting destructive runoff and banking this water in the soil – and by reducing 
unproductive evaporation. By arresting runoff, these practices conserve the soil, increase 
groundwater recharge and steam base flow. Soil and groundwater are free reservoirs that hold 
orders of magnitude more water than all existing or conceivable man-made reservoirs. So 
Green Water Credits has potential benefits for both green water as blue water users: 
 

1. Potential benefits for upstream land users: 
a. More productive rain-fed cropping, so higher crop water productivity and less 

non-productive evaporation from soil surface. 
b. Better water infiltration and retention in soil 
c. Reduce loss of soil nutrients by soil erosion during high intensity rainfall events 

2. Potential benefits for downstream water users 
a. Augment supply of ‘blue’ water to reservoirs 
b. Augment groundwater infiltration upstream to reduce peak flows (that in some 

cases cannot be captured in the reservoirs) and to stimulate a more continuous 
supplying flow regime during the dry months 

c. Reduce sediment input into reservoirs to preserve capacity 
 
GWC is about meeting the objectives of both up- and downstream stakeholders at the same 
time. It has to be noted that meeting the objectives separately would lead to other solutions 
(fertilizers, sediment traps, artificial groundwater recharge, etc). However, Green Water Credits 
aims at a sustainable mechanism to be implemented by stimulating the interaction between up- 
and downstream stakeholders. 
 
Upstream land and water management practices determine the green and blue water and 
sediment flows both in the upstream as to the downstream areas of the basin. In other words, 
downstream users depend on their supply highly on the management practices used in the 
upstream areas. This chapter assesses quantifies this interaction between land management 
practices and the blue water and sediment flows to the downstream reservoirs. This will lead to 
the identification of target areas where the implementation Green Water Credits is most 
effective and will lead to significant gains for upstream farmers and downstream water uses as 
for example hydropower. 

4.2 Proposed Green Water Credit management practices 

The proof-of-concept of Green Water Credits showed that the following management practices 
have a potential to benefit both upstream as downstream stakeholders:  

− permanent vegetative contour strips 
− mulching  
− tied ridges 
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With the developed biophysical analysis tool (SWAT), the influences and possible trade-offs of 
these practices could be studied and quantified. The following paragraphs give a more detailed 
explanation on these practices. 

4.2.1 Permanent vegetative contour strips 

Strip cropping is a practice in which contoured strips of sod are alternated with equal-width 
strips of row crop or small grain. Strips of grass or other permanent vegetation in a contoured 
field help trap sediment and nutrients. Because the buffer strips are established on the contour, 
runoff flows slower and evenly across the grass strip, reducing sheet and rill erosion.  The 
vegetation can also provide habitat for small birds and animals.  Permanent vegetative contour 
strips are in fact an inexpensive substitute for terraces. 
 

 
Figure 55. Example of permanent vegetative contour strips (source: NRCS) 

4.2.2 Mulching 

Mulching requires residues produced within the cropping area and/or residues collected from 
elsewhere and transported to the cropping area. These residues are then applied in the field, 
spreading them on top of the soil. They protect the soil from erosion, reduce compaction from 
the impact of heavy rains, conserve soil moisture and maintain a more stable soil temperature. 
Besides there are several secondary benefits as for example the prevention of weed growth. 
 

 
Figure 56. Example of tree loppings used as a mulch in the Quesungual system 
(Honduras) to reduce the loss of rainwater through runoff and evaporation (source: FAO) 
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4.2.3 Tied ridges 

This technique consists of soil ridges of varying width and height, average being 30cm width 
and 20 cm height. At regular intervals, crossties are built between the ridges. The ties are about 
two-thirds the height of the ridges, so that if overflowing occurs, it will be along the furrow and 
not down the slope. 
 
Farmers find tied ridges hard yet efficient in harvesting water and conserving soil. Crops planted 
on the ridges grow faster than those in plots without ridges. A disadvantage is the heavy labour 
input, although levels of maintenance are considerably lower than the initial construction work. 
 
Tied ridges help to minimize problems of drought power and labour shortage in land 
preparation. There are positive effects on soil erosion in the area. 
 

 
Figure 57. Example of graded contour ridges with cross ties lower than the main ridges 
to retain water between the cross ties, but allow excess rainwater to flow between the 
ridges rather than spill over or break the main ridges (source: FAO) 
 

4.3 Technical background 

To assess how these practices affect the water and sediment flows in the basin, each of them is 
implemented in the model with the accompanying model parameter adjustments. The model 
parameters that represent these GWC options are the soil evaporation compensation coefficient 
(ESCO), the support practice factor for soil loss (Pusle) and the runoff curve number (CN2), each 
of them being described in the following paragraphs.  

4.3.1 Soil evaporation 

The soil evaporation compensation factor (ESCO) is a coefficient that has been incorporated to 
modify the depth distribution used to meet the soil evaporative demand. This factor accounts for 
the effect of capillary action, crusting and cracks, but also of other evaporation limiting or 
enhancing soil adjustments. ESCO must be between 0.01 and 1.0. As the value for ESCO is 
reduced, the model is able to extract more of the evaporative demand from lower levels (Figure 
58). 
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The default value for ESCO is 0.95. From the sensitivity analysis carried out during the Proof of 
Concept phase of Green Water Credits it was showed that ESCO can have a substantial impact 
on soil evaporation. Changing the default from 0.95 to 0.80 means an increase in soil 
evaporation of about 10%. On the other hand soil evaporation can be reduced by 10% when 
changing the coefficient from 0.95 to 0.99. 
 
Several studies showed that besides the positive effect on erosion, mulching is able to reduce 
soil evaporation significantly, in some cases up to 40% (Chen et al. 2007; Tolk et al. 1999).  
These results have been used to define the parameter changes for the mulching scenario. 
 

 
Figure 58:  Impact of soil evaporation compensation factor ESCO on depth of 
evaporation extraction 

4.3.2 Soil Erosion 

Erosion and sediment yield are estimated for each HRU with the Modified Universal Soil Loss 
Equation (MUSLE)(Williams and Berndt 1977). While the USLE uses rainfall as an indicator of 
erosive energy, MUSLE uses the amount of runoff to simulate erosion and sediment yield. 
 
The modified universal soil loss equation (Williams 1995) is: 
 

( ) CFRGLSPCKareaqQsed
USLEUSLEUSLEUSLEhrupeaksurf

********8.11 56.0=
  

 
where sed is the sediment yield on a given day (metric tons), Qsurf is the surface runoff volume 
(mm H2O/ha), qpeak is the peak runoff rate (m3/s), areahru is the area of the HRU (ha), KUSLE is 
the USLE soil erodibility factor (0.013 metric ton m2 hr/(m3-metric ton cm)), CUSLE is the USLE 
cover and management factor, PUSLE is the USLE support practice factor, LSUSLE is the USLE 
topographic factor and CFRG is the coarse fragment factor.  The crop management factor is 
recalculated every day that runoff occurs. It is a function of above-ground biomass, residue on 
the soil surface, and the minimum C factor for the plant. 
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PUSLE 
The support practice factor, PUSLE, is defined as the ratio of soil loss with a specific support 
practice to the corresponding loss with up-and-down slope culture. Support practices include 
contour tillage, strip cropping on the contour, and terrace systems. Stabilized waterways for the 
disposal of excess rainfall are a necessary part of each of these practices. Contour tillage and 
planting provides almost complete protection against erosion from storms of low to moderate 
intensity, but little or no protection against occasional severe storms that cause extensive 
breakovers of contoured rows.  
 
The following tables from scientific literature serve as guidelines for the definition of the 
scenarios and for future implementation of the management practices. Table 12 shows different 
values for PUSLE and slope-length limits for contour support practices. It is confirmed that 
contouring and the use of vegetative strips is most effective on slopes from 1 to 8 percent.  
 

Table 12. P factor for different management practices, as was studied in the United 
States (Wischmeier and Smith, 1978) 
Practice Slope Maximum length (m) P
Contour tillage 1 to 8% 122 to 61 0.5 
 9 to 12% 36 0.6 
 13 to 16% 24 0.7 
 17 to 20% 18 0.8 
 21 to 25% 15 0.9 
Contour tillage between 
grass strips 

1 to 8% 40 to 30 0.25 (r) 0.50 
9 to 16% 24 0.30 (r) 0.60 

 17 to 25% 15 0.40 (r) 0.90 

 
Table 13 shows the results of a study that was applied to the African situation. In this case 
mulching with straw led to an extremely high reduction in erosion.   
 
Table 13. P factor for different management practices, as was studied for West Africa 
(Roose, 1977) 
Management practice P

tied contour ridging 0.2 to 0.1 

erosion control strips 2 to 4 m wide 0.3 to 0.1 

straw mulch, over 6 t/ha 0.01 

Curasol mulch, 60 g/l/m² (depending on slope and crop) 0.5 to 0.2 

temporary pasture or cover plant (depending on cover) 0.5 to 0.01 

low earth bunds protected by stones or rows of perennial grass or low 

dry stone walls every 80 cm + contour tillage + hoeing + fertilization 
0.1 to 0.05 

 

The sensitivity analysis carried out during the Proof of Concept phase of Green Water Credits 
confirmed that PUSLE has a substantial impact on soil erosion. In fact, there is a linear 
relationship between the coefficient and erosion rate (ton/ha), as can be seen also from the 
previous soil loss equation. Those results and the boundary limits defined in the previous tables 
were used to define the scenarios for mulching and for the vegetative strip contours. 



 

66  

Table 14. Runoff curve numbers according to different types of land covers (USDA-SCS, 
1972) 

Land Use Type 
Conservation 
Practice 

Hydrologic 
Condition 

Hydrologic Group  

A B C D 

Row Crops 

None(0) 
 

Poor 72 81 88 91 
Good 67 78 85 89 

Contour (1), 
Strip (2) or 
Terrace (4) 

Poor 70 79 84 88 

Good 65 75 82 86 

Two or more of 
Contour, Strip 
and Terrace 

Poor 66 74 80 82 

Good 62 71 78 81 

Small Grain 

None(0) Poor 65 76 84 88 
 Good 63 75 83 87 
Contour (1), 
Strip (2) or 
Terrace (4) 

Poor 63 74 82 85 

 Good 61 73 81 84 
Two or more of 
Contour, Strip 
and Terrace 

Poor 61 72 79 82 

 Good 59 70 78 81 

Close Seeded 
Legume 

None (0) Poor 66 77 85 89 
 Good 58 72 81 85 
Contour (1), 
Strip (2) or 
Terrace (4) 

Poor 64 75 83 85 

 Good 55 69 78 83 
Two or more of 
Contour, Strip 
and Terrace 

Poor 63 73 80 83 

 Good 51 67 76 80 

Pasture or 
Range 

None (0) Poor 68 79 86 89 
 Fair 49 69 79 84 
 Good 39 61 74 80 
Contour, Strip 
or Terrace or 
combination of 
two or more 

Poor 47 67 81 88 

 Fair 25 59 75 83 
  Good 6 35 70 79 

Meadow (not 
used) 
Woods 

      
None (0) Poor 45 66 77 83 
 Fair 36 60 73 79 
 Good 25 55 70 77 

Fallow All All 77 86 91 94 
Brom Grass All All 49 69 79 84 
Other All All 86 86 86 86 

 

4.3.3 Runoff Curve Number 

Surface runoff occurs whenever the rate of water application to the ground surface exceeds the 
rate of infiltration. When water is initially applied to a dry soil, the application rate and infiltration 
rates may be similar. However, the infiltration rate will decrease as the soil becomes wetter. 
When the application rate is higher than the infiltration rate, surface depressions begin to fill. If 
the application rate continues to be higher than the infiltration rate once all surface depressions 
have filled, surface runoff will commence. In SWAT the SCS runoff equation is used (USDA-
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SCS 1972). This model was developed to provide a consistent basis for estimating the amounts 
of runoff under varying land use and soil types  (Rallison and Miller 1981). 
 
The SCS curve number is a function of the soil’s permeability, land use and antecedent soil 
water conditions. Typical curve numbers for an average moisture condition (condition II) are 
listed in the following table for various land covers and soil types (USDA-SCS 1986). These 
values are appropriate for a 5% slope. 
 

The parameter changes for each of the scenarios were defined based on the sensitivity analysis 
performed during the Proof of Concept phase of Green Water Credits, and using the above 
table as the principal guideline. More details on the definition of the scenario parameters can be 
found in the following chapter. 

4.4 Scenario definition 

For each of the three proposed GWC management options (scenarios), the appropriate  
parameters are adjusted according to the following scheme. The SWAT model was used to 
evaluate these scenarios and results were compared to the business as usual situation. It was 
assumed for these three management options that they would be implemented on the land 
covers shown in Table 15. 
 
Table 15. Parameter changes for each of the scenarios 

Management 
Practice Land use 

ESCO Pusle CN2 

Baseline Scenario Baseline Scenario Baseline Scenario 

permanent 
vegetative 
contour 
strips 

maize 

  

1.0 
1.0 
1.0 
1.0 

0.7 77 70 
coffee 0.7 77 65 
tea 0.7 77 65 
agric gen. 0.9 77 70 

mulching  

maize 0.95 
0.95 
0.95 
0.95 

0.99 1.0 
1.0 
1.0 
1.0 

0.8 

  
coffee 0.99 0.8 
tea 0.99 0.8 
agric gen. 0.97 0.9 

tied ridges 
maize 

    
77 62 

agric gen. 77 62 
 

The analysis is carried out by comparing the scenario output of a dry (2005) and a wet year 
(2006) with the reference ‘baseline’ situation of the same year (Figure 36). The comparison is 
done using a number of indicators, graphics and maps, calculating the differences (absolute or 
percentage) between the baseline situation and scenario.  

4.5 Scenario analysis 

The three GWC management practices as discussed in the previous section have been 
implemented in SWAT, using the parameters as shown in Table 15. The dry and the wet year 
were selected for analysis and the differences in key indicators, water balance terms and spatial 
distribution were calculated and interpreted. The following sections discuss these results, 
separated in (1) key indicators, (2) crop-specific, and (3) the spatial distribution using maps. 
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4.5.1 Key indicators 

In order to compare the three different soil and water management scenarios a set of indicators 
have been introduced showing the impact of each of the basin wide implemented practices. 
Table 16 introduces these indicators with their values as obtained using the Upper Tana SWAT 
model for the baseline situation and the 3 different scenarios. Numbers reflect averages over 
the entire Upper Tana. The balance component ‘Outflow’ corresponds to the yearly total outflow 
at the proposed Low Grand Falls dam, the study basin outlet. The ‘Storage Change’ state 
variable refers to the amount of water that flowed into (negative values) or out of (positive 
values) the basin storage compartments. Water is stored in the basin by the natural reservoirs 
(the aquifer and soil storage) together with the man-made reservoirs. 
 

Table 16. Values of the key indicators for the baseline situation and the 3 scenarios 

Key indicators 2005 2006 2005 2006 2005 2006 2005 2006

Inflow Masinga 
(MCM/y) 860 2,144 857 1,999 879 2,171 852 2,012

Sediments Inflow 
Masinga (103ton/y)

1,219 4,130 908 3,165 1,227 4,142 892 3,247

Outflow Kiambere 
(MCM/y) 1,036 2,326 1,025 2,216 1,072 2,362 1,030 2,201

Outflow Low Grand 
Falls (MCM/y) 1,657 5,137 1,650 4,922 1,709 5,195 1,664 4,860

Crop Transpiration 
(mm/y) 382 360 383 360 387 363 383 361

Soil Evaporation 
(mm/y) 145 146 145 146 137 138 145 146

Groundwater 
Recharge (mm/y) 57 229 69 260 59 232 73 267

Sediment loss 
(ton/ha/y) 2 10 1 6 2 9 1 8

Precipitation (MCM/y) 9,099 18,759 9,099 18,759 9,099 18,759 9,099 18,759

Transpiration 
(MCM/y) -6,650 -6,264 -6,661 -6,271 -6,738 -6,316 -6,661 -6,273

Evaporation (MCM/y) -2,517 -2,533 -2,522 -2,540 -2,391 -2,399 -2,524 -2,542

Outflow (MCM/y) -1,657 -5,137 -1,650 -4,922 -1,709 -5,195 -1,664 -4,860

Storage Change 
(MCM/y) 1,725 -4,826 1,734 -5,025 1,739 -4,849 1,750 -5,083

Baseline data Tied RidgesContour Strips Mulching

 
 
For the baseline situation, inflows in Masinga range from 860 million cubic meters (MCM) in a 
dry year to 2144 MCM in a wet year. The maximum storage capacity of the Masinga reservoir is 
1560 MCM, which means that during a wet year the entire water volume held in the reservoir is 
renewed.  However, during a dry year, only about 60% of the maximum capacity of this first 
main reservoir (Masinga) enters as inflow. 
 
Sediment inflows into the Masinga reservoir are considerable. During the wet year 2006, the 
total sediment inflow was more than 4 million tons of sediments. This corresponds to about 2% 
of the total dead storage volume of the reservoir. Besides, the Upper Tana model calculated the 
total sediment inflow from 2001 until 2008 into this reservoir at about 16 million ton. This value 
corresponds to 9% of the original dead storage volume. This confirms that the sediment inflow 
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into the reservoirs forms a serious threat to the reservoir water holding capacity. It becomes 
evident that significant gains can be obtained when the upstream sediment loss rates are 
reduced by implementing Green Water Credits management practices. 
 
The impact of the Green Water Credits practices on the key indicators can be read from the 
same Table 16, but an easier interpretable comparison (absolute and relative) is done in Table 
17 and in Figure 59. The table shows to which degree the key indicators changed for each of 
the scenarios compared to the baseline situation.  
 

Table 17. Absolute and relative changes (green = increase, red = reduction) of the key 
indicators for the 3 scenarios compared to the baseline situation 

Key indicators

Inflow Masinga 
(MCM/y) -3 0% -145 -7% 19 2% 27 1% -8 -1% -132 -6%

Sediments Inflow 
Masinga (103ton/y)

-311 -26% -965 -23% 8 1% 12 0% -327 -27% -883 -21%

Outflow Kiambere 
(MCM/y) -12 -1% -110 -5% 35 3% 36 2% -6 -1% -125 -5%

Outflow Low Grand 
Falls (MCM/y) -7 0% -215 -4% 52 3% 58 1% 7 0% -277 -5%

Crop Transpiration 
(mm/y) 1 0% 0 0% 5 1% 3 1% 1 0% 1 0%

Soil Evaporation 
(mm/y) 0 0% 0 0% -7 -5% -8 -5% 0 0% 1 0%

Groundwater 
Recharge (mm/y) 12 21% 31 14% 2 3% 3 1% 16 27% 38 17%

Sediment loss 
(ton/ha/y) -1 -45% -4 -39% 0 -12% -1 -13% -1 -32% -2 -21%

Precipitation (MCM/y) 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Transpiration 
(MCM/y) 11 0% 8 0% 88 1% 52 1% 11 0% 10 0%

Evaporation (MCM/y) 5 0% 7 0% -127 -5% -134 -5% 7 0% 9 0%

Outflow (MCM/y) -7 0% -215 -4% 52 3% 58 1% 7 0% -277 -5%
Storage Change 
(MCM/y) 9 1% -200 -4% 14 -1% -24 0% 25 1% -258 -5%

2005 2006

Tied Ridges

2005 2006 2005 2006

MulchingContour Strips

 
 
The following conclusions can be drawn from the previous table: 

- Implementation of vegetative contour strips or tied ridges at a basin scale leads to a 
significant reduction of the sediment inflow into the reservoirs. In the wet year almost a 
million tons less if practice is implemented basin wide. 

- Groundwater recharge will increase, both during dry as wet years, stimulating a more 
continuous water supply through groundwater discharge.  

- During the wet year, total inflow in the Masinga reservoir is reduced because of 
groundwater recharge. This means that during a wet year, water storage in the natural 
aquifer reservoir is enhanced, making more water available for dry years. 

- The use of vegetative contour strips and tied ridges do not alter the water balance 
significantly during the dry year 2005. For the wet year, basin outflow is slightly reduced 
and the same amount of water is made available for following years as relatively less 
water is flowing out of the basin storage compartments (indicated by a negative storage 
change).  



 

70  

- The mulching scenario causes a considerable reduction in the amount of water 
evaporated from the soil surface, both during a dry as a wet year. This additional water 
available is redistributed by crop transpiration and blue water sources, as shown by the 
increase in the key indicators Inflow Masinga and Groundwater Recharge and basin 
outflow and storage. 

- During the dry year 2005 about 75% of the rainfall is used beneficially to support crop 
growth, and almost all the rest is lost by non-beneficial soil evaporation. During the wet 
year, basin scale transpiration and evaporation reached similar values and the 
additional precipitation levels out with the outflow and storage component.  

 
In fact, the mulching scenario leads to a general improvement of all the key indicators, although 
some of the changes are not that noteworthy as for the other scenarios. It is remarkable that 
although the sediment loss diminishes with about 12%, a small increase of sediment inflow can 
be observed during the dry year. This can be explained by the increase in water inflow into the 
reservoir, which means that more sediment could be transported.  This is the only management 
practice that leads to a significant decrease in non-beneficial soil evaporation making more 
water available for the other water balance terms. 
 

 
Figure 59: Relative changes of some of the key indicators for the 3 scenarios compared 
to the baseline situation (2005, dry) 
 

It has to be noted that at a basin scale, the implementation of tied ridges gives very similar 
results as the scenario with vegetative contour strips. About the same reduction can be 
observed in sediment losses and reservoir inflow, and there is a similar basin wide improvement 
of groundwater recharge. However, the tied ridges were only applied to the maize crops and the 
generic agricultural land use class, and not to the coffee and tea crops (Table 15). The spatial 
analysis (Section 4.5.3) shows other major differences between both practices. 

4.5.2 Crop-based evaluation 

The SWAT analysis tool allows carrying out a crop-specific assessment of the management 
practices’ impact on the crop water balance. The crop water balance of the baseline ‘business 
as usual’ situation is shown in Figure 60. As can be seen, for the dry year surface runoff and 
groundwater recharge have a minor share in the water balance. Most of the water potentially 
available for the plant is used for crop growth through transpiration.  On the other hand, during a 
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wet year, about the same amount of water used for crop growth leaves the plots through 
surface runoff. Moreover, a considerable amount of water infiltrates and percolates to the 
aquifer.   
 

 
Figure 60:  ‘Business as usual’ water balance of the 3 major cultivated crops for the two 
reference years  
 

 
Figure 61:  Changes of the crop water balances for the ‘vegetative contour strips’ 
scenario compared to the baseline scenario  
 

During the wet year 2006 much more water is lost by soil evaporation than during the dry year, 
due to the higher soil water content. Transpiration rates are similar, although slightly lower in the 
wet year due to differences in radiation and temperature. 
 
The crop water balances were compared with the baseline situation, and the absolute 
differences between the terms are represented in the following figures for each of the GWC 
management scenarios.  
 

Figure 61 shows that even during dry years the use of vegetative contour strips causes a 
reduction in surface runoff (and erosion) and an increase of groundwater recharge.  This 
additional water stored in the aquifer becomes then available for returnflow or baseflow. This 
was confirmed by the basin water balance in Table 17, indicating that this management practice 
does not lead to a reduction in basin outflow or reservoir inflow during a dry year.  
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The implementation of the mulching practice with the 3 main crops principally leads to changes 
of the evapotranspiration water balance terms (Figure 62). Productive crop transpiration is 
increased and soil evaporation is significantly reduced. This effect is similar both in the dry as in 
the wet year. Moreover, a slight increase in surface runoff and groundwater recharge can be 
observed, which means a minimal improvement of ‘blue water’ availability. 

 
Figure 62:  Changes of the crop water balances for the ‘mulching’ scenario compared to 
the baseline scenario  
 

The implementation of ‘tied ridges’ was only applied to the maize and the generic agricultural 
land use class. Figure 63 shows a significant reduction in surface runoff and a similar increase 
in groundwater recharge. The evapotranspiration terms are not affected by this practice.  
 

 
Figure 63:  Changes of the crop water balances for the ‘tied ridges’ scenario compared to 
the baseline scenario  
 

4.5.3 Spatial analysis 

The Upper Tana basin is heterogeneous in terms of climate, soil and topographical conditions.  
The effectiveness of the GWC management practices depends on these site characteristics. 
Therefore, a spatial analysis and comparison of the scenarios are necessary to provide 
knowledge on their spatial distribution and hydrological impact. This should give insight in where 
and under which conditions a certain practice contributes to the GWC objectives. This analysis 
is carried out on the scale of the finest modeling unit, the so-called Hydrological Response Unit 
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(HRU). Each of these units has a unique combination of climate conditions, soil, land use and 
topographical conditions. 
 

Especially during years with high intensity rainfall events erosion rates can be very high, 
resulting in high sediment inflow into the reservoirs. The yearly sediment loss can be up to 4 
times higher than during a dry year (Table 16). Figure 64 shows the relative reduction obtained 
by the contour strips and tied ridges scenario during the wet year. It has to be noted that the tied 
ridges scenario did not include any changes on the coffee and tea cultivated fields. As can be 
expected, the highest reductions are observed in the higher, steep slope areas, where the 
appliance of one of the practices leads to a reduction of about 50%. These are also areas 
where average rainfall intensity tends to be higher than in the lower part of the basin.  
 

 
Figure 64:  Spatial distribution of relative erosion reduction for the contour strips (left) 
and tied ridges (right) scenarios for the wet year. 
 

The yearly loss of water through soil evaporation has a high dependency on the meteorological 
conditions of that year. Figure 47 showed that during a dry and relatively hot year (2005) a 
relatively large part (about 25%) of the incoming precipitation is lost through soil evaporation 
while during a wet year this loss has a minor share in the total water balance. This means that it 
is of special interest to reduce the soil evaporation during a dry year. The effectiveness of a 
certain practice, however, depends on the site conditions. Figure 65 shows that mulching 
reduces soil evaporation, but during the dry year this practice is more effective than during the 
wet year. Besides, this difference is accentuated in certain areas, as can be seen comparing the 
spatial distribution of the simulated reduction. 
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Figure 65:  Spatial distribution of relative reduction of soil evaporation for the mulching 
scenario for a dry year (left) and a wet year (right).  
 

One of the main GWC objectives is to assure and enhance a more continuous flow regime 
during the year for better flood control and enhanced reservoir supply. GWC practices lead to 
less runoff and therefore to less instantaneous water supply to the reservoirs. Therefore, it is of 
crucial importance to assess that a reduction in runoff also leads to a comparable increase in 
groundwater recharge. This guarantees that the water becomes available through groundwater 
discharge, forming a more reliable and continuous water supply.  
 

Figure 66 shows both ‘blue water’ competing variables: groundwater recharge (left) and runoff 
reduction (right) for the contour strips scenario.  It is interesting to compare whether a reduction 
in runoff in a certain area is accompanied with a parallel increase in groundwater recharge. In 
fact, in the lower basin parts, a reduction of 10 to 25% in runoff comes with an increase of 25 to 
50% in groundwater recharge. In the higher upstream areas, however, the percentages of 
relative change are similar between both variables. The following section makes use of these 
observations, by taking into account within one single classification different beneficial impacts 
of GWC practices to identify potential target areas. 
 

 
Figure 66:  Spatial distribution of relative increase in groundwater recharge (left) and 
reduction of runoff (right) for the contour strips scenario for a wet year. 
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4.6 Results 

4.6.1 Most effective practices 

For the implementation phase of Green Water Credits it is crucial to decide based on 
quantitative and socio-economical criteria which of the practices have to be given priority to. 
However, as we have seen in the spatial analysis, each of the practices has different impacts 
depending on the site characteristics. Using the spatial distribution of the impact on the different 
variables as groundwater recharge and erosion reduction, it is possible to compare the 
effectiveness of each of the practices. Applying this approach it will be possible to assess which 
of the practices has the most impact.  
 
Figure 67 (left) shows which of the practices leads to the highest increase of crop transpiration, 
location specific. In general, the mulching scenario gave best results in most of the HRUs, both 
in the higher, wetter and cooler areas as in the dryer areas. However, the use of vegetative 
contour stripes in the higher regions can also lead to a comparable increase of crop 
transpiration. Thirdly, in a few regions applying tied ridges leads to a higher relative increase of 
transpiration as the use of mulch.  
 

 
Figure 67:  Spatial distribution of most effective practices with a positive impact on crop 
transpiration (left) and groundwater recharge (right) for a dry year (2005).  
 

Also a comparison of the practices’ impact on groundwater recharge highlights the importance 
of a spatially distributed comparison of the practices’ impact. Figure 67 (right) shows which of 
the scenarios leads to the highest increase in groundwater recharge compared with the 
baseline situation. In general the application of tied ridges on the maize and non-specified 
agricultural fields is most effective in the majority of the HRUs. However, on a few sites 
mulching has a slightly higher positive impact on this indicator, although only during a dry year. 
Vegetative contour stripes turn out to be more effective in the tea and coffee cultivated areas, 
both for the dry as for the wet year.  
 

The effectiveness of GWC measures depends on the yearly rainfall regime as shown in Figure 
68. The left picture shows the spatial distribution of the most effective practices for reducing 
erosion, for a dry year (2005) for a wet year (2006). One of the conclusions that can be drawn is 
that the more precipitation falls, the more effective is the application of vegetative contour strips. 
Also the previous analysis showed that GWC practices are most effective and beneficial during 
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wet years. Accordingly, the identification of potential target areas for pilot operation was done 
using the impact assessment of the wet year 2006.  
 

 
Figure 68:  Spatial distribution of most effective practices reducing erosion for a dry year 
(left) and a wet year (right).  

4.6.2 Potential target area identification 

The scenario analysis was based on basin wide implementation of management practices on all 
agricultural lands. One of the objectives of the current design phase of Green Water Credits is 
to define the potential target areas where the practices can be best implemented. The selection 
of target areas will depend on this hydrological and biophysical analysis but also on socio-
economic and institutional factors. This chapter makes a first selection of potential sites based 
on the previously discussed scenario results for the biophysical aspects only.  
 

For the selection of target areas, the following indicators were chosen to represent overall 
impact of GWC: 

1. Reduction in soil erosion 
2. Increase in groundwater recharge 
3. Increase in crop transpiration 
4. Reduction of soil evaporation 

 
As discussed before, the impact of Green Water Credits practices is highest during wet periods. 
Erosion can be reduced significantly, groundwater recharge can be enhanced, storing more 
water in aquifers for drought periods and the evapotranspiration can be optimized. If the most 
effective practice is chosen for implementation, Figure 69 shows the spatial distribution of the 
relative changes that can be obtained.  
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Figure 69:  Spatial distribution of relative changes of four selected parameters for target 
area identification: erosion reduction (a), groundwater recharge (b), crop transpiration (c) 
and soil evaporation (d).  
 
The previous figures show clearly that the identification of target areas is a multi-criteria 
problem, as the spatial distribution of the maximum changes for each parameter is very 
different. Therefore, for the target area identification from a biophysical point of view, it is 
necessary to define weights to each of the parameter of interest. Given the objectives of Green 
Water Credits, it was decided to give equal importance to erosion reduction (weight = 0.5) as to 
the optimization of green and blue water resources: groundwater recharge (0.25) and 
evapotranspiration (reduction evaporation 0.125 and increase transpiration 0.125). The relative 
changes as shown in Figure 69 were rescaled to a value between 0 and 1, in which 0 means no 
benefit and 1 is the maximum benefit for the selected parameter. These 4 parameters were then 
used with the mentioned weights within the following formula:  
 

max)(
125.0125.025.05.0

TA
ETGwRchSedYieldTA ⋅+⋅+⋅+⋅

=  

The result of this scaled index TA used for target area identification is shown in Figure 70. 
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Figure 70:  Spatial distribution of potential target areas.  

4.7 Conclusions 

This biophysical assessment quantifies the benefits on the sediment and water flows of Green 
Water Credits management practices for the Upper Tana basin. It showed how much erosion 
and reservoir sediment input can be reduced and the green-blue water flows can be optimized 
through the implementation of the different management options. Also the key areas were 
identified and the corresponding most effective practices.  
 
It is concluded that the implementation of vegetative contour strips or tied ridges at the most 
erosive parts of the basin could lead to a reduction of the sediment inflow into the Masinga 
reservoir of almost a million tons. The yearly sediment loss can be up to 4 times higher during a 
year with abundant precipitation than during a dry year. The highest erosion reductions are 
observed at the higher, steep slope areas, where the implementation of one of the practices is 
able to lead to a reduction of about 50%. Moreover, GWC options are more effective in these 
areas as they receive more rainfall than the lower parts of the basin. 
 
This assessment shows that there is an unambiguous benefit in optimizing the use of the 
aquifer as a natural water storage in the basin. The reduction of runoff and the parallel 
enhancement of percolation and groundwater recharge reduce the need of unproductive spills 
from the reservoirs during intense rainfall periods as more water is retained upstream within the 
soil and aquifer. This stimulates a more continuous and reliable water supply during following 
dry periods. GWC options are able to improve the usage of the aquifer storage by about 20%. 
Moreover, it was confirmed that no significant reduction of reservoir inflow is caused during a 
dry year. 
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The mulching scenario showed that a considerable reduction of water evaporated from the soil 
surface can be obtained, both during a dry as a wet year. This additional water available is 
made available for crop transpiration (leading to a higher productivity) and blue water sources. 
 
The identification of potential target areas for pilot operation was done using the impact 
assessment of the wet year 2006 as in general the GWC options are more effective during wet 
years (more erosion and more benefits for optimal use of aquifer storage capacity). The 
selection of target areas was done using the reachable changes of the following parameters: 
soil erosion, groundwater recharge, crop transpiration and soil evaporation.  
 
The distributed approach used in this assessment allowed taking into account the spatial 
heterogeneity of the terrain. Therefore, the location of the target areas (Figure 70) depends on 
many factors as topography, soil type, etc. In general can be concluded that pilot operation of 
GWC is most interesting on the higher slopes of the Aberdares and Mount Kenya where coffee 
and maize is cultivated (average Target  Area Index = 0.83 and 0.84 resp.).  The use of a 
spatial index to summarize the benefits on each of the parameters of interest gives insight in the 
exact spatial distribution of the most appropriate areas. Results of these biophysical analysis 
indicating the most suitable GWC areas will be combined with the socio-economic and 
institutional studies resulting in the final selection of the pilot operation areas. 
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