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Understanding the spatial and temporal variability of precipitation in tropical highmountain areas remains a key
challenge. Point measurements are often not sufficient to capture the strong spatial variability particularly in
mountain regions. Satellite remote sensing allows capturing the spatial heterogeneity of precipitation, yet it is
generally characterized by significant bias. Rainfall satellite products such as those coming from the Tropical
Rainfall Measuring Mission (TRMM) are being continuously improved and an increasing amount of high- and
medium-resolution remote sensing data on biophysical surface properties is becoming available. Here we
present amethodology that blends two TRMMproductswith remote sensing data on vegetation and topography
to quantify the spatial distribution of precipitation in areas where direct observations are lacking. The approach
assumes that vegetation cover, the topography and satellite-derived estimates of rainfall are reasonable indirect
measures of ground-based precipitation. The methodology is evaluated for an area in the Andes of Ecuador.
The results show that around 40% of the variance in weekly precipitation is explained by these proxies. During
the drier periods of the year, vegetation is the strongest proxy. In the very wet areas and during the wet periods
vegetation is usually in a climax development phase with no development trends to correlate with rain, and the
other proxies dominate precipitation estimation. A cross-validation procedure in which each one of the weather
stations is sequentially excluded from the analysis, was applied to test the performance of the methodology.
The performance was satisfactory, and as expected it is related to the density of the weather station network
and temporal rainfall variability. Overall we conclude that the methodology is useful for areas with very high
variable conditions,where sufficient ground-data is available to establish the relationshipswith the different remote
sensing datasets.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Understanding and quantifying the spatial and temporal variability
of rainfall are of key importance in hydrological studies as precipitation
drives most hydrological, environmental and agricultural processes.
Especially in mountainous areas the spatial and temporal variability
of rainfall can be very high. Climatic conditions may vary strongly
depending on topography, aspect, and slope. This causes additional
challenges for its correct estimation (Immerzeel, Pellicciotti, &
Shrestha, 2012). One of the areas where understanding rainfall variabil-
ity is of special relevance is the Andes mountain range (Buytaert, Celleri,
Willems, Bièvre, & Wyseure, 2006; Vuille, Bradley, & Keimig, 2000).
Several areas in the Andes currently experience economic growth,
ongoing land use changes, and increasing agricultural and environmental
pressures.

Strong precipitation gradients over short distances are difficult
to capture with point measurements from weather stations. Weather
.
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stations are generally located in areas which are readily accessible, so
in mountainous areas the density of the monitoring network is usually
low and insufficient for the use of conventional spatial interpolation
techniques (Celleri, Willems, Buytaert, & Feyen, 2007; Ward, Buytaert,
Peaver, & Wheater, 2011).

Satellite rainfall products offer the unique opportunity to
improve rainfall estimates in such areas. Advantages of these prod-
ucts are their consistency and uniformity in estimating temporal
and spatial variability. A disadvantage is the need to use ground
data in order to remove bias to obtain accurate enough estimates
for regional assessments (Cheema & Bastiaanssen, 2012; Dinku,
Chidzambwa, Ceccato, Connor, & Ropelewski, 2008). Uncertainty
in TRMM estimates depends principally on the topography in the
area (Bookhagen & Burbank, 2006; Gebregiorgis & Hossain, 2013).
TRMM estimates have been reported to compare relatively well
with ground-based measurements in low-altitude environments
(Stampoulis & Anagnostou, 2012; Tian & Peters-Lidard, 2010).
There are more difficulties in areas where orographic effects are im-
portant (Chen, Ebert, Walsh, & Davidson, 2013; Dinku et al., 2008),
but others have found even reasonable performance in areas
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of complex topography (Montero-Martínez, Zarraluqui-Such, &
García-García, 2012).

The limited spatial resolution of satellite rainfall products makes
them less adequate for certain applications as for example watershed
planning (Su, Hong, & Lettenmaier, 2008). Several authors therefore
have developed interpolation and aggregation algorithms that com-
bine remote sensing data with ground data (e.g. Immerzeel, Rutten,
& Droogers, 2009; Scheel et al., 2011; Yatagai et al., 2012). Data
resulting from these algorithms have temporal resolutions that range
from daily to monthly, and typically spatial resolutions from 10 km
to 250 km. Performance of these algorithms is directly related to the
temporal aggregation level and spatial scale, and aggregation of data
on a weekly or monthly basis is needed for adequate performance
(Ouma, Owiti, Kipkorir, Kibiiy, & Tateishi, 2012; Scheel et al., 2011).
Spatial aggregation may increase performance (Brunsell & Young, 2008;
Cheema & Bastiaanssen, 2012) but others have not found a significant
effect (e.g. Scheel et al., 2011).

There is a large amount of remote sensing data available
on biophysical variables that are related to precipitation. Examples
are the Normalized Difference Vegetation Index (NDVI), Leaf Area
Index (LAI), vegetation fraction cover, Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR) and elevation. Recently, several
authors have made use of these proxies together with satellite rainfall
data to estimate precipitation. Immerzeel et al. (2009) successfully
applied remote sensing-based NDVI as proxy to downscale precipita-
tion of the Iberian Peninsula. The authors investigated the effect of the
spatial resolution on the relationships between NDVI and precipitation.
Quiroz, Yarlequé, Posadas,Mares, and Immerzeel (2010) andHeidinger,
Yarlequé, Posadas, and Quiroz (2012) applied wavelet multi-resolution
analysis using NDVI data to improve TRMM daily rainfall estimates at
meteorological stations located in the Andean Plateau. Jia, Zhu, Lű, and
Yan (2011) used linear relationships between annual NDVI and eleva-
tion to downscale TRMM data. They explored regression relationships
at different scales to downscale precipitation to 1 km resolution.

So far most studies focused on the use of one remote sensing-
derived dataset of land surface attributes to enhance estimates of the
spatial distribution of rainfall. Also, most studies have used a single
TRMM product for analyses. In this study we explore the use of three
proxies in a multiple regression approach, using two different TRMM
products to optimize both the spatial and temporal precipitation resolu-
tions. The objective of this study is to develop and validate a procedure
to quantify the spatial distribution of precipitation at high spatial reso-
lution with a weekly time step in a tropical mountainous area based
on observed data, vegetation response, elevation and TRMM derived
Fig. 1. Location of the Tungura
estimates. The methodology is evaluated in the Andean mountains
with a renowned strong spatial and temporal variability of rainfall.

2. Study area

The study area comprised the Tungurahua province (3389 km2),
located in the central part of Ecuador and which is part of the Patate
river basin, draining into the Amazon. Altitudes in the province range
from 1200 to 5000 m above sea level (Fig. 1). The morphology of the
area is characterized by its volcanic origin and activity, and the inter-
Andean depression flanked by the Cordillera Real to the east and the
Cordillera Occidental to the west.

The region has strong climatic gradients and is well-known for
its micro-climates: small areas with very specific climatic conditions.
Semi-arid conditions prevail in the inter-Andean valley, with annual
rainfall around 500 mm and an average annual temperature of 14 °C.
The high mountain areas have a temperate climate with volcanic
peaks covered with snow for most of the year. The eastern slopes
of the Cordillera Real receive annual amounts of rainfall around
3000 mm, originating from influx of moist air from the Amazon basin
(Garreaud, 2009).

In terms of land use, the high mountains are characterized by the
moorlands (páramos)with a renowned environmental and hydrological
value (Célleri & Feyen, 2009). The inter-Andean depression isfilledwith
alluvial fan, fluvial, lacustrine, and contemporaneous volcanic deposits
(Winkler et al., 2005), providing fertile grounds for cultivation. Around
50% of the total surface area is used for agriculture, while the remaining
is natural and urban area. Due to the high agro-climatic variability a
wide range of fruits, vegetables and grains is cultivated in the region.
Most of the national fruit production originates from this region.

3. Methodology

3.1. Approach

The rainfall satellite products which have been studied and eval-
uated most are those based on data from the TRMM satellite (Simpson,
Kummerow, Tao, & Adler, 1996). The objective of the TRMM is to pro-
vide accurate global tropical rainfall estimates by using a combination
of instruments designed entirely for rainfall observation. Moreover,
some of the derived products are calibrated with selected ground-
based observation sites. Since its launch, the TRMM algorithms
and products have been continuously improved, and since May 2012
version 7 is available.
hua province in Ecuador.



Fig. 2.Map showing for eachweather station the amount (%) of valid data available for the
study (dots). The grid shows the resolution of the TRMM 3B41 product.
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The methodology presented here, referred to as High-resolution
Precipitation 2-step Procedure (HiP2P), combines ground-based rainfall
measurements with two TRMM products and two remote sensing-based
datasets with different temporal and spatial resolutions. The aim is to
generate reliable spatial and temporal estimates of rainfall over large
areas at a very high spatial resolution.

The guiding principles for the procedure presented here are:
(i) combing coarse spatial, but high temporal resolution TRMM (daily,
25 × 25 km) with high spatial, but low temporal TRMM (monthly,
4 × 4 km) resolution; (ii) bias correct TRMM with observations;
(iii) use NDVI (vegetation index) to enhance spatial resolution to
1 × 1 km; and (iv) use DEM to correct for missing high altitude
observations.

The precipitation mapping procedure is based on the following
datasets:

• Precipitation records of the weather stations.
• Daily spatial rainfall estimates from TRMM.
• Average monthly rainfall patterns derived from TRMM.
• Digital Elevation Model obtained from SRTM.
• NDVI derived from SPOT-VEGETATION.

The final outcome of the procedure is a time series of spatial
distributions over a representative period that should allow better
insight in the temporal and spatial patterns of rainfall in the area. However,
for detecting climatic trends it is less useful becausehuman factors and land
use change can influence NDVI significantly on the long-term. It is
challenging to separate this effect from a pure climate signal.

3.2. Datasets

3.2.1. Precipitation records
Data from28weather stationswithin the study area (15) and up- and

downstream in the basin outside the study area were used (Fig. 2). Daily
rainfall data were available covering the period 1998–2011.

3.2.2. TRMM rainfall
The Tropical Rainfall Measuring Mission (TRMM) is a satellite

launched and operated by the US Space Agency (NASA) and the
Japanese Aerospace Exploration Agency (JAXA). The satellite mission
is focused on providing data on tropical and subtropical rainfalls
and to estimate its associated latent heating. TRMM is operational
since November 1997 and is releasing products since 1998.

The rainfall measuring instruments on the TRMM satellite include
the Precipitation Radar (PR), an electronically scanning radar operating
at 13.8 GHz, the TRMMMicrowave Image (TMI), a nine-channel passive
microwave radiometer, and a Visible and Infrared Scanner (VIRS), a five-
channel visible/infrared radiometer.

The development of TRMM products has gone through various
phases. Continuous improvements are implemented to obtain more
reliable products with higher accuracy. Significant changes were made
to the current version 7 compared to the previous version, including
additional satellite data and a standardized data reprocessing and cali-
bration facility, using global data from rain gauges. Initial assessments
of version 7 showed significant improvements in accuracy (Duan &
Bastriaanssen, 2013; Junzhi, A-Xing, & Zheng, 2012).

In spite of these improvements, bias removal and ground-truthing
remain necessary when using TRMM products for regional assessments
(Hong, Hsu, Moradkhani, & Sorooshian, 2006). Temporal patterns
may be captured correctly by TRMM but still significant bias has been
found when comparing rainfall amounts with measured quantities at
weather stations (Scheel et al., 2011; Su et al., 2008).

For this study, two TRMM products were used.

• 3B42_V07: The purpose of the 3B42 algorithm is to produce TRMM-
adjusted merged-infrared (IR) precipitation and root-mean-square
(RMS) precipitation-error estimates. The algorithm consists of two
separate steps. The first step uses the TRMM VIRS and TMI orbit data
and the monthly TMI/TRMM Combined Instrument (TCI) calibration
parameters to producemonthly IR calibration parameters. The second
step uses these derived monthly IR calibration parameters to adjust
the merged-IR precipitation data, which consists of GMS, GOES-E,
GOES-W, Meteosat-7, Meteosat-5, and NOAA-12 data. Then, gauge
correction is performed using the uniformly processed database by
the Global Precipitation Climatology Centre (GPCC). The final gridded,
adjusted merged-IR precipitation (mm/h) and RMS precipitation-
error estimates have a 3-hourly temporal resolution and a 0.25-
degree by 0.25-degree spatial resolution. Spatial coverage extends
from 50 degrees south to 50 degrees north latitude. The final product
has a 1-day temporal resolution and a 25 × 25 km spatial resolution
(Simpson et al., 1996).

• 2B31_V07: The 2B31 product is a combined PR/TMI rain rate and
path-integrated attenuation at 4 km horizontal, and 250 m vertical,
resolution, over a 220 km swath. For this product, data was processed
from 1998 to 2006 and each of the orbits (approx. 16/day) was fitted
to an equally-spaced grid with a bilinear interpolation to account for
projection and resolution differences (Bookhagen & Strecker, 2008).
Prior to rainfall calibration, the TRMM 2B31 data is scaled with the
number of measurements in each grid cell, because higher latitudes
are more frequently measured due to the TRMM orbital paths.
In order to convert the 2B31 rainfall rate into absolute rainfall, the
scaled data is calibrated with gauged rainfall data from 1970 stations.
The final product has an average monthly temporal resolution and
a 4 × 4 km spatial resolution.

By using these two products we aimed to make optimal use of the
high spatial resolution of the 2B31_V07 products and high temporal
resolution of the 3B42_V07 product.
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3.2.3. Digital Elevation Model
A Digital Elevation Model (DEM) was used to include topographical

effects on precipitation patterns. Data from the NASA Shuttle Radar
Topographic Mission (SRTM), currently distributed by the USGS, were
used. The SRTM data are available as 3 arc second (approx. 90 m) reso-
lution. The vertical error of the DEMs is less than 16 m (Sun, Ranson,
Kharuk, & Kovacs, 2003). SRTM is currently the de-facto standard for
elevation models in hydrological assessments. For this study the SRTM
data were resampled to 1 × 1 km to match with the NDVI data.

3.2.4. The Normalized Difference Vegetation Index (NDVI)
The NDVI was used as a proxy for the temporal and spatial dynamics

of precipitation. The vegetative response to precipitation can be relative-
ly fast under arid, semi-arid and sub-humid conditions. The relationship
of NDVI and precipitation has been used previously to convert the spatial
distribution of TRMM precipitation from daily to annual temporal
resolutions (Immerzeel et al., 2009; Quiroz et al., 2010). NDVI data
from the French SPOT satellite have been used and evaluated in many
studies previously. SPOT consists of two observation instruments in
orbit, VEGETATION 1 and VEGETATION 2, as well as ground infrastruc-
tures. The first of the two instruments in orbit is aboard the SPOT 4
satellite, launched on 24 March 1998. The second is aboard SPOT 5,
which was placed into orbit on 4 May 2002.

The VGT-S10 (ten day synthesis) products are composite (maximum-
value) products. All the segments of this period are compared to pick out
the ‘best’ ground reflectance values. These products provide data from
all spectral bands, the NDVI, and auxiliary image acquisition parameter
data. The continental S10-composite data products (spectral band data,
data quality layer, and NDVI) are provided by Vito, Belgium. The indi-
vidual composite NDVI data for each period were extracted from
the S10-HDF file and post processed. The post-processing steps include
a re-projection from the native global Mercator projection, regional
sub-setting, and incorporation of flags for bad data, clouds, and a land
mask. The data flag, cloud and land mask information are obtained
from the Status Map (SM) layer (data quality information) included as
part of the S10 synthesis product catalogue. The original NDVI dataset
is distributed in a format using digital numbers (DN). The true value
of NDVI has to be calculated from the 8 bit decadal images.

3.3. Rainfall mapping procedure

The spatial rainfall mapping consisted of two main steps: (i) a pre-
diction of spatial distribution based on regression models obtained
from the different spatial datasets, and (ii) an interpolation of observa-
tions of spatial distribution to include the variability not explained by
the models. Several pre-processing steps had to be done as explained
in the following section. The complete procedure is detailed in the flow
chart in Fig. 3.

3.3.1. Pre-processing of datasets
All datasets were downloaded, re-projected, re-sampled and clipped

to the area of interest. The analysis was done for the period covered
by all datasets from 1-Apr-1998 to 31-Dec-2011 (almost 14 years).

The decadal distributions of NDVI show gaps in some areas
and during some periods due to persistent cloud cover. These were
filled by using the spatial distribution ofmeanmonthly NDVI. The result
is a cloud-filled decadal time series of NDVI grids for the period 1-Apr-
1998 to 31-Dec-2011.

The observedprecipitation records (OBS)were subjected to a quality
check for missing values, and were aggregated to monthly values. The
resulting data gaps were filled by calculating the bias factor K between
OBS and the monthly TRMM observations at each weather station and
were summarized as follows:

OBSi ¼ K � TRMMi ð1Þ
with OBSi, as themonthly corrected observed rainfall at raingauge i, and
TRMMi as the monthly TRMM rainfall at raingauge i based on TRMM
3B42_V07, and K as the monthly specific bias factor.

3.3.2. Step 1: regression modeling and prediction
Data representing conditions at the weather station locations

were extracted from the five spatial datasets (TRMM 3B42_V07,
TRMM 2B31_V07, NDVI, OBS, DEM). Weekly time series were created
to form a dataset that contained for each of the 28 weather stations
and for each week in the 14-year period, the weekly rainfall amount,
the NDVI, the monthly average rainfall from the 2B31 dataset (further
on in text: CLIM) and the altitude (DEM). This datasetwas split into sep-
arate datasets by theweek of the year, resulting in 52 separate datasets.
For each of these datasets, a linear regression model was fitted, as
follows:

PCP j ¼ aþ b � DEMþ c � CLIM j þ d �NDVI jþ1 ð2Þ

Inwhich a, b, c and d are the fitting coefficients of the regression, and j
is theweek number in the year. This resulted in a total of 52 fitted regres-
sion equations, each based on 392 data points (28 stations × 14 years).
For NDVI we assume a lag time of 1 week in the regression models to
mimic the response of vegetation to precipitation.

The 52 regression models were subsequently applied to the spatial
datasets at the resolution of 1 × 1 km to obtain a model estimate
for each pixel and for each week in the 14-year analyzed period. This
resulted in a precipitation estimate based on elevation, NDVI and the
climatic conditions at a much higher resolution then the TRMM and
observed precipitation.

3.3.3. Step 2: spatial correction with observations
Only part of the variability is explained by the regression models.

This is because the input variables represent only some of the factors
that determine the complex and erratic behavior of rainfall. The obtained
models describe average patterns but donot accurately capture extremes.

Therefore, in the second step precipitation variability, which was
not explained by the regression models, was included by deriving the
residuals (modeled precipitation minus observed) for each station.
These residuals were then spatially interpolated (spline) and added to
the predicted maps as described by Immerzeel et al. (2009).

3.4. Predictive uncertainty analysis

The two-step procedure guarantees a perfect match between
the predicted and observed values at the weather station locations.
For this reason, the procedure does not provide a good estimate of
prediction performance and there is no effective measure to indicate
how well the observed dataset is reproduced. Cross-validation is a use-
ful method to obtain a more reliable estimate of the predictive quality
at each point.

Cross-validation consists of removing sequentially one of the sta-
tions and evaluatingmodel performance in the absence of the particular
station. This is also called leave-one-out cross-validation. This process
was repeated for each of the 28 stations such that each observation in
the sample is used once for validation.

This cross validation procedure gives an estimate of the predictive
quality of the algorithm used for this purpose. The estimate can be
spatially represented and interpolated to obtain an indication of the
accuracy of the final spatial output. The accuracy of the model was
assessed by the coefficient of determination (R2) and the Normalized
Root Mean Square Error (NRMSE: root mean square error divided
by the difference between the maximum and minimum observed
precipitations).



Fig. 3. Flow chart of the algorithm used.

Fig. 4.The linear relationship established for each station betweengroundobservations and TRMM toderive the bias factor for four stations (topplots) and the corrected time series for the
same stations (bottom plots) (blue = corrected, red = original observations, gray = TRMM 3B43v07). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Significance levels for each of the factors in the regression, for each week of the year (x-axis).
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4. Results

4.1. Rainfall time series

The observed precipitation records were quality checked to detect
outliers in the dataset. Most stations contained missing values. Fig. 2
shows the integrity (days with valid values divided by total days) of the
dataset visually.

The missing values were filled by deriving the bias factor with the
TRMM_3B41 dataset at each location, as explained before. The bias
factor ranges from 0.33 to 1.35 with an average of 0.63. The R2 between
OBS and TRMM ranges from 0.63 to 0.99 with an average of 0.81. We
conclude that there is a reasonable match between TRMM and OBS,
but there are significant biases in some cases and TRMM generally
overestimates precipitation in this area. Fig. 4 shows an example for
four of the stations in which in the upper part the red line corresponds
with the slope through the origin, i.e. the bias factor, based on monthly
rainfall amounts.

4.2. Regression models

The linear regression carried out for each week of the year resulted
in 52 regression models specific to the area of interest that relate
altitude (DEM), vegetation index (NDVI) and the averagemonthly rain-
fall based on TRMM 2B31 (CLIM), with gap-filled weekly precipitation
(OBS). The R2 of the obtained models varies between 0.23 and 0.56,
with an average of 0.40. This indicates that an average of 40% of the
variance in precipitation is explained by the regression model. By
normalizing the RMSE values (dividing them by the difference between
the maximum and minimum of the observed values), a relative error
of 11% is obtained on average.

The regression function fits four coefficients, as in Eq. (2). Fig. 5
shows the significance levels for each of the factors. These levels were
established according to the p-values of the resulting regression coeffi-
cients. The lowest level refers to p-values N 10%,meaning that the factor
Fig. 6. Values of the fitted coefficients in the reg
is not significant, the following level indicates reasonable significance
(p-value between 5% and 10%) and the upper levels indicate good to
very good significance.

These results show that the significance level of NDVI is higher
during the second half of the year, which are drier months in most of
the basin then the first half of the year. This seems logical as the vegeta-
tion responds more directly to rainfall during drier periods than during
wet periods. For the other coefficient no yearly pattern is observed in
the significance levels.

The relevance of each of the explanatory variables in the regression
function can also be interpreted from the value or weight of each
of the fitted coefficients. Fig. 6 shows the value of the coefficients b,
c and d (respectively for DEM, CLIM and NDVI), for all the models
obtained for each week of the year. Some clear trends can be observed:
the DEM coefficient is lower between weeks 15 and 25, the CLIM
coefficient is higher around week 3; around week 12 (start of April)
and around week 42. Also, the NDVI coefficient is generally higher in
the second half of the year than in the first half. The relation between
NDVI and CLIM is positive, e.g. a high NDVI value corresponds to high
precipitation. The DEM coefficient is generally negative, i.e. generally
speaking precipitation decreases with altitude in this area.

4.3. Spatial analysis

As a first step, the regression models were applied to the spatial
datasets (DEM, CLIM and NDVI) to obtain a prediction of the spatial dis-
tribution of precipitation for each week in the 14-year period. Then, in
the second step of the procedure the interpolated residuals between
the observed and estimated values at the station locations were calculat-
ed for each week and added to the predicted maps from the regression
models. This resulted in a weekly time series of precipitation covering
the entire region on a 1 × 1 km resolution. The dataset allows insight
in the spatial distributions on a weekly basis. Fig. 7 shows the mean
rainfall distribution of week 22, which is the week when the study area
receives on average most rainfall (left) and of week 40 which is on
ression models for each week of the year.



Fig. 7. Mean rainfall distribution of week 22 – wet (left) and of week 40 – dry (right) based on 14-year weekly spatial rainfall maps.
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average the driest week. Fig. 8 shows the mean annual rainfall based on
the weekly time series of the entire study period.

The results show that spatial rainfall variability in the region is very
high. Three major regions can be distinguished with different pluvial
regimes. Firstly, themoorlands of the eastern Ecuadorian Andes received
more than 1000 mmduring awet period between April and August. The
second region correspondswith the eastern flanks of the samemountain
range which received an average of more than 3000 mm per year in
the lowest parts of the basin. The third zone is the inter-Andean valley
with annual precipitation of around 500 mm. This area is highly variable
in terms of rainfall with some small areas receiving significantly more
than this amount (locally referred to as ‘micro-climates’).

It is not possible to understand the high variability in the area from
common spatial interpolation methods. Fig. 9 (left) shows the annual
mean rainfall based on a frequently used interpolation method (spline)
whichwas applied on the annual means at theweather stations. Clearly
such method, based purely on weather station data, does not reflect
the high spatial variability which exists in the area. On the other hand,
Fig. 8. Annual downscaled rainfall based on
remote sensing has the disadvantage of low resolution and low accuracy,
as demonstrated in Fig. 9 (right).

4.4. Intra-annual variability

The intra-annual variability can be expressed by calculating the
coefficient of variation (the ratio of the standard deviation to the
mean rainfall at each point). This gives an indication of the relative
differences between wet and dry periods. Fig. 10 shows the spatial
representation of the coefficient of variation, based on the entire 14-
year period of weekly rainfall.

The map shows that in the region around the city of Ambato,
the temporal variation is highest. This relatively high variability of rain-
fall coincides with the areas of principally annual crop cultivation. The
area south of Ambato shows lower variability and coincides with areas
where perennials are cultivated: principally fruit trees. The coefficient
of variation is also low in the downstream areas and the high precipita-
tion amounts allow fruit production.
14-year weekly spatial rainfall maps.



Fig. 9. Left: annual rainfall distribution by interpolating (spline) the 14-year means at the weather stations. Right: annual rainfall based on the daily grids of TRMM 3B41V7 product.
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4.5. Accuracy assessment

The predictive quality of the model was assessed by using cross-
validation, as explained in the methodological section. The R2 obtained
by sequentially excluding one station from the modeling, was plotted
and spatially interpolated (using spline) (see Fig. 11). This gives an
indication of the accuracy of the final output over the entire area and
the predictive quality of the procedure. The average R2 based onmonthly
rainfall amounts over all the stations is 0.75.

As can be expected, the prediction quality is highest in the areaswith
a relatively high density of weather stations, as in the south-western
part of the province. In the south-eastern part where the temporal
variability is low and rainfall amounts are high, the correlation is also
relatively high. The performance in the northern part of the province
is lower as a result of the high rainfall variability and low density of
weather stations.

The lower areas around Ambato, receiving smaller amounts of rain-
fall, clearly show a lower predictive quality, probably due to the higher
temporal variability in these areas. The wetter areas in the province are
predicted with the highest accuracy.
Fig. 10. Coefficient of variation based on weekly variat
5. Conclusions

In this study we present a methodology to estimate spatial distribu-
tions of precipitation at high spatial resolution with a weekly time step
in a tropical mountainous region in Ecuador. Data from meteorological
stations and four remote sensing datasets were combined to improve
the quantification of the spatial distribution of precipitation in areas
where direct observations are lacking.

The TRMM 3B42 product provides a relatively coarse resolution
of rainfall (0.25 × 0.25°). An algorithm has been developed to combine
this rainfall dataset with datasets on climate, vegetation index (as a
proxy for rainfall) and altitude, in the Tungurahua province in order
to: (i) correct TRMM rainfall data with rainfall field observations and
(ii) obtain weekly rainfall maps of the region with a spatial resolution
of 1 × 1 km. The product of such an approach is weekly spatial rainfall
estimates based on NDVI, TRMM-based monthly average rainfall, DEM,
and field observations.

The approach assumes that the state of the vegetation, the elevation
and satellite derived estimates of precipitation explain part of the vari-
ability in actual precipitation. The results show that this is indeed the
ion in rainfall over the whole period 1998–2011.



Fig. 11. Interpolated R2 as indicator for the predictive performance calculated using cross-validation.
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case and that for this highly variable area 40% of the variance in weekly
precipitation is explained by these proxies, with vegetation being
the strongest proxy. The unexplained part of the variance, determined
as a residual at the weather station locations, is spatially interpolated
to obtain a perfect fit with observations at the weather stations.

A leave-one-out cross-validation procedure was applied to test
the performance of themethodology. The performancewas satisfactory,
and as expected related to the density of the weather station network
and temporal rainfall variability. In areaswith high temporal variability,
the prediction quality decreases with the distance from the weather
stations. However, in the eastern and wet part of the study area this
effect is less clear and the performance is relatively high due to the
lower temporal variability.

Our results may be more uncertain in the higher mountain areas
where the variation in elevation is larger. This is difficult to quantify be-
causemostmeteorological stations are located in the valleys. The reason
for this possible higher uncertainty is that onwindward slopes ofmoun-
tains there is often a strong positive relation between elevation and pre-
cipitation,whereas on the lee side a rain shadow is formed. This relation
is usually not straightforward as the saturation vapor pressure is not
linear through an atmospheric column. A second reason is that at higher
altitudes the temperature is lower and theNDVImay be limited by tem-
perature rather than precipitation. We therefore strongly recommend
increasing in-situ observations at high altitude in combination with
wind fields to improve the quantification of precipitation patterns in
mountain regions.

The results show that the procedure performs best during the drier
period of the year, when vegetation development responds more di-
rectly to precipitation. Also, the high precipitation of around 3000 mm
in the eastern humid areas, causes vegetation to be fully developed
and thus do not have development trends which can be related
to trends in precipitation. This makes the methodology more reliant
on the other proxies in these tropical areas. The use of other vegetation
indices that is less dependent on trends in vegetation structural
development can be investigated in future studies, as for example EVI
(Enhanced Vegetation Index), which is reported to exhibit less saturated
signals for high biomass conditions (Huete et al., 2002).

Apart from the TRMM-based monthly average rainfall, possibly
also other gridded climate variables could be included in the procedure
that take into account the seasonality of the rainfall regime and could
explain an additional part of the variability, such as wind direction,
temperature or potential evapotranspiration. It is also recommended
to examine the lag time for NDVI in the regression models as this may
be specific to vegetation in each area of study and may improve the
spatial predictions.

Overall we conclude that the methodology is useful for areas with
very high variable conditions, where sufficient ground-data is available
to establish the relationshipswith the different remote sensing datasets.
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