
INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 30: 1835–1842 (2010)
Published online 1 October 2009 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/joc.2033

Seasonal prediction of monsoon rainfall in three
Asian river basins: the importance of snow

cover on the Tibetan Plateau

W. W. Immerzeela,b* and M. F. P Bierkensb,c

a FutureWater, Costerweg 1G, 6702 AA Wageningen, The Netherlands
b Department of Physical Geography, Utrecht University, PO Box 80115, Utrecht, The Netherlands

c Deltares, PO Box 80015, Utrecht, The Netherlands

ABSTRACT: Empirical and numerical studies aiming at predicting inter-annual monsoon variability have thus far shown
limited predictive capability. In this study, we develop a spatially explicit seasonal prediction methodology for south-west
Asian monsoon (SWM) rainfall in the river basins of the Indus, Brahmaputra and Ganges, using multiple regression linear
models in combination with satellite-derived snow cover. We show that the use of recent time series of remotely sensed snow
cover, in combination with indices of global ocean and atmospheric modes (ENSO, NAO), can predict average monsoon
precipitation with reasonable accuracy and with greater accuracy in specific regions. Maps of the relative contribution of
predictor variables to the regression model show that the spring snow cover on the Tibetan plateau is the most important
predictor of monsoon precipitation, especially in inland regions. Copyright  2009 Royal Meteorological Society
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1. Introduction

The Asian monsoon is a spectacular phenomenon in the
earth’s climate system and billions of people benefit or
suffer from its seasonal rains. The monsoon is highly
complex and is the resultant of the seasonal progres-
sion of earth’s rotation and solar radiation, large-scale
ocean–atmospheric modes such as the El Niño South-
ern Oscillation (ENSO) and the complex thermo-dynamic
interaction between the atmosphere and the land surface
(Wang, 2006).

The relation between the monsoon and ENSO has been
explored in numerous studies, and a review is provided
by Webster et al. (1998). The general consensus is that,
during El Niño years, anomalous subsidence suppresses
convection over South Asia and this generally results
in a weaker monsoon (Kumar et al., 1999). Besides
ENSO, there is also emerging evidence that the Northern
Atlantic Oscillation (NAO) is linked to the Asian summer
monsoon (Yang et al., 2004).

The land-ocean thermal contrast is another primary
driver for the Asian monsoon (Li and Yanai, 1996;
Liu and Yanai, 2001). A crucial factor is the snow
cover on the Tibetan plateau that exerts a great influ-
ence on the thermodynamic balance, and subsequently on
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tropospheric temperatures due to the plateau’s high eleva-
tion. Over a century ago, Blanford (1884) already iden-
tified an inverse relationship between Himalayan snow
cover in winter and spring, and the following summer
monsoon. This study inspired numerous further stud-
ies of monsoon variability and snow interaction (Hahn
and Shukla, 1976; Bamzai and Shukla, 1999; Robock
et al., 2003; Shaman et al., 2005; Shaman and Tziper-
man, 2005). The influence of snow on the temperature
gradient is explained by the following reinforcing phys-
ical processes. An increased snow pack yields a higher
albedo, leaving less solar radiation available for gener-
ating sensible heat fluxes. Of the remaining energy, a
substantial part is used for sublimation of snow. This pro-
cess eventually leaves a wet surface that causes a large
portion of solar energy to satisfy the latent heat demand
associated with high evaporation rates.

Empirical and numerical studies aiming at predicting
inter-annual monsoon variability have thus far demon-
strated limited success. Many of the empirical studies use
ENSO and/or NAO indicators as major predictors with
moderate skill (Shukla and Paolino, 1983; Ropelewski
and Halpert 1987; Hastenrath, 1994; Del Sole and Shukla,
2002; Gadgil et al., 2005; Kumar et al., 2006). Despite
recent progress due to increased spatial and temporal
resolution, most numerical climate models have dif-
ficulty in capturing the mean monsoon structure and
the inter-annual variation (Sperber and Palmer, 1996;
Webster et al., 1998; Sperber et al., 2001; Annamalai
et al., 2007; Yang et al., 2008) and consequently yield
poor seasonal predictions of Asian monsoon strength.
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Kumar et al. (1995) provide a review of methods to fore-
casts of all India summer monsoon rainfall (AISMR).
They conclude that, irrespective of the type of fore-
cast model used, identification of robust and statistically
significant pre-monsoon predictors for AISMR contin-
ues to be of great importance and that many statistics
models suffer from significant inter-correlations between
different predictors. The Indian Meteorological Depart-
ment has provided operational forecasts of the AIMSR
since 1924 for specific regions in India. For quantita-
tive forecasts, a 16-parameter power regression model is
used (Gowarikar et al., 1991), which suffers from inter-
correlations between the predictors and possibly overfit-
ting (Kumar et al., 1995).

In this study, we choose to combine multiple indicators
of imminent monsoon strength as reported in the litera-
ture (i.e. ENSO, NAO) with snow cover on the Tibetan
Plateau to arrive at seasonal predictions with enhanced
skill. To avoid inter-correlation issues, we use a maxi-
mum of three predictors per regression model. In par-
ticular, we exploit the increasing availability of longer
and more reliable time series of remotely sensed high-
resolution snow cover data, which have not been used in
forecast models. We focus on multiple linear regression
prediction of south-west Asian monsoon (SWM) rainfall
in the river basins of the Indus, Brahmaputra and Ganges
on a pixel basis at a high resolution.

2. Methods

The study area includes the entire catchment areas
of the Indus (1,005,786 km2), Ganges (990,316 km2)
and Brahmaputra (525,797 km2). During the summer
months (June–September), the SWM produces heavy
rainfall, specifically in the eastern part of the study area.
The monsoon weakens in a western direction. Annual
precipitation therefore exhibits an east-to-west gradient
ranging from over 2000 mm on the Himalayan foot
slopes in the east to less than 300 mm in the arid areas
of the Karakoram in the west.

Precipitation data from the tropical rainfall monitoring
mission (TRMM) (Kummerow et al., 1998) are used
to calculate monsoon precipitation totals from June to
September (JJAS) from 1998 to 2008. Here we use the
3B43 product (Huffman et al., 2007), which is a monthly
multi-satellite gauge-corrected precipitation with a spatial
resolution of 0.25°.

The monthly portion of snow-covered area from April
1998 to September 2008 within the spatial domain
23–41°N and 68–106 °E is based on the Normalized
Difference Snow Index (Hall et al., 1995) derived from
a dataset acquired with the VEGETATION sensor aboard
the SPOT 4 and SPOT 5 satellites, similar to the approach
of Dankers and de Jong (2004).

Monthly values from 1998 to 2008 for the ENSO
indices (Southern Oscillation Index (SOI) (Können
et al., 1998) and NINO3 (Rayner et al., 2003)) and
the NAO index (Hurrell, 1995) were downloaded from

Table I. Overview of the 16 tested regression models.

Predictor 1 Predictor 2 Predictor 3 f (−) r(−)

SnowMarch SOIwinter NAOwinter 0.47 0.34
SnowMarch SOIMay NAOwinter 0.46 0.33
SnowMarch NINO3winter NAOwinter 0.48 0.32
SnowMarch NINO3May NAOwinter 0.46 0.33
Snowspring SOIwinter NAOwinter 0.50 0.35
Snowspring SOIMay NAOwinter 0.47 0.31
Snowspring NINO3winter NAOwinter 0.50 0.33
Snowspring NINO3May NAOwinter 0.49 0.33
SnowMarch SOIwinter NAOspring 0.59 0.35
SnowMarch SOIMay NAOspring 0.53 0.36
SnowMarch NINO3winter NAOspring 0.56 0.34
SnowMarch NINO3May NAOspring 0.55 0.35
Snowspring SOIwinter NAOspring 0.60 0.35
Snowspring SOIMay NAOspring 0.58 0.36
Snowspring NINO3winter NAOspring 0.58 0.34
Snowspring NINO3May NAOspring 0.49 0.33

f is the fraction of the total area with P > 400 mm year−1 with
positive skill and r is the average skill in this area.

the Climate Diagnostic Center of NOAA (accessible at
http://www.cdc.noaa.gov/ClimateIndices/List/).

We construct linear predictive models for each TRMM
pixel by taking JJAS precipitation (PJJAS) as a linear
combinations of three different predictors: (1) an ENSO
index (either SOI or NINO3), (2) the NAO index and
(3) snow cover preceding the monsoon season. For
ENSO, the antecedent values for NINO3 and SOI in
winter and May are tested. NAO was tested for winter
(December–February) and spring (March–May), and
snow cover on the Tibetan Plateau for spring and March.
Thus, for each pixel for the 11-year time series, 16
models (2 SOI · 2 NINO3 · 2 Snow · 2 NAO = 16)
were tested (Table I). If predictors are selected because
of their strong correlation with the predictand, this may
lead to an apparent skill. However, in our case, each
tested model consists of 1 ENSO, 1 snow and 1 NAO
predictor and this choice is motivated by pre-established
physical considerations and is, as such, less sensitive
to screening biases and a resulting apparent skill cf.
Del Sole and Shukla (2009). The different models are
assessed using a rigorous leave-one-out cross-validation
procedure. For each model and for each pixel, each
year from the time series is iteratively left out. For
the remaining 10 years, a model is constructed and the
omitted year is predicted using this model. This process
is repeated 11 times and the correlation coefficient
between the 11 predicted PJJAS and the 11 observed
PJJAS is calculated and defined as the predictive skill.
The standard deviations of each coefficient of each
term in the regression equation are determined on the
basis of the 11 repetitions, and used to determine the
significance of each term. The models were ranked
according to the overall skill within the entire study area
for all areas with PJJAS > 400 mm year−1, after which
the best model (performing best over all pixels >400 mm
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year−1) was selected. Pixels with PJJAS less than 400 mm
year−1 are not strongly influenced by the monsoon and
are therefore not included in the model analysis. This
is confirmed by the fact that the correlation between
precipitation in areas with PJJAS < 400 mm year−1 and
PJJAS > 400 mm year−1 is very low (R2 = 0.0008). For
the best performing model, it was subsequently tested
whether inclusion of interaction terms between ENSO,
NAO and snow increases model predictive power. For
the resulting model, it was then tested if the regression
coefficients of the linear model are significant at the 2.5%
level (i.e. the 95% confidence interval does not include 0)
and, if so, how large is the relative contribution to PJJAS

for this variable.
By using a spatial modelling approach, multiplicity

is introduced. Therefore, we test if results are not
coincidental by testing the field significance (Livezey and
Chen, 1983) of the product ‘area with positive skill’ x
‘average positive skill’ (P ) that results from using the
selected best model. The probability density function of

P is estimated by determining the frequency distribution
from a 1000 step Monte Carlo simulation. In each step,
the Gaussian noise for each of the three predictors is
generated for each pixel. The Gaussian noise is derived
on the basis of the distribution of the predictor values. On
the basis of the simulated predictor values, the predictive
model is constructed for all pixels and the value for
P is determined using the same leave-one-out cross-
validation procedure. This procedure is repeated 1000
times yielding a frequency distribution of P . Finally, the
field significance of the best-performing model is tested
by comparing the value of P with the derived frequency
distribution.

3. Results

Figure 1(a) shows the large spatial variation in PJJAS.
During the SWM, the western end of the monsoon
trough is located in the dry convective areas of western
India and Pakistan, and the eastern end is locked above

A

B

Figure 1. Average PJJAS based on 1998–2008 time series derived from the TRMM 3B43 data product (a) and inter-annual coefficient of variation
in JJAS precipitation (b). This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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the warm water of the Bay of Bengal. Monsoon lows
and depressions develop in the trough, mostly over the
northern and central parts of the Bay of Bengal, and
these systems subsequently move inland in a north-
westerly direction. Once over land, the land surface
processes, differential thermal advection and Himalayan
relief increase monsoon activity and cause rainfall along
the track of the systems. The systems generally weaken
in the trough, but some systems move far enough to the
west to be reactivated by moisture originating from the
Arabian Sea. Figure 1(b) shows that there is considerable
inter-annual variation in PJJAS, which is logically much
higher in areas with limited rainfall further removed from
the Bay of Bengal.

The mean precipitation for all pixels with PJJAS >

400 mm was correlated with the previously mentioned
predictors to verify if any significant correlations existed.
Significant correlations with monsoon precipitation were
found with the snow cover in March (r = −0.68), snow
cover in spring (r = −0.75) and SOI in the preced-
ing winter (r = 0.63). For the area average, the other
predictors were not significant. These results certainly
justified the per pixel evaluation of predictive linear
models.

The leave-one-out cross validation of the 16 predictive
models revealed that the best prediction of PJJAS is
achieved by a linear combination of snowspring, SOIwinter

and NAOspring (Table I). For this case, 60% of the
total area with PJJAS > 400 mm year−1 has a positive
skill with an average of 0.35. This model was then
tested to ascertain whether the inclusion of one of the
three possible interaction terms (snowspring · SOIwinter,
snowspring · NAOspring, SOIwinter · NAOspring) further
increases the model predictive power. This analysis
showed that the interaction term snowspring· NAOspring

significantly increases the skill, while the other two terms
do not show any improvements. The model with the best

overall skill is therefore given by

PJJAS = a1 · snowspring + a2 · SOIwinter

+ a3 · NAOspring + a4 · snowspring·
NAOspring + b (1)

Where a1, a2, a3 and a4 are coefficients and b is the
intercept. For this model, 69% of the total area has a
positive skill with an average of 0.37 and a maximum
skill of 0.94. In total, 42% of the area with positive skill
is significant (p = 0.1; r > 0.42) and, at p = 0.05, the
significant area equals 27%. It was found that especially
the high rainfall area around the Bay of Bengal can
be better predicted by including the interaction term.
Evidently, a simultaneous weak phase of NAO, and a
low snow cover is a strong predictor of rainfall in this
area. Figure 2 shows the spatial distribution of the skill
for this best-performing model, and the extensive areas
with high PJJAS that can be predicted with reasonable
skill. There is a considerable area in the north-western
corner of the Ganges basin where the model has no
predictive power. This area is also characterized by a
low coefficient of variation in PJJAS (Figure 1(b)), i.e.
rainfall amounts are very similar each year. Possibly other
local orographic processes explain the relatively constant
PJJAS in this region. The field significance of the product
P = 0.69 × 0.37 = 0.255 was tested and the analysis
shows that 0.255 is significant at the 99% confidence
level (Figure 3).

Figure 4 shows the observed versus the predicted
spatial average PJJAS from 1998 to 2008 based on the
best model. The correlation coefficient between modelled
and observed PJJAS equals 0.75. Notably, the model
performs better from 2002 to 2008 than from 1998 to
2002. The variation seems slightly underestimated, which
is a common phenomenon in regression modelling. It

Figure 2. Skill, defined as the correlation coefficient of the leave-one-out cross validation, of the best-performing predictive model. Only areas
with a positive skill are shown. This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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Figure 3. Estimated probability density (bars, left y-axis) and cumulative probability distribution (line, right y-axis) of the metric P (area with
positive skill x average positive skill) in case predictors where completely random. The dotted line shows the value (0.255) of the best performing

regression model, which is significant at p > 0.99.
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Figure 4. Observed versus predicted PJJAS for all pixels with an average PJJAS > 400 mm year−1.

is, however, worth noting that in 2002 the SPOT 4
satellite was replaced with the SPOT 5 satellite; however,
there is currently no evidence that the replacement would
improve the estimates.

Using the student t-distribution and the standard devi-
ations of each coefficient of the 11-fold cross validation,
it was tested whether the coefficients deviate signifi-
cantly from zero at the 2.5% significance level. Figure 5
shows the significant areas for all coefficients of Equa-
tion (1) and their relative contribution to the prediction
of PJJAS. The spring snow cover is most important with
the largest significant area and highest weight. Surpris-
ingly, SOI in winter is not a prominent predictor in the
model. Although the correlation coefficient was high and
significant, it does not add much additional predictive
power to the model, except for the area around the Bay
of Bengal. The interaction term snowspring

· NAOspring is
a prominent predictor in the model, in particular around
the Bay of Bengal where PJJAS is highest. The sign of
the contribution of snow is negative in almost the entire
area. The sign of SOI is positive and the sign of NAO

is negative (in accordance with what is reported in lit-
erature) in those areas where the relative contribution is
highest, i.e. around the Bay of Bengal. The interaction
term, however, has a bi-modal sign. Along the Bay of
Bengal, snow and NAO are mutually reinforcing, while
on the Ganges plains the signals weaken each other. It
is obvious that the areas around the Bay of Bengal and
Assam behave differently from the other areas.

Obviously, our predictive model only produces statisti-
cal relations between predictor variables and SWM rain-
fall. Nevertheless, the patterns in Figure 5 deserve a ten-
tative interpretation. The rainfall close to the Bay of Ben-
gal is more related to indices of global circulation modes,
such as NAO and ENSO, while more inland, snow cover
is most important. This seems to suggest that the strength
of the onset of the monsoon closer to the Bay of Ben-
gal is determined by ocean–atmosphere interactions and
large-scale circulation, while its inland development is
more related to the temperature gradient between ocean
and land, which is in turn strongly determined by snow
cover on the Tibetan Plateau. The interaction term is more

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1835–1842 (2010)
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Snow spring

SOI winter

NAO spring

Snow spring x NAO spring

Figure 5. Relative contribution of snowspring, SOIwinter, NAOspring and snowspring
· NAOspring (left panel) to the predictive model for areas where

regression coefficients are significant at the 2.5% confidence level, and respective signs of the contribution of each predictor (right panel). This
figure is available in colour online at wileyonlinelibrary.com/journal/joc

difficult to explain. Apparently, the effect of snow cover
depends on the NAO phase and vice versa. The small
contribution of ENSO is somewhat surprising and may
be partly caused by a screening effect of NAO or snow,
which possibly interacts with ENSO. This is supported
by the correlation coefficients between the different pre-
dictors. The correlations between SOIwinter and snowspring

(−0.53) and between SOIwinter and NAOspring (−0.41) are
relatively high, while the correlation between snowspring

and NAOspring is very low (−0.09). This suggests that
the predictive skill of SOIwinter is in part accounted for
by NAOspring and snowspring. However, models with snow
and SOI or NAO and SOI perform much worse than
models where both snow and NAO are accounted for.

This shows that snow and NAO have a predictive skill
of their own and that predictive skill of the SOI by itself
is limited.

4. Discussion

The length of the time series used is limited because of
the lack of a reliable high-resolution snow cover record
on the Tibetan plateau. There is a longer, low-resolution
snow cover dataset available that is produced by the
National Oceanic and Atmospheric Administration based
on visual interpretation of satellite imagery (Robinson
et al., 1993; Robinson and Frei, 2000). However, this

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 1835–1842 (2010)
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dataset is only considered reliable for large regional to
hemispheric scale studies, but not over smaller areas, such
as the Tibetan plateau.

Previous studies have shown that over prolonged
time periods there can be considerable variation in
the teleconnection strength between ENSO and Indian
Monsoon precipitation, possibly caused by changes in the
tropical Atlantic SST (Kucharski et al., 2007), changes
in the strength of the Atlantic thermohaline circulation
(Lu and Dong, 2008; Lu et al., 2008) or related to
sampling variation when analysing the cross-correlation
in running means of the limited window size (Oldenborgh
and Burgers, 2005); Sterl et al., 2007). Although we
show significant and consistent results in our study,
these aforementioned studies indicate that, to further
confirm and physically substantiate our findings, a longer
observation record is desirable.

A number of studies have taken a process-based
approach to study the effects of snow cover variation on
both the regional and global climate. Barnett et al. (1989)
used an atmospheric circulation model to perform a
number of Eurasian snow cover perturbation experiments.
Their main conclusion is that an increased snow cover
leads to a subsequent reduction in precipitation over
Southeast Asia, which is confirmed by our analysis. Their
physical explanation relates to the energy balance and a
large proportion of the available energy being consumed
by a high albedo, sublimation and evaporative fluxes.
Secondly, they argue that after the snow has melted the
soil physics and increased soil moisture also results in
a decrease in the land–ocean thermal contrast. A study
by Dash et al. (2006) with a regional climate model also
shows a strong response of precipitation to Tibetan snow
cover. Their study shows that a prescribed snowpack of
10 cm in April results in a 30% decrease in monsoon
rainfall, thus again confirming our findings.

5. Conclusions

We show that the use of remote-sensing time series of
precipitation and snow cover, in combination with indices
of global atmospheric modes, can predict monsoon pre-
cipitation with reasonable skill. Even though the time
series is relatively short due to the limited availability
of reliable snow cover estimates, a significant inverse
relationship is found between spring and March snow
cover on the Tibetan plateau and monsoon precipitation.
A significant positive relation is also identified between
SOI in the preceding winter and monsoon precipitation,
confirming earlier findings. The best predictive model of
monsoon precipitation is a linear combination of snow
cover in spring, SOI in winter, NAO in spring and the
interaction term between snow cover in spring and NAO
in spring. In total, 69% of the total area has a pos-
itive skill and the average positive skill for all areas
with PJJAS > 400 mm equals 0.37 with an identified field
significance of 99%. Snow cover in spring is a strong
predictor over large areas of the Ganges plains further

inland, while indices of large-scale circulation modes
have a particular predictive power along the Bay of Ben-
gal, where the signs of the predictor contributions are
in general in agreement with literature. The physical pro-
cesses related to these findings require more research, but
seem to indicate that the strength of the onset of the mon-
soon is governed by ocean–atmosphere interactions and
large-scale circulation (ENSO, NAO), while the extent to
which it travels inland is governed by the thermodynamic
conditions above the Tibetan plateau.
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