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Preface 
 

This report contributes to a research project undertaken by FutureWater entitled: “Remotely Sensed 

based hydrological model calibration for basin scale water resources planning: embedding case for 

Krishna Basin, India” (GO-2005/025). This project is financially supported by NIVR (Nederlands 

Instituut voor Vliegtuigontwikkeling en Ruimtevaart) in the context of “Tijdelijke subsidieregeling 

Nationaal Programma Gebruikers Ondersteuning (GO). 

 

The report describes the state of the art in hydrological model calibration and will serve as starting 

point for the research to be undertaken. 
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1 Introduction 
The number of major water related disasters such as droughts and floods is on the rise, as well as the 

number of people affected, total loss in lives, and economic damage. Improved water management is 

highly required and it is evident that the current focus on day-to-day management should shift to more 

strategic planning. A key issue in this strategic planning of water resources is the ability to have proper 

planning and management tools available. These tools can be divided in Operational and Strategic 

Decision Support Systems: O-DSS and S-DSS, both relying on simulation models that can mimic reality. 

The O-DSS are mainly hydraulic oriented models able to predict on a time scale from hours to days in 

high detail how water will flow in river and canal systems, relying on accurate flow measurements 

upstream to predict timing and quantity of water downstream. These systems have been very effective 

in reducing the number of fatalities by so-called early-warning systems, but are not very helpful in a 

more strategic planning of water resources management. 

 

The Strategic Decision Support Systems (S-DSS) have a much more hydrological focus, describing the 

entire water cycle including natural as well as human induced processes. The objective of these tools is 

not to predict as accurate as possible the time a flood or drought might occur, but the probability of 

exceedance of these events and what long-term options might be feasible to reduce these risks. 

Besides this capability to estimate these extremes, these S-DSS are extremely powerful in evaluating 

the impact of changes in water management such as reservoir building, changes in water allocation 

between and within sectors, and impact of climate change. 

 

Despite substantial progress in the development of these S-DSS techniques, the weakest part is 

currently the lack of data to apply and calibrate these S-DSSs. Traditionally, these S-DSSs are fine-

tuned by a calibration process where observed hydrographs are compared to simulated ones. By 

adjusting the most sensitive and most unreliable input parameters the S-DSS can be calibrated and 

performs better in describing the current situation and is therefore also more reliable to explore water 

management options for the future. It must be emphasized here that this is the standard practice for 

almost every hydrological modeling study. It is clear that in data scarce areas such an approach, which 

requires observed streamflow data, is impossible and analyses are therefore often based on non-

calibrated models, resulting in erroneous output. 

 

The focus of the GO research project “Remotely Sensed based hydrological model calibration for basin 

scale water resources planning, India” is to use an innovative model calibration procedure based on 

Remotely Sensed evapotranspiration data. This report discusses the use of hydrological simulation 

models in general and specifically focuses on calibration procedures. 
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2 Hydrological modelling 

2.1 Introduction 
The increasing water scarcity, the growing demand for food, and the need to link those two in a 

sustainable way is the challenge for the next decades. Seckler et al. (1999) estimated that by 2025 

cereal production will have to increase by 38% to meet world food demands. The World Water Vision, 

as outcome from the Second World Water Forum in The Hague in 2000, estimated a similar figure of 

40% based on various projections and modeling exercises (Cosgrove and Rijsberman, 2000). These 

figures were more or less confirmed by projections based on an econometric model which showed that 

the rate of increase of grain production will be about 2% per year for the 2000-2020 period (Koyama, 

1998). 

 

To produce this increasing amount of food substantial amounts of water are required. Global estimates 

of water consumption per sector indicate that irrigated agriculture consumes 85% from all the 

withdrawals and that this consumptive use will increase by 20% in 2025 (Shiklomanov, 1998). Gleick 

(2000) presented estimates on the amount of water required to produce daily food diets per region. 

According to his figures large differences can be found between regions ranging from 1,760 liters per 

day per person for Sub-Saharan Africa to 5,020 for North America. Differences come from the larger 

number of calories consumed and the higher fraction of water-intensive meat in the diet of a North 

American.  

 

This increase in food, and therefore water, requirements coincide with a growing water scarcity at an 

alarming rate. Recently, a study by the United Nations (UN, 1997) revealed that one-third of the 

world’s total population of 5.7 billion lives under conditions of relative water scarcity and 450 million 

people are under severe water stress. This relative water scarcity and severe water scarcity are defined 

using the Relative Water Demand (RWD) expressed as the fraction water demand over water supply. A 

RWD greater then 0.2 is classified as relative water scarce, while a RWD greater then 0.4 as severe 

water stress. However, these values as mentioned by the UN are based on national-level totals, 

ignoring the fact that especially in bigger countries, huge spatial differences can occur. Vörösmarty et 

al. (2000) showed that including these in-country differences 1.8 billion people live in areas with sever 

water stress. Using their global water model and some projections for climate change, population 

growth and economic growth, they concluded that the number of people living in sever water stress 

will have grown to 2.2 billion by the year 2025.  

 

A study published by the International Water Management Institute (Seckler et al., 1999), based on 

country analysis, indicated that by the year 2025 8 percent of the population of countries studied 

(India and China where treated separately, because of their extreme variations within the country) will 

have major water scarcity problems.  Most countries, which contain 80% of the study population, need 

to increase withdrawals to meet future requirements, and only for 12% of the population no actions 

are required. 
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Although the exact numbers on how sever water stress actually is, or will be in the near future, and 

how much more food we should produce, differ to a certain extent, the main trend is unambiguous: 

more water for food and water will be scarcer. 

 

References given before are related to the global scale, but it is very clear that at smaller scales, such 

as basins, extreme variations will occur and many basins with tremendous water problems can be 

found. This, in combination with the “think globally, act locally” principle, makes the basin the most 

appropriate scale to focus on. 

 

Data is essential to assess the current conditions of water resources and to explore trends in the past. 

However, to explore options for the future tools are required that are able to see the impact of future 

trends and how we can adapt to these in the most sustainable way. Simulation models are the 

appropriate tools to do these analyses. R.K Linsley, a pioneer in the development of hydrologic 

simulation at Stanford University wrote already in 1976:  

“In summary then it can be said that the answer to ‘Why simulate?’ is given by the following points: 

1. Simulation is generally more adequate because it involves fewer approximations than 

conventional methods.  

2. Simulation gives a more useful answer because it gives a more complete answer.  

3. Simulation allows adjustment for change which conventional methods cannot do effectively.  

4. Simulation costs no more than the use of reliable conventional methods (excluding empirical 

formulae which should not be used in any case).  

5. Data for simulation is easily obtained on magnetic tape from the Climatic Data Service or the 

Geological Survey.  

6. No more work or time is required to complete a simulation study than for a thorough 

hydrologic analysis with conventional methods. Often the time and cost requirements are less.  

7. In any case, if the time and cost are measured against the quality and completeness of the 

results, simulation is far ahead of the conventional techniques.  

8. Even though the available data are limited, simulation can still be useful because the data are 

used in a physically rational computational program.” 

 

These points are still valid nowadays and can be more or less summarized by the two main objectives 

where models can be used for: (i) understanding processes and (ii) scenarios analyses. Understanding 

processes is something that starts right from the beginning during model development. In order to 

build our models we must have a clear picture on how processes in the real world function and how 

we can mimic these in our models. The main challenge is not in trying to build in all processes we 

understand, which is in fact impossible, but lies in our capabilities to simplify things and concentrate on 

the most relevant processes of the model under construction.  

 

The main reason for the success of models in understanding processes is that models can provide 

output over an unlimited times-scale, in an unlimited spatial resolution, and for difficult to observe sub-

processes. These three items are the weak point in experiments, but are at the same time exactly the 

components in the concept of sustainable water resources management. A typical example of the 

application of models to understand processes is shown in Figure 1. Soil moisture profiles are shown 

on a daily base (high temporal resolution), at every centimeter depth (high spatial resolution) and for 

relatively difficult measurable processes (soil moisture movement). 
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Figure 1. Daily soil moisture profiles for a typical Dutch polder soil. (Meijer et al., 2004) 

 

The most important aspect of applying models however is in the use to explore different scenarios. 

These scenarios can refer to aspects that cannot directly be influenced, such as population growth and 

climate change. These are often referred to as projections. On the contrary to this are the so-called 

management scenarios where water managers and policy makers can make decision that will have a 

direct impact. Examples are changes in reservoir operations, water allocation and agricultural/irrigation 

practices. In other words: models enable to change focus from a re-active towards a pro-active 

approach. (Figure 2). 

 

 

Understand current water resources

Understand past water resources
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- technical
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- policy oriented
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•Analysis
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Figure 2. The concept of using simulation models in scenario analysis. 
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2.2 Concepts of modeling 
The term modeling is very broad and includes everything where reality is imitated. The Webster 

dictionary distinguishes 13 different meanings for the word model where the following definition is 

most close to the one this study is focusing on: “a system of postulates, data, and inferences 

presented as a mathematical description of an entity or state of affairs”. However we will restrict our 

definition here to computer models and that a model should have a certain degree of process oriented 

approach, excluding statistical, regression oriented models. This leads to the following definition: “a 

model is a computer based mathematical representation of dynamic processes”.  

 

The history of hydrological and agro-hydrological models, based on this somewhat restricted definition, 

is relatively short. One of the first catchment models is the so-called Stanford Watershed Model (SWM) 

developed by Crawford and Linsley in 1966, but the main principles are still used in nowadays 

catchment models to convert rainfall in runoff. SWM did not have much physics included as the 

catchment was just represented by a set of storage reservoirs linked to each other. The value of 

parameters describing the interaction between these different reservoirs was obtained by trying to 

optimize the simulated with the observed streamflows. At the other end of the spectrum are the field 

scale models describing unsaturated flow processes in the soil and root water uptake. One of the first 

models to be developed was the SWATR model by Feddes et al (1978) based on Richards’ equation. 

Since, these models are based on points and use the concept that unsaturated flow is highly 

dominated by only vertical transport of water, much more physics could be built in from the beginning.  

 

A huge number of hydrological models exits and applications are growing rapidly. The number of 

pages on the Internet including “hydrological model” is over 2.7 million (using Google on March 2006). 

A relevant question for hydrological model studies is therefore related to appropriate model selection. 

One of the most important issues to consider is the spatial scale to be incorporated in the study and 

how much physical detail to be included. Figure 3 illustrates the general  relation between an 

increasing amount of physical detail and a decreasing amount of spatial detail.. The figure shows the 

position of commonly used models in this continuum. .  

 

2.3 Model classification 
The number of hydrological simulation models is unknown, but must be in the order of thousands. 

Even if we exclude the one-time models developed for a specific study and count only the more 

generic and more applied models it must exceed thousands. Some existing model overviews, as 

described later in more detail, include numerous models: IRRISOFT: 105, USBR: 100, CAMASE: 211, 

and REM: 675, amongst others. Interesting is that there seems to be no standard model or models 

emerging, as can be seen for example in groundwater modeling where ModFlow is the de-facto 

standard. Two hypotheses for this lack of standard can be brought forward. The first one is that model 

development is still in its initial phase, despite the about 25 years of history, and is therefore easy to 

start developing one’s own model in a reasonable amount of time and effort that can compete with 

similar existing ones. A stimulating factor related to this is that a serious scientist is considered to have 

his/her own model or has at least developed one during his or her PhD studies. A second reason for 

the large number of models is a more fundamental one saying that hydrological processes are so 

complex and diverse that each case requires its specific model or set of models.  
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It is therefore interesting to see how models can be classified and see whether such a classification 

might be helpful in selecting the appropriate model given a certain question or problem to be solved.  

Probably the most generally used classification is the spatial scale the model deals with and the 

amount of physics included (Figure 3). These two characteristics determine other model behavior as 

data need, expected accuracy, required expertise, user-friendliness amongst others.  

 

 

Figure 3. Spatial and physical detail of hydrological models.  

 

 

2.4 Existing model overviews 
A substantial number of overviews exist listing available models and a short summary. Most of this 

information is provided by the developers of the model themselves and tends therefore biased towards 

the capacities of the model. The most commonly used model overviews are discussed briefly here, 

keeping in mind that these overviews are changing rapidly, in size and number, since the Internet 

provides almost unlimited options to start and update such an overview in a automatic or semi-

automatic way. A clear example is the Hydrologic Modeling Inventory project from the United States 

Bureau of Reclamation, where about 100 mainly river basin models are registered by model developers 

(USBR, 2002).  

 

An overview of agro-ecosystems models is provided by a consortium named CAMASE (Concerted 

Action for the development and testing of quantitative Methods for research on Agricultural Systems 

and the Environment; CAMASE, 2005). The following types of models are distinguished: crop science, 

soil science, crop protection, forestry, farming systems, and land use studies, environmental science, 

and agricultural economics. A total of 211 models are included and for each model a nice general 

overview is provided. Unfortunately the last update of the register was in 1996 and advancements in 

model development over the last six years are not taken into account. 
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The United States Geological Survey (USGS, 2006) provides an overview of all their own models, about 

50, divided in four categories: geochemical, ground water, surface water, water quality, and general. 

Some of the models are somewhat outdated, but some commonly used ones are included too. All the 

models are in the public domain and can be used without restrictions. For most of the models source 

code is provided as well. 

 

The United States Department of Agriculture provides also models to be used in crop-water related 

issues. The National Water and Climate Center of the USDA has an irrigation page (NWCC, 2006) with 

some water management tools related to field scale irrigation. 

 

United States Environmental Protection Agency is very active in supporting model development. The 

SWAT model, originating from their research programs, might have the potential to become the de-

facto standard in basin scale modeling, and has been included in the BASINS package (BASINS, 2006). 

More linkages to models and other model overviews are provided too (EPA, 2006).  

 

Modeling efforts of USGS, USDA, USACE, and EPA, combined with some other models, are brought 

together by the USGS Surface water quality and flow Modeling Interest Group (SMIG, 2006a). SMIG 

has setup the most complete link to models archives nowadays including links to 40 archives (SMIG, 

2006b).  

 

The most up-to-date overview of models used crop growth modeling is the Register of Ecological 

Models (REM, 2006), with 675 models as per 12-Dec-2005. Besides this overview of models the same 

website provides general concepts and links to modeling. 

 

 

2.5 Model reviews 
In the previous section an overview of existing model inventories has been given. Although useful as a 

catalog it does not provide any independent judgment of model quality. As argued before, the best 

model does not exist and is a function of the application and questions to be answered. Few studies 

have been undertaken where a limited amount of models have been tested and reviewed. The majority 

of these studies focuses on two or three models that are almost similar in nature and conclusions are 

that models are reasonable comparable.  

 

Texas Natural Resource Conservation Commission evaluated 19 river basin models, referred to as 

Water Availability Models, in order to select the most suitable model used for management of water 

resources, including issuing new water right permits (TNRCC, 1998). A total of 26 evaluative criteria 

were identified as important functions and characteristics for selecting a model that fits the need for 

the 23 river basins in Texas. Most importantly was the ability of the model to supports water rights 

simulation. During the evaluation process, each model was assessed and ranked in order of its ability 

to meet each criterion. The 19 models were in the first phase narrowed down to five: WRAP, MODSIM, 

STATEMOD, MIKE BASIN, OASIS. Models not selected included WEAP (no appropriation doctrine) and 

SWAT (not intuitive and user-friendly). The final conclusion was to use the WRAP model with the HEC-

PREPRO GUI. As mentioned, the study focused only on models able to assist in water rights questions. 
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A similar study was performed to select an appropriate river basin model to be used by the Mekong 

River Commission (MRC, 2000). In fact, it was already decided that considering the requirements of 

the MRC not one single model could fulfill the needs, but three different types of model were 

necessary: hydrological (rainfall-runoff), basin water resources, hydrodynamic. Three main criteria 

were used to select the most appropriate model: technical capability, user friendliness, and 

sustainability. Considering the hydrological models 11 were evaluated and the SWAT model was 

considered as the most suitable one. Since water quality and sediment processes were required models 

like SLURP were not selected. Interesting is that grid based models were not recommended as they 

were considered as relatively new. The selected basin simulation model was IQQM. ISIS was reviewed 

as the best model to be used to simulate the hydrodynamic processes. 

 

An actual model comparison, where models are really tested using existing data, is initiated by the 

Hydrology Laboratory (HL) of the National Weather Service (NWS), USA. The comparison is limited to 

hydrological models and their ability to reproduce hydrographs, based on detailed radar rainfall data. 

This model comparison, referred to as DMIP (Distributed Model Intercomparison Project) has the 

intention to invite the academic community and other researchers to help guide the NWS's distributed 

modeling research by participating in a comparison of distributed models applied to test data sets. 

Results have been published recently, but no distinct conclusions were drawn (Reed et al., 2004). 

 

Sing et al. (2005) evaluated the performance of two popular watershed scale simulation models HSPF 

and SWAT.  Both models were calibrated for a nine-year period and verified using an independent 15-

year period by comparing simulated and observed daily, monthly, and annual streamflow. The 

characteristics of simulated flows from both models were mostly similar to each other and to observed 

flows, particularly for the calibration results. The final conclusion was SWAT predicts flows slightly 

better than HSPF for the verification period, with the primary advantage being better simulation of low 

flows. 
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Figure 4. Main land phase processes as implemented within SWAT 
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2.6 SWAT model 
SWAT is the acronym for Soil and Water Assessment Tool, a river basin model developed originally by 

the USDA Agricultural Research Service (ARS) and Texas A&M University that is currently one of the 

worlds leading spatially distributed hydrological models. 

 

A distributed rainfall-runoff model – such as SWAT – divides a catchment into smaller discrete 

calculation units for which the spatial variation of the major physical properties are limited, and 

hydrological processes can be treated as being homogeneous. The total catchment behavior is a net 

result of manifold small sub-basins. The soil map and land cover map within sub-basin boundaries are 

used to generate unique combinations, and each combination will be considered as a homogeneous 

physical property, i.e. Hydrological Response Unit (HRU). The water balance for HRU’s is computed on 

a daily time step. Hence, SWAT will distribute the Rio Bravo into units that have similar characteristics 

in soil, land cover and that are located in the same sub-basin. 

 

Irrigation in SWAT can be scheduled by the user or automatically determined by the model depending 

on a set of criteria. In addition to specifying the timing and application amount, the source of irrigation 

water must be specified, which can be: canal water, reservoir, shallow aquifer, deep aquifer, or a 

source outside the basin.  

 

 

SWAT can deal with standard groundwater processes. Water enters groundwater storage primarily by 

infiltration/percolation, although recharge by seepage from surface water bodies is also included. 

Water leaves groundwater storage primarily by discharge into rivers or lakes, but it is also possible for 

water to move upward from the water table into the capillary fringe, i.e. capillary rise. As mentioned 

before, water can also be extracted by mankind for irrigation purposes. SWAT distinguishes recharge 

and discharge zones. 

 

 

Figure 5. Schematic diagram of the sub-surface water fluxes 

 

Recharge to unconfined aquifers occurs via percolation of excessively wet root zones. Recharge to 

confined aquifers by percolation from the surface occurs only at the upstream end of the confined 
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aquifer, where the geologic formation containing the aquifer is exposed at the earth’s surface, flow is 

not confined, and a water table is present. Irrigation and Link canals can be connected to the 

groundwater system; this can be an effluent as well as an influent stream. 

 

After water is infiltrated into the soil, it can basically leave again the ground as lateral flow from the 

upper soil layer – which mimics a 2D flow domain in the unsaturated zone – or from return flow that 

leaves the shallow aquifer and drains into a nearby river. The remaining part of the soil moisture can 

feed into the deep aquifer, from it can be pumped back. The total return flow thus consists of surface 

runoff, lateral outflow from root zone and aquifer drainage to river. 

 

For each day of simulation, potential plant growth, i.e. plant growth under ideal growing conditions is 

calculated. Ideal growing conditions consist of adequate water and nutrient supply and a favorable 

climate. The biomass production functions are to a large extend similar to SEBAL. First the Absorbed 

Photosynthetical Radiation (APAR) is computed from intercepted solar radiation, followed by a Light 

Use Efficiency (LUE) that is in SWAT essentially a function of carbon dioxide concentrations and vapor 

pressure deficits. The crop yield is computed as the harvestable fraction of the accumulated biomass 

production across the growing season. 

 

 

Figure 6. Parameterization of crop production 
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3 Calibration in hydrological modelling 
 

3.1 Introduction 
Hydrological models use input data that have, by definition, inaccuracies. These input data or 

parameters must be estimated for a given catchment and for each computational segment of the 

model. They must be estimated either by some relationship with physical characteristics or by tuning 

the parameters so that model response approximates observed response, a process known as 

calibration.  

 

The process of model calibration is quite complex because of limitations of the models, limitations of 

the input and output data, imperfect knowledge of basin characteristics, mathematical structure of the 

models and limitations in our ability to express quantitatively our preferences for how best to fit the 

models to the data. As a result of these limitations, it is even not clear that a unique set of values 

exists for the model parameters for a given watershed. When comparing model outputs to 

observations, a basic question is what causes the differences. (Duan et al., 2003)  

 

The first paper published in the Journal of Hydrology mentioning “calibration” and “model” was 

published in 1973 by McCuen, although the emphasis was more on sensitivity analysis. Douglas et al. 

(1973) were the first to publish in the same Journal about a real calibration approach of models. 

Attention drawn on calibration procedures has been growing over the last 10 years. In the 2005 issues 

of the Journal of Hydrology for example 41 articles were published having the word “calibration” 

mentioned in the abstract. One decade ago (1995) the number of articles was limited to seven.  

 

Recently interest in using simulation models in ungauged or sparsely gauged basins has increased 

leading to some concerted actions. The most relevant ones are PUB (Prediction in Ungauged Basins) 

and MOPEX (Model Parameter Estimation Experiment) 

 

Prediction in Ungauged Basins (PUB) refers to the prediction of streamflow, sediment and water quality 

variables at multiple scales, which is not based on the availability of measured data of these variables, 

and thus precludes "local tuning" or "calibration". On the contrary, PUB requires the development of 

new predictive approaches that are based on a deep "understanding" of hydrological functioning at 

multiple space-time scales. Indeed, PUB will herald a major change of paradigm in surface hydrology 

from the present one based on "calibration" to one based on "understanding". 

 

The Model Parameter Estimation Experiment (MOPEX) project was established in 1996 with the 

primary goal to develop techniques for the a priori estimation of the parameters used in land surface 

parameterization schemes of atmospheric and hydrological models. MOPEX is an open international 

collaborative endeavor and has a loose group of contributors and participants. The major sponsor is 

the International Association of Hydrological Sciences (IAHS). So far, the major outcomes are a couple 

of active working meetings and publications in various journals and working papers. No real secretariat 

or organizational structure exists. 
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Calibration of hydrological models can be considered as parameter estimation or more general as 

optimisation. Calibration requires four dominant elements: (i) objective function, (ii) optimisation 

algorithm, (iii) termination criteria, (iv) calibration data (Singh and Woolhiser, 2002). Besides these 

four elements a fifth one can be added: (v) parameters to be optimized. These five elements will be 

discussed here in more detail.  

 

3.2 Objective function 
The objective function describes the difference between the observed and the simulated value. In 

conventional hydrological model calibration these observed and simulated values are discharges. Only 

few studies included other observations, such as groundwater levels and soil moisture contents, in the 

calibration process. Objective functions come at different flavors and the most frequently used ones 

will be discussed here. 

 

DeSmedt et al. (2005) performed a flood control modeling study where four different objective 

functions were evaluated criteria as proposed by Hoffmann et al. (2004). The objective functions are 

presented in Table 1. CR1 is the model bias, for which the value 0 represents a perfect simulation of 

the flow volume. CR2 represents the model variance. CR3 is the Nash-Sutcliffe coefficient for evaluating 

the ability of reproducing the time evolution of flows with a best value of 1. CR4 is a logarithmic 

transformed Nash-Sutcliffe criterion, giving emphasize for evaluating the quality of low-flow 

simulations. CR5 is an adapted version of the Nash-Sutcliffe criterion giving more weight to high 

discharges, and used for evaluating model efficiency for high flows. 

 

Table 1. Evaluation criteria for the assessment of model performance. 

Code Criterion Description

CR1
1

11
−∑∑

==

N

i
i

N

i
i QoQs  Model bias for evaluating the ability of 

reproducing the water balance 

CR2
( ) ( )∑∑

==

−−
N

i
i

N

i
i QoQoQoQs

1

2

1

2  Determination coefficient representing the model 

variance

CR3
( ) ( )∑∑

==

−−−
N

i
i

N

i
ii QoQoQoQs

1

2

1

21  Model efficiency for evaluating the ability of 

reproducing all stream-flows 

CR4
( ) ( )[ ] ( ) ( )[ ]∑∑

==

−−−
N

i
i

N

i
ii QoQoQoQs

1

2

1

2 lnlnlnln1  Model efficiency for evaluating the ability of 

reproducing low flows 

CR5
( )( ) ( )( )∑∑

==

−+−+−
N

i
ii

N

i
iii QoQoQoQoQoQsQoQo

1

2

1

21  Model efficiency for evaluating the ability of 

reproducing of high flows 

 

with 

Q : flow (m3 s-1) 

Qs : simulated flow (m3 s-1) 

Qo : observed flow (m3 s-1) 

N : number of observations 

 

In practical cases, however, only one objective function is used, where the RMSE and the Nash-

Sutcliffe criterion are the most commonly used ones (Lipiwattanakarn et al., 2006). The Root mean 

square error (RMSE) is expressed as: 

 
 

18 FutureWater  /34 Science for Solutions



March 2005 Calibration Methodologies in hydrological modeling: state of the art 
 
 

2/1

2
,, )(

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

=
∑

N

QQ
RMSE

N

i
isimiobs

 (1) 

RMSE measures the average error between the observed and the simulated discharges, where Qobs is 

the observed discharge, Qsim is the simulated discharge and N is the number of observations. The 

closer the RMSE value is to zero, the better the performance of the model. The most frequently used 

objective function in hydrology is the efficiency index or Nash-Sutcliffe criterion: 
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The Nash-Sutcliffe criterion value is in the range of [-∞, 1].  The zero value means the model performs 

equal to a naive prediction, that is, a prediction using an average observed value.  The value less than 

zero means the model performs worse than the average observed value.  A value between 0.6-0.8 is 

moderate to good. A value more than 0.8 is a good fit.  A value of one is a perfect fit.  

 

Most of these objective functions consider only discharge data as calibration factor. If more than one 

data source will be used, a combined objective function has to be used. Madsen and Jacobsen (2001) 

calibrated the MIKE-SHE model using groundwater as well as flow data, based on the following 

combined RMSE approach: 

 

[ ]∑ ∑
= =

−=
M

j

n

i
jijiobs

i
h

i

hh
nM

F
1 1

2
,,, )(

11
)( θθ  (3) 

 

[ ]∑
=

−=
n

i
jijiobsq qq

n
F

1

2
,,, )(

1
)( θθ  (4) 

 
)()()( θθθ qqhhagg FwFwF +=  (5) 

 

where: 
F(θ) an objective function that measures the goodness-of-fit of the simulated model with respect to 

the parameter set θ. 
h: groundwater levels 

M: total number of groundwater locations 

n: total number of observations at one groundwater location 

q: runoff at the catchment outlet 

wh : weight assigned to groundwater level data 

wq : weight assigned to runoff data 
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The first equation is the average root mean squared error (RMSE) of the groundwater levels (h) at M 

locations, and the second equation is the RMSE of the discharge (q). The weighted average measure is 

given by the last equation. 

 

Selection of the appropriate objective function is critical for a successful optimization, but the best 

objective function is problem dependent. Many research papers have been published to compare 

different objective functions all with different conclusions. Some examples: 

• Rao and Han (1987) analysed several objective functions in calibrating the urban watershed 

runoff model and found the least-squares criterion to be the best.  

• Servat and Dezetter(1991) employed five different objective functions for calibrating a 

rainfall-runoff model on a Sudanese savannah area in the Ivory Coast and found the Nash- 

Sutcliffe efficiency to be the best.  

 

 

3.3 Optimization algorithm 
Although optimization is in principle quite straightforward, e.g. minimizing the objective function, in 

real life the problem is very complex as many objective functions have multiple extremes (minima).  

 

In general, optimization algorithms can be categorized as “local” and “global” search methods 

(Sorooshian and Gupta, 1995). Depending on the hill climbing strategy employed, local search 

algorithms may be further divided into “direct” and “gradient-based” methods. Direct search methods 

use only information on the objective function value, whereas gradient-based methods also use 

information about the gradient of the objective function. Local search methods are efficient for locating 

the optimum of a uni-modal function since in this case the hill climbing search will eventually reach the 

global optimum, irrespective of the starting point. Interesting is that in groundwater modelling, 

parameter estimation has mainly been based on local gradient-based search techniques (e.g. 

McLaughlin and Townley, 1996). 

 

In practice, hydrological simulation models have numerous local optima on the objective function 

surface, and in such cases local search methods are less effective because the estimated optimum will 

depend on the starting point of the search. For such multi-modal objective functions global search 

methods are more effective, where the term “global” refers to algorithms that are especially designed 

for locating the global optimum and not being trapped in local optima. Popular global search methods 

are the so-called population-evolution-based search strategies such as the shuffled complex evolution 

(SCE) algorithm (Duan et al., 1992) and genetic algorithms (GA) (Wang, 1991). 

 

In summary five classes of optimization algorithms can be distinguished: (i) direct search methods, (ii) 

gradient search methods, (iii) random search methods, (iv) multistart algorithms, and (v) shuffled 

complex algorithms (Sorooshian and Gupta, 1995). The first two can be considered as local search 

methods and the latter three as global search methods.  
 
In terms of global optimisation techniques Solomatine (1998) distinguished the following five groups: 

• set (space) covering techniques; 

• random search methods; 

• evolutionary and genetic algorithms (can be attributed to random search methods); 
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• methods based on multiple local searches (multistart) using clustering; 

• other methods (simulated annealing, trajectory techniques, tunneling approach, analysis 

methods based on a stochastic model of the objective function). 

 

For calibration of lumped, conceptual hydrological catchment models a large number of studies have 

been conducted that compare different automatic algorithms (e.g. Duan et al., 1992; Gan and Biftu, 

1996; Cooper et al., 1997; Kuzcera, 1997; Franchini et al., 1998; Thyer et al., 1999). The main 

conclusion from these studies is that the global population-evolution based algorithms are more 

effective than multi-start local search procedures, which in turn perform better than pure local search 

methods.  

 

Global search procedures has been applied in steady state groundwater modelling (Heidari and 

Ranjithan, 1998; Solomatine et al., 1999), but to the authors' knowledge no attempt has yet been 

made to apply these techniques for calibration of integrated and distributed catchment models. 
 
Singh and Woolhiser (2002) stated that the shuffled complex evolution global optimisation algorithm 

has been found to be consistent, effective, and efficient in locating the globally optimum hydrologic 

model parameters. 

 

Recently SWAT was used to evaluate several the optimization algorithms: Shuffled Complex Evolution 

(SCE), real-valued simple Genetic Algorithm (GA), multi-start Simplex and Monte Carlo Sampling (MCS) 

and a new algorithm called the Global Greedy Search (GGS) algorithm (Tolson and Schoemaker, 2006). 

All algorithms used in this study were coded in Matlab and compared at default or recommended 

algorithm parameter settings.  For the two case studies a maximum of 2500 (6 parameters) 

respectively 6000 (14 parameters) SWAT model evaluations were used. Results indicated, similar as in 

the majority of previous studies, that the SCE algorithm outperformed the Simplex, GA and MCS 

algorithms. 

 

One of the major conclusions of research on optimization is somewhat disappointing: there is no best 

algorithm. One algorithm can be very good on one problem and show poor performance on another 

problem and/or vice versa. Solomatine (1998; 1999) defined three performance indicators that can be 

used to evaluate the algorithm for a specific problem: 

• effectiveness: how close the algorithm gets to the global minimum; 

• efficiency: running time of an algorithm measured by the number of function evaluations 

needed (the running time of the algorithm itself is negligible compared with the former); 

• reliability: robustness of the algorithms can be measured by the number of successes in 

finding the global minimum, or at least approaching it sufficiently closely. 

 

The book published by Duan et al. (2003) on calibration of watershed models came to the clear 

conclusion that the Shuffled Complex Evolution (SCE) can be considered as the de-facto standard 

optimization algorithm.  

 

A detailed description of the method appears in Duan et al. (1992). In summary the algorithm has five 

distinct steps:  

1. A “population” of points is selected randomly from the feasible parameter space. 
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2. The population is partitioned into several complexes, each with 2n + 1 points, where n is the 

number of parameters to be optimized. 

3. Each complex is evolved independently based on the downhill simplex method. 

4. The population is periodically shuffled to share information, and new complexes are formed. 

5. Evolution and shuffling are repeated until the specified convergence criteria are satisfied. 

 

Conclusions from most recent studies that the SCE algorithm outperforms other ones should be taken 

into consideration that these conclusions are mainly based on optimization on flows, while the focus of 

our study is on calibration using evapotranspiration. Also Skahill and Doherty (2006) recently showed 

the advantages of the more traditional Gauss–Marquardt–Levenberg (GML) algorithm over the global 

search ones.  

 

 

3.4 Termination criteria 
Termination criteria are needed to determine when to stop the iterative search. Methods that have 

been used include (i) function convergence, (ii) parameter convergence, or (iii) a maximum number of 

iterations (Hogue et al., 2000) When an algorithm is unable to appreciably change parameter values 

and improve the objective function value, parameter convergence is achieved. Function convergence 

occurs when the algorithm is unable to improve the objective function beyond a predefined increment 

in one or more iterations. A calibrator also may set a maximum number of iterations to stop the search 

procedure, ensuring that the algorithm does not enter an endless loop. 

 

One simple way to terminate the search is to stop when the algorithm is unable to appreciably improve 

the value of the function over one or more iterations (function convergence). While this can indicate 

arrival at the location of an optimum, it could also mean only that a very flat region of the response 

surface has been reached. If precise detection of an optimum is not considered as important, then 

function convergence can be a very useful termination criterion. One typical implementation of this 

criterion is to stop when:  

 

f
i

ii Err
f
ff

≤
− −1  (6) 

where fi-1 and fi are the function values at the (i-1)th and ith steps, respectively, and Errf is the function 

convergence criterion (for example Errf = 10-3). 

 

Another way to terminate the search is to stop when the algorithm is unable to appreciably change the 

parameter values and simultaneously improve the function value over one or more iterations 

(parameter convergence). While this can indicate arrival at an optimum, it could also mean only 

that a region of high parameter interaction (long narrow valley) on the response surface has been 

reached. One typical implementation of this criterion is to stop when:  
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where θ(j)i-1 and θ(j)i are the values of the jth  parameter at the (i-1)th 
 

and ith 
 

steps, respectively, and 

Errθ is the parameter convergence criterion (for example Errθ = 10-3).  

 
 

22 FutureWater  /34 Science for Solutions



March 2005 Calibration Methodologies in hydrological modeling: state of the art 
 
 

 

If computer time is limited, and to ensure that the algorithm does not somehow enter an infinite loop, 

it is normal to terminate the search if a prespecified maximum number of iterations is exceeded, unless 

the parameter or function convergence criteria are met first (maximum number of iterations). For 

random search methods, this is the normal way to terminate the search. It is not really possible to give 

guidelines on the value for this criterion, because it is both algorithm- and problem – dependent. The 

maximum iterations criterion is used as a backup to prevent waste of computer time.  

 

None of these termination criteria guaranty that the search arrival at the global optimum, except in the 

most trivial cases where the function is convex and well behaved. These criteria can be used in the 

same program, so the search will terminate when one of the three criterion is reached (Xu, 2002).  

 

3.5 Calibration data 
It is common practice to use observed discharge data to calibrate hydrological models. In some cases, 

especially if groundwater models are considered, hydraulic heads in aquifer systems are used. As 

discussed previously, this may lead to models able to generate runoff accurately even if processes are 

not well described by model and model parameters. It is therefore erroneous to use models calibrated 

on discharge data to evaluate other (land) processes, or undertake scenario analysis. The objective of 

this study is therefore to explore the use of evapotranspiration data as alternative for calibration 

purposes. 

 

The number of data to apply in a calibration procedure is somewhat less studied. It has been a 

common practice to use as much data as were available for the calibration, after setting aside part of 

the data set for verification of the results. However, studies by Sorooshian et al (1983) and Xu and 

Vandewiele (1994) indicated that the use of longer data sets than what is necessary served only to 

marginally improve the parameter estimates. In general, from a statistical point of view, the data set 

used should be at least 20 times the number of parameters to be estimated (for example, if there are 

10 parameters, then at least 200 observed data points should be used for computing the function). 

This is of course an approximate rule of thumb. Gupta and Sorooshian (1985) showed that the 

standard error (σ) of the estimate of parameter (j) decreases with sample size n approximately 

according to the formula:  

 

n
j 1
)( ≈σ  (8) 

 
Because the marginal improvement in 1/√n becomes small after 500 to 1000 data points, this suggests 

that two to three years of calibration data should be sufficient for a daily model with not more than 10 

parameters, provided the data are of good quality.  

 

 

3.6 Parameters to be optimized 
The number of parameter to be estimated and which parameters to include in the calibration processes 

depends on many factors, such as: model considered, observation parameters and number, 
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optimization algorithm, and objectives of the study. Appropriate parameter sensitivity should be done 

prior to any calibration. Some suggestions specific to SWAT are provided in the SWAT manual: 

• ESCO: Soil evaporation compensation factor 

• CN2: Curve number that controls runoff according to the American SCS method 

• REVAP: Groundwater revap coefficient. 

• SHALLST: Threshold depth of water in the shallow aquifer. 

• ALPHA_BF: Baseflow alpha factor. 

 

Tolson and Schoemaker (2006) calibrated SWAT using several optimization algorithms: Shuffled 

Complex Evolution (SCE), real-valued simple Genetic Algorithm (GA), multi-start Simplex and Monte 

Carlo Sampling (MCS) and a new algorithm called the Global Greedy Search (GGS) algorithm. For two 

case studies 6 parameters respectively 14 parameters were used (Table 2). 

  

Table 2. Parameters used to calibrate the SWAT model (in brackets name of the input file). 

Case 1 (6 parameters) 
SMTMP (.bsn), Snow melt base temperature (ºC) 

SURLAG (.bsn), Surface runoff lag coefficient 

GW_DELAY (.gw), Groundwater delay time (days) 

ALPHA_BF (.gw), Baseflow alpha factor (days) 

BIO_E (crop.dat), Radiation-use efficiency ((kg/ha)/(MJ/m2)) 

BLAI (crop.dat), Maximum potential leaf area index 

Case 2 (14 parameters) 
TIMP (.bsn), Snow pack temperature lag factor 

SURLAG (.bsn), Surface runoff lag coefficient 

APM (.bsn), Peak rate factor for subbasin sediment routing 

PRF (.bsn), Peak rate factor for main channel sediment routing 

SPCON (.bsn), Linear channel sediment reentrainment factor  

SPEXP (.bsn), Exponent channel sediment reentrainment factor 

GW_DELAY (.gw), Groundwater delay time (days) 

ALPHA_BF (.gw), Baseflow alpha factor (days) 

BIOMIX (.mgt) A, Biological mixing efficiency 

CN2 (.mgt) A, SCS runoff curve number for moisture condition II 

AWC_f (.sol) A & B, Available water capacity factor 

SOL_K_f (.sol) A & C, Saturated hydraulic conductivity 

T_OPT (crop.dat), Optimal temperature for plant growth (ºC) 
T_BASE (crop.dat), Minimum temperature for plant growth (ºC) 

 

Bastiaanssen et al. (2006) applied the SWAT model for the Rio Bravo basin in Mexico and performed a 

simple calibration using the following parameters as shown in Table 3. 

 

Table 3. Parameters used to calibrate the SWAT model (in brackets name of the input file). 

SOL_Z (.sol), Depth from soil surface to bottom of layer (mm) 

SOL_AWC (.sol), Available water capacity of the soil layer (mm H2O/mm soil) 

GW_REVAP (.gw), Groundwater "revap" coefficient 

RFINC(.sub), Rainfall adjustment (% change) 
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3.7 Calibration tools 

3.7.1 PEST 

PEST is a nonlinear parameter estimation package that can be used to estimate parameters for just 

about any existing computer model, whether or not a user has access to the model's source code. 

PEST is able to "take control" of a model, running it as many times as it needs to while adjusting its 

parameters until the discrepancies between selected model outputs and a complementary set of field 

or laboratory measurements is reduced to a minimum in the weighted least squares sense.  
 
The Gauss-Marquardt-Levenberg algorithm is used by PEST to optimize the model. For linear models 

(ie. models for which observations are calculated from parameters through a matrix equation with 

constant parameter coefficients), optimisation can be achieved in one step. However for nonlinear 

problems (most models fall into this category), parameter estimation is an iterative process. At the 

beginning of each iteration the relationship between model parameters and model-generated 

observations is linearised by formulating it as a Taylor expansion about the currently best parameter 

set; hence the derivatives of all observations with respect to all parameters must be calculated. This 

linearised problem is then solved for a better parameter set, and the new parameters tested by 

running the model again. By comparing parameter changes and objective function improvement 

achieved through the current iteration with those achieved in previous iterations. 
 
Derivatives of observations with respect to parameters are calculated using finite differences. During 

every optimisation iteration the model is run once for each adjustable parameter, a small user-supplied 

increment being added to the parameter value prior to the run. The resulting observation changes are 

divided by this increment in order to calculate their derivatives with respect to the parameter. This is 

repeated for each parameter. This technique of derivatives calculation is referred to as the method of 

“forward differences”. 

 

Derivatives calculated in this way are only approximate. If the increment is too large the approximation 

will be poor; if the increment is too small roundoff errors will detract from derivatives accuracy. Both of 

these effects will degrade optimisation performance. To combat the problem of derivatives inaccuracy, 

PEST allows derivatives to be calculated using the method of “central differences”. Using this method, 

two model runs are required to calculate a set of observation derivatives with respect to any 

parameter. For the first run an increment is added to the current parameter value, while for the 

second run the increment is subtracted. Hence three observation-parameter pairs are used in the 

calculation of any derivative (the third pair being the current parameter value and corresponding 

observation value). The derivative is calculated either by (i) fitting a parabola to all three points, (ii) 

constructing a best-fit straight line for the three points or (iii) by simply using finite differences on the 

outer two points. 
 
PEST is very flexible and is becoming the de-facto standard in groundwater modeling. However, one of 

the most relevant restrictions is the use of the Gauss-Marquardt-Levenberg algorithm, a gradient 

based method, sensitive to local minima. 
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3.7.2 UCODE 

UCODE_2005 can be used with existing process models to perform sensitivity analysis, data needs 

assessment, calibration, prediction, and uncertainty analysis. Any process model or set of models can 

be used; the only requirements are that models have numerical (ASCII or text only) input and output 

files, that the numbers in these files have sufficient significant digits, that all required models can be 

run from a single batch file or script, and that simulated values are continuous functions of the 

parameter values. An estimated parameter can be a quantity that appears in the input files of the 

process model(s), or a quantity used in an equation that produces a value that appears in the input 

files. In the latter situation, the equation is user-defined. 

 

UCODE_2005 can compare observations and simulated equivalents. The simulated equivalents can be 

any simulated value written in the process-model output files or can be calculated from simulated 

values with user-defined equations. The quantities can be model results, or dependent variables. For 

example, for ground-water models they can be heads, flows, concentrations, and so on. Prior, or 

direct, information on estimated parameters also can be considered. Statistics are calculated to 

quantify the comparison of observations and simulated equivalents, including a weighted least-squares 

objective function. In addition, data-exchange files are produced that facilitate graphical analysis.  

 

UCODE_2005 can be used in model calibration through its sensitivity analysis capabilities and its ability 

to estimate parameter values that result in the best possible fit to the observations. Parameters are 

estimated using nonlinear regression: a weighted least-squares objective function is minimized with 

respect to the parameter values using a modified Gauss-Newton method or a double-dogleg technique. 

Sensitivities needed for the method can be read from files produced by process models that can 

calculate sensitivities, such as MODFLOW-2000, or can be calculated by UCODE_2005 using a more 

general, but less accurate, forward- or central-difference perturbation technique. Statistics are 

calculated and printed for use in (1) diagnosing inadequate data and identifying parameters that 

probably cannot be estimated; (2) evaluating estimated parameter values; and (3) evaluating how well 

the model represents the simulated processes.  

 

One of the disadvantages of UCODE_2005 is the use of Gauss-Newton as optimization algorithm, 

which is a gradient based one. For non-linear problems this might lead to finding local minima rather 

than global ones. However, Skahill and Doherty (2006) argued the advantages of the more traditional 

Gauss–Marquardt–Levenberg (GML) algorithm over the global search ones. In summary: model-run 

efficiency, report useful information on parameter sensitivities and covariances, easily adaptable. 

 

More information on UCODE can be found at: http://www.mines.edu/igwmc/freeware/ucode/ 
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3.7.3 MATLAB 

Matlab can be considered as the de-facto standard for scientific high-level technical computing and 

interactive environment for algorithm development, data visualization, data analysis, and numeric 

computation. MATLAB is used in a wide range of applications, including signal and image processing, 

communications, control design, test and measurement, financial modeling and analysis, and 

computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available 

separately) extend the MATLAB environment to solve particular classes of problems in these 

application areas. 
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One of the Toolboxes relevant to this study is the Model-Based Calibration Toolbox. Models are 

available that can be incorperated directly within this toolbox. One of the examples of this is the 

Shuffled Complex Evolution (SCE-UA) global optimization algorithm, that is provided by the authors 

and can be downloaded free of charge (http://www.mathworks.com/matlabcentral/fileexchange/ 

loadFile.do?objectId=7671&objectType=file). 

 

 

3.7.4 GLOBE 

GLOBE is an optimization tool that can find the minimum a function of multiple variables which value is 

given by an external program or a dynamic-link library (DLL). It is possible to impose box constraints 

(bounds) on the variables' values. No special properties of the function are assumed. GLOBE 

implements the "global" minimization. There are seven (with variations – nine) algorithms 

implemented that the user can tune to the problem and that can be run in a batch for the same 

function. GLOBE includes advanced visualization features. 

  

The following algorithms are currently implemented in GLOBE: 

• Controlled random search (CRS) (Price, 1983) 

• Genetic Algorithm (GA)  

• Adaptive cluster covering (ACCO/ACCOL) (Solomatine, 1995) 

• Multis (a version of Powell-Brent non-derivative algorithm, with multiple randomized starts) 

• M-Simplex (a version of the simplex decent algorithm of Nelder and Mead, with randomized 

multiple starts) 

• Improved Controlled random search (CRS4a) (based on Ali, Storey, 1994) 

• Adaptive cluster descent (ACD) (Solomatine, 1999) 

 

Details about the GLOBE program can be found at: http://www.unesco-ihe.org/hi/sol/global.htm 
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4 Conclusions 
The key features of the GO research project “Remotely Sensed based hydrological model calibration for 

basin scale water resources planning, India” is that calibration will be based on remote sensed based 

ET observations rather than on discharges. In this context the following conclusions can be drawn: 

• Selection of the appropriate model is essential where a balance has to be made between 

issues as: scale, physical detail, support, availability of source code, expertise, and option of 

linking the model with remote sensed based ET. The SWAT model offers the best 

opportunities in this regard. 

• There appears to be a general consensus that the appropriate objective function for 

discharge based calibration is the Nash-Sutcliffe one. However, whether this is also the case 

for ET calibration is questionable and should be evaluated during this study.  

• For most calibration studies the global optimization algorithms outperformed the local 

ones. Most studies indicated that the Shuffled Complex Evolution (SCE) algorithm performed 

best. Since these conclusions are based on discharge calibration it is not clear whether this 

holds for this study as well. It is therefore required to test several optimization algorithms.  

• The tool to be used should therefore include more algorithms that can be all applied in one 

generic step. The selection of GLOBE or MATLAB might be therefore preferable. However, 

given the complexity of the problem and the innovative aspects of using ET as calibration 

data, and the uncertainaty in parameter selection, a start with a more direct search algorithm 

is preferable. The PEST program is therefore the best selection.  

 

 

 

 

 
 

FutureWater 29  Science for Solutions /34



Calibration Methodologies in hydrological modeling: state of the art June 2006 
 
 

 
 

30 FutureWater  /34 Science for Solutions



March 2005 Calibration Methodologies in hydrological modeling: state of the art 
 
 

5 References 
 

 

Allen, R., Pereira, L.A., Raes, D., Smith, M., 1998, Crop evapotranspiration; guidelines for computing 

crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome 

BASINS, 2006. BASINS, Better Assessment Science Integrating Point and Nonpoint Sources. 

http://www.epa.gov/waterscience/basins/index.html 

Bastiaanssen, W., Klaasse, A., Zwart, S., Immerzeel, W. and Droogers, P., 2006, The hydrological flow 

path and options for sustainable water resources management in the overexploited Rio Bravo 

Basin; A preliminary analysis from remote sensing and hydrological modeling, WaterWatch 

report, Wageningen  

Burnash, R.J.E., Ferral. R.L. & McGuire, R.A. (1973)..A Generalised Streamflow Simulation System, 

Joint Federal-State River Forecast Center, Sacramento, California. 

CAMASE. 2005. Agro-ecosystems models. http://library.wur.nl/camase/ 

Cosgrove, W.J.; and F.R. Rijsberman. 2000. World Water Vision: Making water everybody's business. 
London, UK: Earthscan.. 

Courault, D., Seguin, B. and Olioso, A., 2005, Review on estimation of evapotranspiration from Remote 

Sensing data: From empirical to numerical modelling approaches, Irrigation and Drainage 

Systems, 19, 223-249 

Crawford, N.H. and R.K. Linsley. 1966. Digital Simulation in Hydrology: Stanford Watershed 

 Model IV, Stanford Univ., Dept. Civ. Eng. Tech. Rep. 39, 1966. 

De Bruin, H.A.R., van den Hurk, B.J.J.M., Kohsiek, W., 1995. The scintillation method tested over a dry 

vineyard area. Boundary-Layer Meteorol. 76, 25–40. 

DeSmedt, F. Y.B. Liu and S. Gebremeskel. 2005. Integrated modelling of hydrological processes on 

basin scale. Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel. 

Douglas, J.R., R.T. Clarke, S.G. Newton. 1975..The use of likelihood functions to fit conceptual models 

with more than one dependent variable. Journal of Hydrology, Vol. 29: 181-198 

Duan, Q., Sorooshian, S. and Gupta, V., 1992, Effective and Efficient Global Optimisation for 

Conceptual Rainfall-Runoff Models, Water Resources Research, Vol. 28, No. 4, pages 1015-

1031. 

Duan, Q., Sorooshian, S. and Gupta, V., 1993, a Shuffled Complex Evolution Approach for Effective and 

Efficient Optimisation, Journal of Optimisation Theory Application, Vol. 76, No. 3, pages 501-

521. 

Duan, Q., Sorooshian, S. and Gupta, V., 1994, Optimal Use of the SCE-UA Global Optimisation Method 

for Calibrating Watershed Models, Journal of Hydrology, No. 158, pages 265-284. 

Duan, Q. H. V. Gupta, S. Sorooshian, A.N. Rousseau, and R. Turcotte. 2003. Calibration of watershed 

models. Water Science and Applications Series Volume 6. American Geophysical Union. 

 
 

FutureWater 31  Science for Solutions /34



Calibration Methodologies in hydrological modeling: state of the art June 2006 
 
 

DMIP. 2002. Distributed Model Intercomparison Project. http://www.nws.noaa.gov/oh/hrl/dmip/ 

EPA. 2006. Environmental Protection Agency, Information Sources. http://www.epa.gov/epahome/ 

models.htm 

GLOBE. 2006. Global optimization tool GLOBE. http://www.unesco-ihe.org/hi/sol/global.htm 

Hoffmann L, El Idrissi A, Pfister L, Hingray B, Guex F, Musy A, Humbert J, Drogue G, Leviandier T., 

Development of regionalized hydrological models in an area with short hydrological 

observation series, River Research and Applications 20(3), 243-254, 2004. 

IRRISOFT. 2000. Database on IRRIGATION & HYDROLOGY SOFTWARE. http://www.wiz.uni-

kassel.de/kww/irrisoft/irrisoft_i.html#index 

IWMC. 2002. Water quality model comparison chart. Illinois Watershed Management Clearinghouse. 

http://web.aces.uiuc.edu/watershed/model/COMPARE.HTM 

Hogue, T.S.,  S. Sorooshian, H. Gupta, A. Holz, D. Braatz. 2000. A Multistep Automatic Calibration 

Scheme for River Forecasting Models. Journal of Hydrometeorology: Vol. 1, No. 6, pp. 524–

542. 

Jackson, R.B., Carpenter, S.R., Dahm, C.N.,.McKnight, D.M.,.Naiman, R.J.,.Postel, S.L., and Running, 

S.W., 2001. Water in a changing world. Ecological Applications 11, 1027-1045. 

Kite, G.W. and Droogers, P., 2000, Comparing evapotranspiration estimates from satellites, 

hydrological models and field data, Journal of Hydrology, 229, 3-18 

Koyama, O. 1998. Projecting the future world food situation. Japan International Research Center for 

Agricultural Sciences Newsletter 15. 

http://ss.jircas.affrc.go.jp/kanko/newsletter/nl1998/no.15/04koyamc.htm. 

Lagouarde, J.-P. 1991. Use of NOAA-AVHRR data combined with an agrometeorological model for 

evaporation mapping. International Journal of Remote Sensing 12: 1853–1864. 

Lipiwattanakarn, S., N. Sriwongsitanon and S. Saengsawang. 2006. Performance Comparison of a 

Conceptual Hydrological Model and a Back-propagation Neural Network Model in Rainfall-

Runoff Modeling. Department of Water Resources Engineering, Faculty of Engineering, 

Kasetsart University, Bangkok, Thailand. 

Linsley, R.K. 1976. Why Simulation? Hydrocomp Simulation Network Newsletter, Vol: 8-5. 

http://www.hydrocomp.com/whysim.html 

Lyall and Macoun Consulting Engineers (1986)..WARAS Reference Manual, Version 1.0, prepared for 

the former Department of Water Resources, NSW.. 

Madsen, H. and T. Jacobsen. 2001. Automatic calibration of the MIKE SHE integrated hydrological 

modelling system. In: 4th DHI Software Conference, 6-8 June, 2001, Scanticon Conference 

Centre, Helsingør, Denmark. 

McCuen, R.H. 1973. The role of sensitivity analysis in hydrologic modeling. Journal of Hydrology, 

Volume 18: 37-53. 

Meijer, F., M. Jaarsma, R. Loeve, P. Droogers. 2004. Flexible weirs to retaining water. (In Dutch). H2O 

12:24-27. 

 
 

32 FutureWater  /34 Science for Solutions



March 2005 Calibration Methodologies in hydrological modeling: state of the art 
 
 

Monin, A.S., and A.M. Obukov, 1954. Basic laws of turbulent mixing in the atmosphere near the 

ground. Tr. Akad. Nauk SSSR Geoph. Inst., No. 24(151), 1963-1987. 

Monteith, J.L., 1965, Evaporation and environment, Sym. Soc. Exp. Biol., 19, 205-234 

MRC, Mekong River Commission. 2000. Review of Available Models. Water Utilisation Project 

Component  

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models, 1, a discussion 

of principles. J. Hydrol., 10(3), 282-290.  

Neitsch, S.L., J.G. Arnold, J.R. Kini , J.R. W Lliams, K.W. King. 2002. Soil And Water Assessment Tool, 

Theoretical Documentation,Version 2000. Texas Water Resources Institute, College Station, 

Report TR-191 

NWCC. 2006. Water Management Models. http://www.wcc.nrcs.usda.gov/nrcsirrig/irrig-mgt-

models.html 

Penman, H.L., 1948, Natural evaporation from open water, bare soil and grass, Proc. Roy. Soc., A, 

193, 120-146. 

Rao, A. R., and Han, J. 1987. Analysis of objective functions used in urban runoff models. Adv. Water 

Resour., 10, 205–211. 

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.J. 2004. Overall distributed model 

intercomparison project results. Journal of Hydrology, Volume 298, Issue 1-4: 27-60. 

REM. 2006. Register of Ecological Models (REM). http://www.wiz.uni-kassel.de/ecobas.html 

Riou, C., Itier, B. & Seguin, B. 1988. The influence of surface roughness on the simplified relationship 

between daily evaporation and surface temperature. International Journal of Remote Sensing 

9(9): 1529–1533. 

Seckler, D.; R. Barker; and U. Amarasinghe. 1999. Water scarcity in the twenty-first century. Water 
Resources Development 15: 29-42. 

Seguin, B. & Itier, B. 1983. Using midday surface temperature to estimate daily evaporation from 

satellite thermal IR data. International Journal of Remote Sensing 4: 371–383. 

Servat, E., and Dezetter, A. 1991. Selection of calibration objective functions in the context of rainfall-

runoff modeling in a Sudanese savannah area. Hydrol. Sci. J., 6: 307–330. 

Singh, J., H.V. Knapp, J.G. Arnold, M. Demissie. 2005. Hydrological modeling of the Iroquois river 

watershed using HSPF and SWAT. Journal of the American Water Resources Association. 

Volume 41, Number 2, April 2005, pages 343-360. 

SMIG. 2006a. Surface-water quality and flow modeling interest group. 

http://smig.usgs.gov/SMIG/SMIG.html 

Skahill, B.E., J. Doherty. 2006. Efficient accommodation of local minima in watershed model 

calibration. Journal of Hydrology (in press). 

SMIG. 2006b. Archives of Models and Modeling Tools. http://smig.usgs.gov/SMIG/model_archives.html 

Solomatine. D.P. 1998. Genetic and other global optimization algorithms - comparison and use in 

calibration problems. Proc. 3rd Intern. Conference on Hydroinformatics, Copenhagen, 

Denmark, 1998. Balkema Publishers. pp.1021-1028 

 
 

FutureWater 33  Science for Solutions /34



Calibration Methodologies in hydrological modeling: state of the art June 2006 
 
 

Solomatine, D.P. (1999). Two strategies of adaptive cluster covering with descent and their 

comparison to other algorithms. Journal of Global Optimization, 1999, vol. 14, No. 1, pp. 55-

78. 

Sorooshian, S., and Gupta V. K. 1995. Chapter 2: Model calibration. Computer models of watershed 

hydrology, V. P. Singh, ed., Water Resources Publications, Littleton, Colorado: 23–68. 

TNRCC, Texas Natural Resource Conservation Commission. 1998. An Evaluation of Existing Water 

Availability Models. Technical Paper #2. 

http://www.tnrcc.state.tx.us/permitting/waterperm/wrpa/wam.html 

Tolson, B.A., Schoemaker, C.A. 2005. Comparison of optimization algorithms for the automatic 

calibration of SWAT2000. In:.Karim Abbaspour and Raghavan Srinivasan, (ed.) 3rd 

International SWAT Conference July 11-15 2005, Zürich, Switzerland.  

United Nations. 1997. Comprehensive Assessment of the Freshwater Resources of the World (overview 

document) World Meteorological Organization, Geneva. 

USBR. 2002. Hydrologic Modeling Inventory. http://www.usbr.gov/pmts/rivers/hmi/2002hmi/ 

index.html 

USGS. 2006. Water Resources Applications Software. http://water.usgs.gov/software/ 

Vijay P. Singh, V.P., and D.A. Woolhiser. 2002. Mathematical Modeling of Watershed Hydrology. 

Journal of Hydrologic Engineering, Vol. 7, No. 4, 270-292. 

Xu, Chong-yu. 2002. Hydrological Models. Uppsala University Department of Earth Sciences Hydrology. 

 

 
 

34 FutureWater  /34 Science for Solutions


	Cover_RR02.ppt
	Calibration Methodologies in Hydrological Modeling: State of the Art����P. Droogers�W.W. Immerzeel�

	NIVR-NUSP2.pdf
	ModelCalib_v05.doc
	1  Introduction 
	2   Hydrological modelling 
	2.1 Introduction 
	2.2 Concepts of modeling 
	2.3 Model classification 
	2.4 Existing model overviews 
	2.5 Model reviews 
	2.6 SWAT model 
	3   Calibration in hydrological modelling 
	3.1 Introduction 
	3.2 Objective function 
	3.3 Optimization algorithm 
	3.4 Termination criteria 
	3.5 Calibration data 
	3.6 Parameters to be optimized 
	3.7 Calibration tools 
	3.7.1 PEST 
	3.7.2 UCODE 
	3.7.3 MATLAB 
	3.7.4 GLOBE 


	4  Conclusions 
	5   References 



